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angles that are transverse with respect to the flow. In similar way to existing works on affine sys-
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Analyse qualitative des systèmes de Lotka-Volterra sur des

rectangles

Résumé : Ce travail pose les bases d’une étude qualitative des systèmes dynamiques de Lotka-
Volterra, fondée sur l’étude de rectangles transverses par rapport au flot. Comparativement à
de précédentes études similaires, nous nous intéressons ici à des rectangles non nécessairement
positivement invariants, et les résultats présentés ne se limitent pas au cas linéaire mais sont
généralisés au cas non linéaire (de dimension n) de Lotka-Volterra. Nous donnons notamment des
conditions nécessaires et suffisantes pour l’existence de rectangles symétriquement transverses (qui
donc contiennent l’équilibre positif) en proposant une méthode pour les construire. Ces conditions
nous permettent en outre de déduire du patron de ces rectangles le type de stabilité de l’équilibre.
Nous proposons enfin une analyse de la dynamique du système à l’intérieur de ces rectangles, en
utilisant la théorie générale de stabilité de Lyapunov. Les fonctions de type Lyapunov que nous
construisons ici utilisent des normes vectorielles. Ce travail doit être vu comme une première étape
vers une analyse qualitative de la dynamique de l’équation non linéaire de Lotka-Volterra.

Mots-clés : Systèmes dynamiques, Equation de Lotka-Volterra, Rectangle transverse au flot,
Analyse qualitative, Fonctions de Lyapunov basées sur des normes vectorielles.
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1 Introduction

We consider in this paper n-dimensional nonlinear Lotka-Volterra (LV) differential systems in
n-dimensional rectangular regions of the phase space. This work comes within the context of
hybrid analysis of nonlinear dynamical systems. In classical hybrid approach, piecewise linear or
affine systems are used in simplexes, rectangles or more general polytopes (see for instance [4]
or [7]). More recently, [11] proposed a more general multi-affine framework. Because of its square
terms, Lotka-Volterra equation does not properly enter this class of differential equations. It is
nevertheless a quite general class of nonlinear dynamical systems, widely used in biology and
especially in ecology and population dynamics models (see notably [8]).

We present some theoretical results about these systems, and notably a necessary and sufficient
condition on the matrix of the system for the existence of a n-dimensional rectangle, containing the
equilibrium, and which is transverse with respect to the flow. We also give a method to construct
such rectangles. It is to be related with [1] (and [3, 5] for the case of general polytopes) in which
similar studies are done in the linear framework, in the case where the rectangles are transverse
and positively invariant. As LV systems are nonlinear, we finally propose a global analysis of the
dynamics inside transverse rectangles, based on Lyapunov stability theory.

Proposition 2 and theorem 4 can be seen as a first step towards a qualitative analysis of LV
systems. Using a rectangular mesh of the phase space, one can indeed qualitatively describe sets
of continuous trajectories by giving a sequence of transitions between rectangular regions. Besides
the algorithmic power of such an abstraction approach (see [4] in a different framework), it has the
advantage of being particularly robust with respect to the parameters (in a lot of applications, the
value of certain parameters are indeed only loosely known).

Throughout this paper, we will denote ≤ and ¿ the classical large and strict partial ordering
of R

n: given x, y ∈ R
n, x ≤ y (respectively x¿ y) iff xi ≤ yi (resp. xi < yi) for each i = 1, . . . , n.

The symbol ⊗ designates the component-wise product of real vectors. Symbols ln(x) and |x|, when
x is a n-dimensional real vector denote the vectors (ln(x1), . . . , ln(xn)) and (|x1|, . . . , |xn|)
We consider the LV n-dimensional dynamical system (see [8]):

ẋ(t) = x(t)⊗ (Ax(t) + b)

where x(t) lies in R
n, A is a constant n×n real matrix and b is a fixed vector in R

n. In order to focus
on nondegenerate cases, we will suppose throughout this paper that the matrix A is invertible. We
are then ensured of the existence and uniqueness of the non-zero equilibrium: x∗ = −A−1b. It is
well known that the hyperplanes xi = 0 are invariant, and so is each orthant, delimited by these
hyperplanes. For sake of clarity, we will suppose that x∗ À 0, and we will study this system in the
positive orthant:

ẋ = x⊗A(x− x∗) =: f lv(x) , x ∈ (R∗+)
n (1)

Thanks to its mathematical structure, (1) shares some properties with the associate simple affine
system:

ẋ = A(x− x∗) =: f lin(x) , x ∈ R
n (2)

In particular, the results presented in this article are actually valid in both frameworks (provided
we limit ourselves to the positive orthant). However it is to be recalled that, despite that fact,
these two systems are dynamically very different. Indeed, due to its nonlinearity, LV system (1)
can exhibit complex asymptotic behaviors such as heteroclinic limit cycles or chaotic attractors
(when the dimension n ≥ 3), whereas affine system (2) cannot.

2 Rectangles with fixed transverse patterns

Throughout this paper, we are interested in the dynamical behavior of systems (1) and (2) in
full-dimensional straight rectangles, defined as follows:

Definition 1 Let m,M be two n-dimensional real vectors satisfying m¿M . The full-dimensional
rectangle delimited by m and M , denoted [m,M ] is the set [m,M ] = {x ∈ R

n | m ≤ x ≤M} .

