
HAL Id: inria-00186815
https://hal.inria.fr/inria-00186815

Submitted on 12 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strong Normalization in two Pure Pattern Type Systems
Benjamin Wack, Clement Houtmann

To cite this version:
Benjamin Wack, Clement Houtmann. Strong Normalization in two Pure Pattern Type Systems.
Mathematical Structures in Computer Science, Cambridge University Press (CUP), 2008, Rewrit-
ing calculi, higher-order reductions and patterns, 18 (3), pp.431-465. �10.1017/S0960129508006749�.
�inria-00186815�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50349135?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00186815
https://hal.archives-ouvertes.fr


Strong Normalization in P 2TS 1

Strong Normalization in two Pure Pattern
Type Systems

Benjamin Wack and Clément Houtmann†
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Pure Pattern Type Systems (P 2TS) combine in a unified setting the frameworks and

capabilities of rewriting and λ-calculus. Their type systems, adapted from Barendregt’s

λ-cube, are especially interesting from a logical point of view. Strong normalization, an

essential property for logical soundness, had only been conjectured so far: in this paper,

we give a positive answer for the simply-typed system and the dependently-typed system.

The proof is based on a translation of terms and types from P 2TS into the λ-calculus.

First, we deal with untyped terms, ensuring that reductions are faithfully mimicked in

the λ-calculus. For this, we rely on an original encoding of the pattern matching

capability of P 2TS into the System Fω.

Then we show how to translate types: the expressive power of System Fω is needed in

order to fully reproduce the original typing judgments of P 2TS. We prove that the

encoding is correct with respect to reductions and typing, and we conclude with the

strong normalization of simply-typed P 2TS terms. The strong normalization with

dependent types is in turn obtained by an intermediate translation into simply-typed

terms.

Keywords: Rewriting calculus, λ-calculus, Rewriting, Type systems, Strong normaliza-

tion
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1. Introduction

The λ-calculus and term rewriting provide two fundamental computational paradigms

that had a deep influence on the development of programming and specification lan-

guages, and on proof environments. The idea that having computational power at hand

makes deduction significantly easier and safer is widely acknowledged (Dowek et al. 2003;

Werner 1993). Starting from Klop’s groundbreaking work on higher-order rewriting, and

because of the complementarity of λ-calculus and term rewriting, many frameworks have

been designed with a view to integrate these two formalisms.

This integration has been handled either by enriching first-order rewriting with higher-

order capabilities or by adding algebraic features to the λ-calculus. In the first case,

we find the works on CRS (Klop et al. 1993) and other higher-order rewrite systems

(Nipkow and Prehofer 1998). In the second case, we can mention case expressions with

dependent types (Coquand 1992), a typed pattern calculus (Kesner et al. 1996) and

calculi of algebraic constructions (Blanqui 2001).

The rewriting calculus, a.k.a. ρ-calculus, by unifying the λ-calculus and the rewriting,

makes all the basic ingredients of rewriting first-class citizens, in particular the notions

of rule application and result. A rewrite rule becomes a first-class object which can be

created, manipulated and customized in the calculus, whereas in works such as (Blanqui

2001; Blanqui et al. 2002), the rewriting system remains somehow external to the calculus.

In (Cirstea et al. 2001), a collection of type systems for the ρ-calculus was presented,

extending Barendregt’s λ-cube to a ρ-cube. These type systems have been studied deeper

for P 2TS (Barthe et al. 2003), a variant where the abstractors λ and Π have been

distinguished whereas they were unified in the ρ-cube. The corresponding calculi have

been proved to enjoy most of the usual good properties of typed calculi: substitution,

subject reduction, uniqueness of types under certain assumptions, etc.

However, the rewriting calculus has also been assigned some type systems that do

not prevent infinite reductions. These typed recursive terms are suitable for formally

describing programs (especially in rule-based languages) and guaranteeing some safety

properties. In particular, in (Cirstea et al. 2003), we have shown how to use them to

encode the behavior of most term rewrite systems.

Conversely, P 2TS have been designed for logical purposes. Therefore, in order to ensure

consistency of the type systems, strong normalization is an important and desirable

property, but it did remain an open problem. In this paper, we give a positive answer

to this problem. Together with the consistency of normalizing terms, already proved in

(Barthe et al. 2003), this result makes P 2TS a good candidate for a proof-term language

integrating deduction and computation at the same level.