RR n° 6346



4 Laurent Tournier , Jean-Luc Gouzé

These rectangles are polytopes, ie bounded polyhedral sets (see [14] for a proper definition), that
have exactly 2n vertices and 2n faces of dimension n − 1. Let R denote the rectangle [m,M ],
ΣR the set of its vertices. The latter are points of R

n that can be indexed by a boolean vector
v ∈ {0, 1}n as follows:

ΣR = {σ
v | v ∈ {0, 1}n} with, for i ∈ {1, . . . , n} , (σv)i =

{
mi , if vi = 0
Mi , if vi = 1

(3)

Let us consider now the faces of R of dimension n− 1. In each direction i ∈ {1, . . . , n}, R admits
two faces, noted F+i and F−i and defined by:

F+i =
i−1∏

j=1

[mj ,Mj ]× {Mi} ×
n∏

j=i+1

[mj ,Mj ]

F−i =

i−1∏

j=1

[mj ,Mj ]× {mi} ×

n∏

j=i+1

[mj ,Mj ]

These are rectangles of dimension n − 1 according to definition 1. They have 2n−1 vertices,
that can be expressed in function of the vertices of R: ΣF+

i
= {σv | v ∈ {0, 1}n, vi = 1} and

ΣF−
i
= {σv | v ∈ {0, 1}n, vi = 0}. It is easy to see that these two sets are disjoint and we have:

ΣR = ΣF+

i
∪ ΣF−

i
. Figure 1 shows an illustration of these notations in two dimensions.

x1

x2

m = σ00

M = σ11

σ10

σ01

F+
1F−

1

F+
2

F−
2

R = [m, M ]

Figure 1: A bidimensional straight rectangle.

We now give a proper definition of the word transverse that we have used so far.

Definition 2 Let m ¿ M be two real vectors and R = [m,M ]; f designates a continuous vector
field f : R→ R

n. Given i ∈ {1, . . . , n} and ε ∈ {+,−}, we say that the face F ε
i of R is transverse

with respect to f if fi does not vanish on Fε
i and if fi(x), for x varying in Fε

i , keeps a constant
sign s ∈ {+,−}.

• if s 6= ε the face Fε
i is incoming (the field points inward R),

• if s = ε the face Fε
i is outgoing (the field points outward R).

We will say that the rectangle R has a fixed transverse pattern if its 2n faces are transverse.
Furthermore, we will say that R has a symmetrical pattern if it also satisfies the following property:
for all i ∈ {1, . . . , n}, the faces F−i and F+i are either both incoming or both outgoing.

Fig. 2 shows several examples of rectangles with fixed transverse patterns, symmetrical or not. In
fig. 2d, all edges are incoming, R is then a positively invariant set. This is the most studied case
in the literature (see [1, 3]).

As we said, rectangles are specific kind of polytopes, and as such they satisfy several well-known
properties. One of this property is the following lemma (based on the convexity of polytopes, see
notably [14]):

Lemma 1 Let R be a rectangle of any dimension in R
n, and let φ be a linear application φ : Rn →

R
p, for p ∈ N

∗. Then1, φ(R) = co ({φ(σ) | σ ∈ ΣR}) ⊂ R
p.

1The notation co(X) designates the closed convex hull of the set X

INRIA



Qualitative stability patterns for Lotka-Volterra systems on rectangles 5

Considering affine and LV vector fields, one can easily show that the transversality of a face can
be checked directly from the signs of the fi(σ), where the σ are the vertices of the face:

Proposition 1 Let 0¿ m¿M and R = [m,M ], f designates either the affine or the LV vector
field. For each i ∈ {1, . . . , n} and ε ∈ {+,−}, the face F ε

i is transverse if and only if, for all
σ ∈ ΣFε

i
, the real quantities Ai.(σ − x

∗) are not zero2 and share the same sign s ∈ {−,+}. If this
property is satisfied, then, if s 6= ε the face F ε

i is incoming, otherwise it is outgoing.

Proof
In the case of affine vector field, this result is an immediate consequence of lemma 1. For LV vector
field, we just remark that, for each i ∈ {1, . . . , n}:

f lv

i (x) = xi (Ai(x− x∗)) = xif
lin

i (x) (4)

Since x ≥ m À 0, the quantities f lv
i (x) and f lin

i (x) vanish exactly at the same points and share
the same sign. ¥

What we propose in this paper is an analysis of the dynamics of systems (1) and (2) in rectangles
with fixed transverse patterns. Such a study has been performed for linear systems in the case
where the rectangle is stricly positively invariant, such as in fig. 2d (see for instance [1], and [3]
for a similar study for general invariant polytopes). We generalize these results for a rectangle
with any symmetrical transverse pattern. We also propose a generalization to the Lotka-Volterra
framework, following a precedent work [6]. We first give the following

Proposition 2 Let 0 ¿ m ¿ M and R = [m,M ], f designates the affine or LV vector field.
Then,

(i) Suppose that R is transverse. Then, x∗ ∈ R if and only if the pattern of R is symmetrical
(and then x∗ belongs necessarily to the interior of R).

(ii) Suppose x∗ /∈ R. Then, given any initial condition x0 ∈ R, the solution t 7→ x(t, x0) of
ẋ = f(x) leaves R in finite time.

Proof
Let R have a fixed transverse pattern. Suppose that the pattern is not symmetrical, then there
exists i ∈ {1, . . . , n} such that F+i and F−i are not symmetrical. Using (3) and proposition 1, we
deduce that: (

∀v ∈ {0, 1}n , f lin

i (σv) > 0
)

or
(
∀v ∈ {0, 1}n , f lin

i (σv) < 0
)

Thanks to lemma 1, f lin
i is therefore either positive or negative on R which implies that x∗ /∈ R.

Conversely, suppose that the pattern is symmetrical. Let P be the convex hull of the points
{f lin(σv) | σv ∈ ΣR}. By definition, P is a polytope with at least 2n vertices. As each face of R
is transverse, for each σv ∈ ΣR and each i ∈ {1, . . . , n}, the quantity f lin

i (σv) is non zero, and
therefore f lin(σv) lies in an open orthant of R

n. In the following, Ov denotes the open orthant of
R
n equals to {x ∈ R

n | (−1)vixi > 0, i = 1 . . . n}. We consider the map Φ : {0, 1}n → {0, 1}n such
that for all v ∈ {0, 1}n, f lin(σv) belongs to the orthant OΦ(v). Let us show that Φ is bijective.
Let v, v′ ∈ {0, 1}n, v 6= v′. There is i ∈ {1, . . . , n} such that vi 6= v′i, for instance vi = 0 and v′i = 1.
We have then σv ∈ F−i and σv

′

∈ F+i . Since the pattern is symmetrical, we have:

sgn
(
f lin

i (σv)
)
6= sgn

(
f lin

i (σv
′

)
)

so f lin(σv) and f lin(σv
′

) do not belong to the same orthant and thus Φ(v) 6= Φ(v′). Φ is injective
and as it maps {0, 1}n to itself, it is a bijection. We deduce from this that each vertex of the
polytope P lies in a different orthant of R

n, and since P is convex, this implies that 0 ∈ P.
Therefore, thanks to lemma 1, there exists y ∈ R verifying f lin(y) = 0. By definition, we also have
that f lv(y) = y ⊗ f lin(y) = 0. Thanks to the uniqueness of the equilibrium x∗ (in both linear and

2Ai designates the ith line of matrix A (it is so a row vector)

RR n° 6346



6 Laurent Tournier , Jean-Luc Gouzé

Lotka-Volterra case), we get that y = x∗ and finally that x∗ ∈ R (necessarily, x∗ belongs to the
interior of R as all the faces of R are transverse).
The proof of point (ii) is quite classical (see for instance [8]) and relies on the well-known separating
hyperplane theorem. Indeed, if R has a non-symmetrical pattern, then x∗ /∈ R and as R is convex,
there exists a non-zero vector h ∈ R

n such that:

∀x ∈ R , ht.(x− x∗) > 0

and such that ht.x∗ > 0. We thus have, as R is compact: inf
x∈R

ht.x = c > 0. It then suffices

to find a function V : R → R, of class C1 and such that V̇ (x) = ht.x > 0 (a classical result in
dynamical system ensures then that the compact R is left in finite time). For linear system, we
choose V lin(x) = qt.x with qt = ht.A−1. For LV system, it suffices to choose V lv(x) = qt. ln(x)
with the same vector q. ¥

Remark 1 Concerning the fact that the symmetry of the transverse pattern of R implies that the
equilibrium x∗ belongs to R, the proof that is given here is essentially geometrical, and is based
on the fact that R is a polytope. It can be seen however from a different point of view. Indeed,
one can prove it using a well-known result in ODE theory: for a smooth dynamical system, any
nonempty strictly positively invariant set X (homeomorphic to a ball of R

n) contains an equilibrium
point. This property can be found for instance in [8], and mainly relies on the Brouwer fixed-point
theorem. To apply it in our case, we denote by I the set of the i ∈ {1, . . . , n} such that the faces

F±i are outgoing, and we define the vector field f̃ as follows:

∀i ∈ I , f̃i(x) = −f
lin

i (x) and ∀i ∈ {1, . . . , n} \I , f̃i(x) = f lin

i (x)

It is easy to see that f lin and f̃ have exactly the same equilibria, and that R is strictly positively
invariant for f̃ ,which leads us to the wanted result.

We deduce from this proposition that any rectangle R that does not contain the equilibrium
is transient (in the sense that any trajectory starting in R eventually leaves R), regardless of the
fact that it is transverse. As we will see in part 4, the transversality is however important in order
to describe the dynamics inside the rectangle containing the equilibrium. We therefore start by
giving some conditions to ensure that this particular rectangle is transverse (let us note that in
that case, according to proposition 2, it has a symmetrical pattern).

(a) (c)(b) (d)

Figure 2: Examples of 2-dimensional rectangles with fixed transverse patterns. (c) and (d) have
symmetrical patterns.

3 Necessary and sufficient conditions for the existence of a

transverse rectangle, with symmetrical pattern

The topic of this part is to link the existence of a transverse rectangle (with a symmetrical pattern)
with the structure of the matrix A. We will mainly use in this part some classical theorems about
matrices that can be found in [2,9]. A part of the results exposed here are already known, in the case
of linear systems and positively invariant rectangles [1] (see also [3, 5] in the case of more general
polytopes). We propose here a general result with any kind of symmetrical pattern. We moreover
develop the converse, and we notably give an explicit method to build transverse rectangles (with

INRIA



Qualitative stability patterns for Lotka-Volterra systems on rectangles 7

the wanted pattern) which are not necessarily symmetrical (in a geometrical sense) around the
equilibrium.
We adopt the following notation (see [2]): Zn×n = {A ∈ R

n×n | ∀i 6= j , aij ≤ 0}. A well-known
and useful subclass of this set of matrices is the class of M-matrices, defined in [2]. The main
interest of this class of real matrices lies in the very complete theorem that can be found in [2, p
134], giving characterizations for a matrix A ∈ Zn×n to be a non-singular M-matrix. We finally
recall the following classical definition [2, 9]:

Definition 3 Let A = (aij) be a real n× n matrix. The comparison matrix of A, noted M(A) =
(mij), is the matrix of Zn×n defined by:

• For i ∈ {1, . . . , n}, mii = |aii|,

• for i, j ∈ {1, . . . , n}, i 6= j, mij = − |aij |.