The main contributions of this paper are:

— a clearer presentation of the type systems of P 2TS: with regard to the systems pre-

sented in (Barthe et al. 2003), a signature has been introduced in the typing judgments

and some corrections have been made on product rules (in section 2 and 3);

— a compilation of pattern matching in the λ-calculus, which has other potential appli-

cations for the encoding of term rewriting systems (in section 5);
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— a translation of the simply-typed system of P 2TS to System Fω emphasizing some

particular typing mechanisms of P 2TS (in section 6 and 7);

— a proof of strong normalization for simply-typed P 2TS terms and for dependently-

typed P 2TS terms (in section 7 and 8).

This paper is organized as follows. In Section 2, we recall the syntax and the small-

step semantics of P 2TS and we state under which restrictions we work in this paper. In

Section 3, we motivate and present the type systems of P 2TS. We recall some properties,

and sketch the proof of strong normalization that will be developed in the rest of the

paper. In Section 4, we recall the type system Fω for the λ-calculus, into which we will

translate P 2TS. In Section 5, we give an untyped version of the translation from P 2TS to

System Fω, showing how pattern matching is compiled and how reductions are preserved

in the encoding. In Section 6, we emphasize the main difficulties of introducing types

into the translation and we give the full translation, which we prove to be correct in

Section 7. In Section 8, we give a translation from the dependently-typed system to the

simply-typed system and we prove its correctness.

We assume the reader to be reasonably familiar with the notations and results of typed

λ-calculi (Barendregt 1992), of the ρ-calculus (Cirstea et al. 2003) and of P 2TS (Barthe

et al. 2003). This paper is a revised and extended version of (Wack 2004), presented at

TCS’2004.

2. P 2TS: dynamic semantics

In this section, we recall the syntax of P 2TS and their evaluation rules.

Notations To denote a tuple of terms Bk . . . Bn, we will use the vector notation B(k..n),

or simply B when k and n are obvious from the context. This notation will be used

in combination with operators according to their default associativity: for instance,

AB
△

= AB1 . . . Bn and λP :∆.A
△

= λP1:∆1 . . . λPn:∆n.A. The vector notation will also be

used for substitutions.

Most usually, x, y, z will denote variables; A,B are terms; P,Q are patterns; a, f, g are

constants; s, s1, s2 are special constants called sorts; C,D are types (which are in fact

terms too); ι is an atomic type; Γ,∆ are contexts (mainly in P 2TS); Σ is a signature.

All of those are defined by the grammar below. Moreover, we will use α, αf for an arity,

and θ for a substitution, which will be defined a bit later.
The calculus The syntax of P 2TS extends that of the typed λ-calculus with structures
and patterns (Barthe et al. 2003).

Signatures Σ ::= ∅ | Σ, f :A

Contexts Γ ::= ∅ | Γ, x:A

Patterns P ::= x | f P

Terms A ::= s | f | x | λP :∆.A | ΠP :∆.A | [P ≪∆ A]A | A A | A ≀ A

A term with shape λP :∆.A is an abstraction with pattern P , body A and context ∆. The

term [P ≪∆ B]A is a delayed matching constraint with pattern P , body A, argument

B and context ∆. In an application A B, the term A represents the function, while the

term B represents the argument. The application of a constant symbol, say f , to a term
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A will also be denoted by f A; it follows that the usual algebraic notation of a term is

currified, e.g. f(A1, . . . , An)
△

= f A1 · · · An = f A. A term (A ≀ B) is called a structure

with elements A and B, roughly denoting a set of terms. A term ΠP :∆.A is a dependent

product, and will be used as a type.

Remark 1 (Legal patterns). Several choices could be made for the set of patterns P :

in this paper, we only consider algebraic patterns, whose shape is defined above. With

respect to the original patterns of P 2TS, we introduce two restrictions which will be

applied throughout he whole paper:

— We forbid patterns featuring λ-abstractions (which is in fact enforced by the given

grammar) because, from a logical point of view, they amount to defining new constants

in the signature. Indeed, with the matching algorithm given in (Barthe et al. 2003),

the free variables of a pattern (for instance y in λx.xy) can be instantiated only with

subterms of the argument that do not feature any bound variable of the pattern

(for instance this pattern matches only terms of shape λx.xA with x /∈ FV (A)).