As we said in previous sections, the transverse pattern of a rectangle R = [m,M ], provided we
impose m À 0, is exactly the same for linear system (2) and LV system (1). We will so consider
in this part the generic system:

ẋ = f(x) (5)

where f designates either: f(x) = A(x− x∗) or f(x) = x⊗A(x− x∗). For all (i, j) ∈ {1, . . . , n}2,
we use the following notations: a+ij = max(aij , 0) and a−ij = min(aij , 0). We therefore have:
a+ij + a−ij = aij and a+ij − a

−
ij = |aij |. We will note A+ (resp. A−) the n×n matrix of the a+ij (resp.

a−ij) with a zero diagonal.

3.1 Necessary conditions and stability analysis

We suppose in this part the existence of a n-dimensional rectangle R = [m,M ] (with m,M ∈ R
n,

0 ¿ m ¿ M), that admits a symmetrical transverse pattern for system (5), with p ∈ {0, . . . , n}
pairs of outgoing faces and n− p pairs of incoming faces. In order to lighten the notations, we can
suppose (possibly reordering the variables) that for i = 1, . . . , p, F+i and F−i are outgoing, and for
i = p+1, . . . , n, F+i and F−i are incoming, ie, according to proposition 1 (Ai denoting the ith row
of A):

i=1..p:




∀x ∈ F−i , Ai.(x− x∗) < 0
∀x ∈ F+i , Ai.(x− x∗) > 0

i=p+1..n:




∀x ∈ F−i , Ai.(x− x∗) > 0
∀x ∈ F+i , Ai.(x− x∗) < 0

(6)

A 3-dimensional example can be found in fig. 3. We recall that according to proposition 2, this
implies that the equilibrium x∗ lies in the interior of the rectangle R.

M

m

Figure 3: A 3-dimensional rectangle with a symmetrical transverse pattern. The faces F±1 are
outgoing and the other faces are incoming (ie p = 1).

RR n° 6346



8 Laurent Tournier , Jean-Luc Gouzé

Lemma 2 For all i ∈ {1, . . . , n}, we have:

min
x∈F−

i

[Ai.(x− x∗)] = aii(mi − x∗i ) +
∑

j 6=i

[
a+ij(mj − x∗j ) + a−ij(Mj − x∗j )

]

max
x∈F−

i

[Ai.(x− x∗)] = aii(mi − x∗i ) +
∑

j 6=i

[
a+ij(Mj − x∗j ) + a−ij(mj − x∗j )

]

min
x∈F+

i

[Ai.(x− x∗)] = aii(Mi − x∗i ) +
∑

j 6=i

[
a+ij(mj − x∗j ) + a−ij(Mj − x∗j )

]

max
x∈F+

i

[Ai.(x− x∗)] = aii(Mi − x∗i ) +
∑

j 6=i

[
a+ij(Mj − x∗j ) + a−ij(mj − x∗j )

]

This lemma directly comes from our notations, and its proof is left to the reader. Thanks to
lemma 2, system (6) is equivalent to the following:

∀1 ≤ i ≤ p :





aii(mi − x∗i ) +
∑

j 6=i

[
a+ij(Mj − x∗j ) + a−ij(mj − x∗j )

]
< 0

aii(Mi − x∗i ) +
∑

j 6=i

[
a+ij(mj − x∗j ) + a−ij(Mj − x∗j )

]
> 0

(7)

∀p+ 1 ≤ i ≤ n :





aii(mi − x∗i ) +
∑

j 6=i

[
a+ij(mj − x∗j ) + a−ij(Mj − x∗j )

]
> 0

aii(Mi − x∗i ) +
∑

j 6=i

[
a+ij(Mj − x∗j ) + a−ij(mj − x∗j )

]
< 0

(8)

By substracting the two inequations of the two systems, we obtain:

∀1 ≤ i ≤ p : aii(Mi −mi) +
∑

j 6=i

(− |aij |) (Mj −mj) > 0 (9)

∀p+ 1 ≤ i ≤ n : aii(Mi −mi) +
∑

j 6=i

|aij | (Mj −mj) < 0 (10)

In order to facilitate the expression of these inequalities, we define the following block matrix and
vector:

Ã =

(
A(1) N

P A(2)

)
=




a11 −|aij |

−|aij |

−|aij |
. . .

. . . |aij |

|aij |

|aij | ann




, M −m =

(
X
Y

)
À 0

where A(1) is p× p, A(2) is (n− p)× (n− p), N (respectively P ) is a p× (n− p) (resp. (n− p)× p)
nonpositive (resp. nonnegative) matrix, and the dimensions of X and Y are respectively p and
(n− p). Inequalities (9) and (10) then imply:

{
A(1).X + N.Y À 0
P.X + A(2).Y ¿ 0

(11)

We can now give necessary conditions for the existence of a transverse rectangle (with a symmetrical
pattern) for system (5).

Theorem 1 Consider the dynamical system (5) with A invertible. Let m,M ∈ R
n, 0¿ m¿M ,

and let R designate the n-dimensional rectangle [m,M ]. Suppose there exists p ∈ {0, . . . , n} such
that the p pairs of faces F±i of R (i ∈ {1, . . . , p}) are outgoing and the n− p pairs of faces F±i , for
i ∈ {p+ 1, . . . , n} are incoming. Then the two following properties hold:

INRIA



Qualitative stability patterns for Lotka-Volterra systems on rectangles 9

• (P1) The matrix M(A) is a non-singular M-matrix.

• (P2) Diagonal entries of A satisfy:

∀i ∈ {1, . . . , p} , aii > 0
∀i ∈ {p+ 1, . . . , n} , aii < 0

Proof
Following our previous notations, we define the block matrix:

M =

(
A(1) N
−P −A(2)

)

By definition, M belongs to Zn×n. Denoting by d the vector d =M −mÀ 0, system (11) writes:

MdÀ 0.

which, according to [2, p 134], is equivalent to the fact that M is a non-singular M-matrix. Still
using this theorem, we can deduce several properties satisfied by matrix M . In particular, its
diagonal entries are all positive, which implies, according to the definition of M , the property
(P2). This also implies that M is the comparison matrix of A, and so proves property (P1). ¥

Theorem [2, p 134] provides us with several characterizations of M-matrices. For instance, one
can easily show that M(A) is a M-matrix by checking that all its principal minors are positive.
Another characterization is linked with the notion of strict diagonal dominance (see definition
in [2, 9]). Denoting by D the diagonal matrix D = diag(d) (we recall that d is the positive vector
M −m), we have the following equivalences:

M(A) is a M -matrice ⇐⇒ M(A)dÀ 0

⇐⇒ AD is strictly diagonally dominant

⇐⇒ D−1AD is strictly diagonally dominant

We want now to analyse the stability of the equilibrium x∗ (that belongs to the interior of R).

Theorem 2 Under the hypothesis of theorem 1, no eigenvalue of A has a zero real part. Further-
more, A has exactly p eigenvalues with a positive real part and n − p eigenvalues with a negative
real part.

In the case where the rectangle R is positively invariant (ie if p = 0), or equivalently in the case
where every face of R is outgoing, general theorems about M-matrices allow us to deduce directly
the stability (resp. unstability) of the matrix A. In the general case of a symmetrical pattern with
both incoming and outgoing faces, we have to come back to the more general Geršgorin theorem:

Geršgorin theorem (see notably [9, p 344])
Let M be a real n × n matrix. Noting, for i ∈ {1, . . . , n}, ri(M) =

∑
j 6=i |mij | and Di(M) the

closed disc of C of center mii and of radius ri(M), the eigenvalues of matrix M are contained in
the union of the n discs: sp(M) ⊂ G(M) :=

⋃n
i=1Di(M). Furthermore, and it is the useful result

here, if a union of k discs forms a connected region that is disjoint from the remaining n−k discs,
then this region contains exactly k eigenvalues of M . We can now give the proof of theorem 2.

Proof (Theorem 2)
We deduce from theorem 1 that the matrix B = D−1AD is strictly diagonally dominant. We then
have, for i ∈ {1, . . . , n}, |bii| > ri(B). Using Geršgorin theorem, we deduce that G(B) ∩ iR =
∅, which implies that no eigenvalue of B has a zero real part. We have furthermore that, for
i ∈ {1, . . . , p}, bii = aii > 0 and, for i ∈ {p+ 1, . . . , n}, bii = aii < 0. Using the second part of
Geršgorin, we deduce that B has exactly p eigenvalues in the right complex half-plane and n − p
in the left complex half-plane. In order to conclude the proof of the theorem, it suffices to remark
that sp(A) = sp(B). ¥
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10 Laurent Tournier , Jean-Luc Gouzé

We deduce from that theorem the stability of x∗ in the linear case. To analyze the stability for
LV system, it is sufficient to remark that the jacobian matrix of the vector field f(x) = x⊗A(x−x∗)
at the point x∗ is the matrix diag(x∗)A. Given that x∗ À 0, we deduce the following corollary:

Corollary 1 Under the hypothesis of theorem 1, the point x∗ is a hyperbolic equilibrium point for
both linear and LV systems. Furthermore, it is asymptotically stable (in both cases) if and only if
p = 0 ( ie R has only incoming faces). Otherwise, x∗ is unstable.

3.2 Sufficient conditions

We are interested in this part of a converse of theorem 1. Actually, we will show that if the matrix
A satisfies the conclusion of theorem 1, then it is possible to build a rectangle R = [m,M ] with a
symmetrical pattern. We will notably see that R does not have necessarily to be symmetrical (in
a geometrical sense) around the equilibrium x∗, but, according to explicit constraints depending
on the off-diagonal entries of A, it has to be “not too far” from it.

We consider system (5), with A invertible. Let p ∈ {0, . . . , n}, we assume that A satisfies
properties (P1) and (P2). Reconsidering our previous calculations, the rectangle R = [m,M ],
with 0 ¿ m ¿ M has the wanted symmetrical transverse pattern if and only if the systems of
inequations (7) and (8) are satisfied. Some calculations lead us to an equivalent system:





aii(mi−x
∗
i )+

∑
j 6=i

−|aij |(mj−x
∗
j )+

∑
j 6=i

a
+

ij
(Mj+mj−2x

∗
j ) < 0 i=1...p

aii(Mi−x
∗
i )+

∑
j 6=i

−|aij |(Mj−x
∗
j )+

∑
j 6=i

a
+

ij
(Mj+mj−2x

∗
j ) > 0 i=1...p

aii(mi−x
∗
i )+

∑
j 6=i

|aij |(mj−x
∗
j )+

∑
j 6=i

a
−
ij
(Mj+mj−2x

∗
j ) > 0 i=p+1...n

aii(Mi−x
∗
i )+

∑
j 6=i

|aij |(Mj−x
∗
j )+

∑
j 6=i

a
−
ij
(Mj+mj−2x

∗
j ) < 0 i=p+1...n

(12)