Therefore, A must have the same type as y and must be typable in the same context

as the whole term λx.xA. Thus, solving the matching problem λx.xy ≪ λx.xA is

equivalent to solving fy ≪ fA where f is a constant with a convenient type.

— In every binding construct (i.e. λP :∆.A and ΠP :∆.A and [P ≪∆ A]A), we impose

Dom(∆) = FV (P ) (which will be enforced by the typing system), so that no variable

can be instantiated in the pattern of an abstraction, because a term such as (λx :

(x:Φ).λx:∅.B)A (featuring only algebraic patterns) would reduce to λA.B, which may

be no longer in our term grammar.

We recall the notion of free variables for P 2TS.

Definition 1 (Domain of a context/signature).

The domain of a context is defined as follows:

Dom(∅) = ∅ Dom(Γ, x:A) = Dom(Γ) ∪ {x}

The domain of a signature is defined similarly.

Definition 2 (Free variables).
The set of free variables FV of a term is inductively defined as follows:

FV (A ≀ B)
△

= FV (A) ∪ FV (B) FV (x)
△

= {x}

FV (A B)
△

= FV (A) ∪ FV (B) FV (f)
△

= ∅

FV (λP :∆.A)
△

= (FV (A) ∪ FV (∆)) \ Dom(∆)

FV (ΠP :∆.A)
△

= (FV (A) ∪ FV (∆)) \ Dom(∆)

FV ([P ≪∆ B]A)
△

= (FV (A) ∪ FV (∆) ∪ FV (B)) \ Dom(∆)

FV (Γ, x:A)
△

= FV (Γ) ∪ FV (A)

In this paper, extending Church’s notation, the context ∆ in λP :∆.B (resp. [P ≪∆ B]A

or ΠP :∆.B) contains the type declarations of the free variables appearing in the pattern

P , i.e. Dom(∆) = FV (P ). These variables are bound in the (pattern and body of the)

abstraction. When the pattern is just a variable x, we may abbreviate λ(x : (x:A)).B
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(ρ) (λP :∆.A) B →ρ Aθ(P≪B) if θ(P≪B) exists

(σ) [P ≪∆ B]A →σ Aθ(P≪B) if θ(P≪B) exists

(δ) (A ≀ B) C →δ A C ≀ B C

Fig. 1. Top-level rules of P 2TS.

(resp. Π(x : (x:A)).B) into the usual notation λx:A.B (resp. Πx:A.B). The context ∆

will be omitted when we consider untyped terms.

As usual, we work modulo α-conversion and we adopt Barendregt’s hygiene-convention

(Barendregt 1992), i.e. free and bound variables have different names. Equality of terms

modulo α-conversion will be denoted by ≡. This allows us to define substitutions properly:

Definition 3 (Substitution). A (finite) substitution θ is a function from the set of

variables to terms which differs from the identity only on a finite set. Its application to

x is denoted xθ. If for all i ∈ [1..n], xiθ ≡ Ai and θ is the identity everywhere else, θ has

domain Dom(θ) = x1 . . . xn and we will also write it [x1 := A1 . . . xn := An].

The application of the substitution θ = [x1 := A1 . . . xn := An] to a term B (denoted

Bθ) is defined below. By α-conversion of B, we can assume that no bound variable of B

belongs to Dom(θ) ∪
n⋃

i=1

FV (Ai).

fθ
△

= f

xiθ
△

=

{
Ai if xi ∈ Dom(θ)

xi otherwise

(AB)θ
△

= (Aθ)(Bθ)

∅θ
△

= ∅

(λP :∆.B)θ
△

= λP :(∆θ).(Bθ)

(ΠP :∆.B)θ
△

= ΠP :(∆θ).(Bθ)

(A ≀ B)θ
△

= (Aθ) ≀ (Bθ)

([P ≪∆ B]A)θ
△

= [P ≪∆θ Bθ](Aθ)

(∆, x:A)θ
△

= ∆θ, x:(Aθ)

P 2TS features pattern abstractions whose application requires solving matching prob-

lems, which we will denote as P ≪ A. For the purpose of this paper, we consider only

syntactic matching, since it can be described with a quite simple algorithm and yields

at most one solution (which will be denoted θ(P≪A) if it exists). It ensures confluence of

the reduction we will define further without a particular evaluation strategy. The only

difficulty when proving this result arises when considering non-linear patterns, since we

should check equality of two terms.