Let B designate the p×n upper submatrix of A+, and C designate the (n−p)×n lower submatrix
of A−. B and C are therefore respectively nonnegative and nonpositive. We also decompose the
vectors m−x∗, M −x∗, d =M −mÀ 0 and the diagonal matrix D = diag(d) into two subvectors
(resp. diagonal submatrices) of respective sizes p and n− p:

m− x∗ =

(
m′

m′′

)
, M − x∗ =

(
M ′

M ′′

)
, d =

(
d′

d′′

)
and D =

(
D′ 0
0 D′′

)

In order to build a rectangle R = [m,M ] that has a symmetrical pattern, we pose: m = x∗ + αd

and M = x∗ + βd, where α and β are two real numbers verifying α < β. We therefore impose
m and M to be on the affine straight line passing through x∗ and of direction d. We finally pose
u′ = A(1)d′ +Nd′′, u′′ = A(2)d′′ + Pd′, v′ = Bd and v′′ = Cd. Since dÀ 0, C,N are nonpositive
matrices and B,P are nonnegative matrices, we have v′ ≥ 0 and v′′ ≤ 0. Moreover, properties (P1)
and (P2) involve u′ À 0 and u′′ ¿ 0. A first and direct consequence of (12) is that we have:
α < 0 < β, which implies, as we already knew, m¿ x∗ ¿ M (ie x∗ ∈ R). A second consequence
is the following system: 




u′ +

(
1−

1

r

)
v′ À 0

u′ + (1− r) v′ À 0

u′′ +

(
1−

1

r

)
v′′ ¿ 0

u′′ + (1− r) v′′ ¿ 0

where r is the ratio: r =
∣∣∣αβ
∣∣∣ = −α

β
. It represents the gap between m and x∗ on one hand, and M

and x∗ on the other. Some easy calculations allow us to summarize the results of this part in the
following converse of theorem 1:

Theorem 3 Let A be an invertible n × n real matrix satisfying properties (P1) and (P2). We
note ∆ the affine straight line: ∆ = x∗+dR (d being a positive vector satisfyingM(A)dÀ 0). If
m,M are two points of ∆ satisfying:
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Qualitative stability patterns for Lotka-Volterra systems on rectangles 11

(i) m = x∗ + αd, M = x∗ + βd, with α < 0 < β, and

(ii) the ratio r = −α
β

belongs to the interval ]ρ, 1
ρ
[, where ρ is defined by:

ρ = max

{
max
i=1...p

(
v′i

u′i + v′i

)
, max
i=p+1...n

(
v′′i

u′′i + v′′i

)}
∈ [0, 1[

then, the n-dimensional rectangle R = [m,M ] is transverse, and has a symmetrical transverse
pattern with respect to system (5). More precisely, the pairs of faces F±i , for i ∈ {1, . . . , p}, are
outgoing and the pairs of faces F±i , for i ∈ {p+ 1, . . . , n}, are incoming.

To give a better insight of this theorem, we make here several observations.

• First, the rectangles that we build all have the affine straight line ∆ = x∗ + dR (positive
vector d being given by (P1)) as principal diagonal (ie the lower and upper bounds m and
M of R lies on ∆).

• As u′ and u′′ have no zero coefficients, we have ρ < 1. Then, any rectangle [m,M ], with
m and M being symmetrical relatively to x∗ is transverse (rectangle [m,M ] is then, in a
geometrical sense, symmetrical around the equilibrium).

• In the case where matrices B and C are zero (ie the lines of A with positive diagonal
coefficient have only nonpositive off-diagonal coefficients and the lines with negative diagonal
coefficient have only nonnegative off-diagonal coefficients), then ρ = 0. Thus, any couple of
points m,M ∈ ∆ such that m ¿ x∗ ¿ M gives a transverse rectangle. Particularly, in the
case where all the diagonal elements of A are negative, this “ideal” situation occurs when A
is a cooperative matrix (ie every off-diagonal coefficient is nonnegative). In that case, any
rectangle (of principal diagonal ∆) containing the equilibrium is positively invariant.

• In all other cases (0 < ρ < 1), this theorem gives explicit constraints depending on the off-
diagonal terms of A in order to build a transverse rectangle. The closer from 1 the constant
ρ is, the finer is the constraint on the choice of m and M (at the limit, we have only one
choice: the rectangle [m,M ] has to be taken symmetrical around the equilibrium).

Example 1
Let us consider the three 2× 2 matrices:

A =

(
2 −1
2 −3

)
, A′ =

(
2 1
2 −3

)
, A′′ =

(
2 1.9
2 −3

)

These three matrices are strictly diagonally dominant, the vector d =
(
1 1

)t
. We will so consider

points m and M lying on the straight line ∆ of direction d and passing through x∗. Given the

diagonal terms of these three matrices, we are looking for a rectangle R with the pattern given in

fig. 4a.

• The matrix A is the “ideal” case, where B = C = 0. Then v′ = v′′ = 0 and ρ = 0. Any

couple of points m,M ∈ ∆ such that m ¿ x∗ ¿ M gives a rectangle R that is transverse

and has the pattern of fig 4a.

• For A′, we have ρ = 1
2 = 0.5,

• and for A′′, ρ = 1.9
2 = 0.95.

The figure 4b represents the constraints in the cases of A′ and A′′. We see on this figure that the

higher is the positive term a12, the finer is the constraint on the size of the rectangle R = [m,M ],
and the closer R must be to the rectangle symmetrical around the equilibrium.
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Figure 4: (a): Transverse pattern for matrices A, A′ and A′′. (b): The point m being fixed, we
represent the range for M imposed by theorem 3 in order to have a rectangle [m,M ] with the
pattern of figure 4a (on the left: A′, on the right: A′′).

4 Dynamical behavior within transverse rectangles

We propose in this part to analyze the dynamical behavior of systems (1) and (2) within a trans-
verse rectangle, with a symmetrical pattern. Thanks to theorem 2 and its corollary, we know the
local behavior of these systems in a neighborhood of their equilibrium x∗. We want now to extend
the analysis of their behavior within the whole rectangle. The main result of this part lies in
theorem 4. This theorem ensures that, as soon as there exists a transverse rectangle containing the
equilibrium point x∗ (and the precedent part gives necessary and sufficient conditions, together
with a method to find such rectangles), this rectangle is either contracting towards the equilib-
rium, or left in finite time (ie it is transient). In particular, such a rectangle cannot contain an
omega-limit set different from {x∗} (it cannot contain a limit cycle for instance). This result is
straightforward in the case of linear systems but not in the Lotka-Volterra framework in which, as
we already said, complex asymptotic behavior may occur in dimension n ≥ 3.
This part is mainly based on Lyapunov theory, notably on stability and instability theorem, that
can be found for instance in [10]. The Lyapunov candidate functions that we use are based on
vector norms (see notably [8, 13]).

We assume the existence of a rectangle R = [m,M ] and of p ∈ {0, . . . , n} such that the p
pairs of faces F±i , i = 1, . . . , p of R are outgoing and the n− p pairs of faces F±i , i = p+ 1, . . . , n
are incoming. Following our previous notations, we denote by d the vector d = M − m À 0.
According to previous parts, we know that x∗ belongs to the interior of R and that matrix A
satisfies properties (P1) and (P2). Equivalently, it is clear that A satisfies these properties if At

does. So there exists a vector gÀ 0 such that:

M(At)g =M(A)t gÀ 0

We then pose:

π := min
i=1...n


|aii| −

1

gi

∑

j 6=i

|aji| gj




which is a positive constant. We define the vector g̃ as follows:

∀i ∈ {1, . . . , n} , g̃i =

{
−gi if aii > 0
gi if aii < 0

We will now define a function which will be shown to be a candidate Lyapunov function for
system (1). To do so, we adopt the notations of [13, p 236] and define the functional σi as

σi =





1 if xi(t) > x∗i or if xi(t) = x∗i and ẋi(t) > 0
0 if x(t) = x∗

−1 if xi(t) < x∗i or if xi(t) = x∗i and ẋi(t) < 0
(13)
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We define now the function V : R→ R:

V (x) =
n∑

i=1

g̃i |ln(xi)− ln(x
∗
i )| = g̃t. |ln(x)− ln(x∗)| (14)

Proposition 3 Function V is continuous, piecewise C1 on
(
R
∗
+

)n
. Furthermore, the right-hand

time derivative3 of V with respect to (1), noted D+V , satisfies D+V (x∗) = 0 and:

∀x ∈ R , D+V (x) ≤ −π gt |x− x∗| (15)

Proof
The first point is straightforward, let us prove inequation (15).
Let x ∈ R\{x∗}. Using (13), we have:

D+V (x) =
n∑

i=1

g̃i σiAi.(x− x∗)

=

n∑

i=1

n∑

j=1

g̃i σiσjaij
(
σj(xj − x∗j )

)

According to the definition of the functionals σ, we have σj(xj − x∗j ) = |xj − x∗j |. Let us pose:
B = (bij)i,j = (σiσjaji)i,j ∈ R

n×n. We remark that B and A have the same diagonal entries and
that, for all i 6= j, |bij | = |aij |. We obtain: D+V (x) = g̃t.Bt. |x− x∗|, with:

(
g̃tB

)
i
=

n∑

j=1

g̃jbji = g̃iaii +
∑

j 6=i

g̃jbji

≤ −gi|aii|+
∑

j 6=i

gj |aji|

≤ −giπ

which implies D+V (x) ≤ −πgt|x− x∗|. ¥

It is easy to see (using (14)) that if p = 0 (ie if rectangle R has no outgoing faces), then V is
positive definite, which implies that V is a Lyapunov function for system (1) (see figure 5 for an
illustration when n = 2). It is easy to see that in this case, V is radially unbounded, which involves
that x∗ is globally asymptotically stable in

(
R
∗
+

)n
. If p = 0, the rectangle R is so contracting to

the equilibrium x∗. In the opposite case, if p = n (R has no incoming faces), then V is negative
definite and −V is a Lyapunov function for the system in reversed time. We then deduce that,
apart from the equilibrium itself, any trajectory leaves R in finite time (actually it leaves any
compact of

(
R
∗
+

)n
).

The interesting case is intermediate, where 0 < p < n (R has both incoming and outgoing
faces). In that case V can take both negative and positive values (see figure and 5). We define the
sets: {

R− = R ∩ {x ∈ R
n | V (x) < 0}

R+ = R ∩ {x ∈ R
n | V (x) ≥ 0}

Lemma 3 Let x0 ∈ R−. For all time t ≥ 0 such that
{
x(τ, x0) | 0 ≤ τ ≤ t

}
is contained in R−,

we have: V
(
x(t;x0)

)
≤ c1 t+ c2, where c1 and c2 are negative constants.

Proof
Let x0 ∈

(
R
∗
+

)n
such that V (x0) = a < 0 and let x(t) denote the solution of system (1) with initial

condition x(0) = x0. Let t ≥ 0 be such that {x(τ) | 0 ≤ τ ≤ t} ⊂ R−. According to the precedent

3The derivative is in the sense of Dini: D+f(t) = lim sup
h→0+

1

h
[f(t + h) − f(t)]
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proposition, D+V is nonpositive, implying that, for all 0 ≤ τ ≤ t, V (x(τ)) ≤ a < 0.
Using the definition of V , one can write, for all 0 ≤ τ ≤ t:

V (x(τ)) = −

p∑

i=1

gi |ln(xi(τ))− ln(x
∗
i )|+

n∑

i=p+1

gi |ln(xi(τ))− ln(x
∗
i )| ≤ a

implying gt |ln(x(τ))− ln(x∗)| ≥ −a > 0. We now use the fact that x(τ) belongs to the rectangle
R. Thanks to the mean-value theorem:

∀i ∈ {1, . . . , n} , ∀xi ∈ [mi,Mi] ,

∣∣∣∣
ln(xi)− ln(x

∗
i )

xi − x∗i

∣∣∣∣ ≤
1

mi

≤
1

m∗

where m∗ = min
i=1...n

mi > 0. To complete the proof, we finally write (using (15)):

V (x(t)) = V (x0) +

∫ t

0

D+V (x(τ)) dτ

≤ a− π

∫ t

0

gt |x(τ)− x∗| dτ

≤ a− πm∗
∫ t

0

gt |ln(x(τ))− ln(x∗)| dτ

≤ c2 + c1 t

where c1 = πm∗a and c2 = a are negative constants. ¥

We can now give the following theorem, describing the dynamical behavior of system (1) in the
transverse rectangle R.

Theorem 4 Consider dynamical system (1) in
(
R
∗
+

)n
. Let m,M ∈

(
R
∗
+

)n
such that m¿M and

such that the rectangle R = [m,M ] has p ∈ {0, . . . , n} pairs of outgoing faces F±i , i = 1, . . . , p and
n− p pairs of incoming faces F±i , i = p+ 1, . . . , n. Then,

• if p = 0, any trajectory starting in R converges towards the equilibrium x∗.

• if p = n, any trajectory starting in R (except the equilibrium itself) leaves R in finite time.

• If 1 ≤ p ≤ n− 1, then for almost every initial condition x0 ∈ R, the solution x(t;x0), t ≥ 0
of (1) leaves R in finite time.

Proof
We prove here only the third point, as the other ones are direct consequences of Lyapunov’s
stability theorems. The following proof is inspired from the proof of Chetaev instability theorem
(see [10, p113]).
When 0 < p < n − 1, R+ 6= ∅, R− 6= ∅, and {R+, R−} forms a partition of R. We first show
that for any initial condition x0 ∈ R−, the solution x(t;x0) leaves R in finite time. Let x0 ∈ R−,
such that V (x0) = a < 0. According to lemma 3, as long as x(t, x0) stays in R−, we have
V (x(t;x0)) ≤ c1 t+ c2. As V is continuous on

(
R
∗
+

)n
and R− is bounded, this implies that x(t;x0)

cannot stay in R− for all times. As it cannot leave R− through the surface V (x) = 0, it has to
leave R in finite time.
Let us now consider the case when x0 ∈ R+. We will use LaSalle theorem (see for instance [12])
to prove that almost all such x0 leaves R in finite time. Let us distinguish the two possible cases:

• Suppose that the whole trajectory lies in R+, ie that
{
x(t;x0) | t ≥ 0

}
⊂ R+. According to

LaSalle, this implies that x(t;x0) converges to the largest positively invariant set contained in
{x | D+V (x) = 0}. In our case, as D+V is negative definite, this yields to: x(t;x0) −−−−→

t→+∞
x∗.

According to theorem 2, this means that x0 lies in the stable manifold of x∗, which is of
dimension n− p < n (it is therefore of Lebesgue measure zero).
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• The second case is when x(t;x0) leaves R+ in finite time, which means that either it directly
leaves R, or it stays in R and reaches R− (and we are brought back to the previous case).

In conclusion, if we except the stable manifold of x∗ which is of measure zero, for any initial
condition x0 ∈ R, the solution x(t;x0) leaves R in finite time. ¥
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Figure 5: Representation of function V for 2-dimensional system with x∗ = (2, 3) and g = (1, 2).
On the left: p = 0 (V is a Lyapunov function), on the right: p = 1.

5 Conclusion

Theoretical results presented here set up a first step towards a qualitative abstraction of Lotka-
Volterra dynamical systems. Thanks to proposition 2 and theorem 4, we classify the different
dynamical behaviors of a LV system within rectangles that either contain the equilibrium or not.
If A does not satisfy property (P1), we have proved that it is impossible to build a transverse
rectangle around the equilibrium. A possible extension is to study the hybrid behavior of a LV
system on a rectangular mesh. We should then focus on the control of the system on rectangles
(in order for instance to steer the trajectories to a designated face). As an example, the linear
feedback approach presented in [7] can be extended in the LV framework. Another extension is
the study of a general Lotka-Volterra hybrid system, with different LV systems in each rectangle;
as in [4], the vector field then becomes discontinuous, and we have to face complex issues such as
sliding motions and Filippov solutions on the boundaries.
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