The top-level rules are presented in Fig. 1. By the (ρ) rule, the application of a term

λP :∆.A to a term B consists in solving the matching equation P ≪ B and applying

the obtained substitution (if it exists) to the the term A; the (σ) rule does the same for

[P ≪∆ B]A, which allows to bind variable and perform pattern matching in the types.

If no solution exists, the rules (ρ) and (σ) are not fired and the corresponding terms are

not reduced. The (δ) rule distributes structures on the left-hand side of the application.

This gives the possibility to apply “in parallel” two distinct abstractions A and B to a

term C. The relation 7→ρσδ is defined as the congruent closure of →ρ ∪ →σ ∪ →δ, and 7→→ρσδ

(resp. =ρσδ) denotes the reflexive and transitive (resp. reflexive, symmetric and transitive)

closure of 7→ρσδ.
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Proposition 1 (Confluence (Barthe et al. 2003)). With algebraic patterns and

syntactic matching, P 2TS are confluent under 7→ρσδ.

3. P 2TS: static semantics

In (Cirstea and Kirchner 2000), a simple type system was introduced for the rewriting

calculus (an alternative formulation of P 2TS); however, it allows to prove strong nor-

malization of terms only at the price of a strong restriction over the types of constants.

In the next subsection, we explain why some types had to be forbidden.

In the second subsection, we present a version of the type systems of P 2TS. In this

framework, any type is allowed for a constant, but we use a richer type system integrating

patterns into types, reminiscent of a dependent types discipline.

3.1. Naive simple types

The example of this section is taken from (Cirstea et al. 2003). Let us consider a quite

straightforward system of simple types for P 2TS: given an atomic type ι, types (noted

σ or τ) are described by the grammar

σ ::= ι | σ _ σ

When typing an abstraction, we just replace the type of the abstracted variable with

the type of the whole pattern :

Γ,∆ ⊢ P : σ Γ,∆ ⊢ A : τ

Γ ⊢ λP :∆.A : σ _ τ

Γ ⊢ A : σ _ τ Γ ⊢ B : σ

Γ ⊢ A B : τ

Such a type system enjoys some good properties such as subject reduction, uniqueness

and decidability of typing, etc. On the other hand, it allows one to typecheck also terms

with infinite reductions (we ommit type annotations for readability since they do not

play a role in reductions).

Let f : (ι _ ι) _ ι and ω
△

= λ(f x).
(
x (f x)

)
. Then:

ω (f ω)
△

=
(
λ(f x) . (x (f x))

)
(f ω)

7→ρ [f x ≪ f ω](x (f x))

7→σ ω (f ω)

7→ρ . . .

Still, the term is typable; let π1 be the following derivation :

x : ι _ ι ⊢ f : (ι _ ι) _ ι x : ι _ ι ⊢ x : ι _ ι

x : ι _ ι ⊢ f x : ι

and π2 be the following one :
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π1

x : ι _ ι ⊢ f(x) : ι

x : ι _ ι ⊢ x : ι _ ι

π1

x : ι _ ι ⊢ f x : ι

x : ι _ ι ⊢ x (f x) : ι

⊢ λ(f x).(x (f x)) : ι _ ι

Then we can conclude :

π2

⊢ ω : ι _ ι

⊢ f : (ι _ ι) _ ι

π2

⊢ ω : ι _ ι

⊢ f ω : ι

⊢ ω (f ω) : ι

Therefore, this type system is not appropriate for using P 2TS as a proof-term lan-

guage: cut elimination would not hold, and the corresponding logic could even be proved

unsound. One may think that this is due to the occurrence of constants whose type cor-

responds to an unprovable proposition. However, the example above can also be carried

on with every occurrence of ι replaced by ι _ ι, and then the type of f is a provable

proposition.

3.2. The Pure Pattern Type Systems

The type systems of (Cirstea et al. 2001; Barthe et al. 2003) were designed in order

to provide a strongly normalizing calculus where there is no restriction on the type

of the constants (except from those enforced by the type system). Until now, strong

normalization was an open problem for all these systems.

The system we study here is a slight variant of (Barthe et al. 2003). The inference rules

are given in Fig. 2. For a more explicit manipulation of constants, we have introduced

a signature Σ which, like in the Edinburgh Logical Framework, prevents the type of a

constant to depend on free variables. The judgments Σ sig describe what a legal signature

is, and the judgments ⊢Σ describe what legal typed terms are given a signature Σ.

Like in traditional Pure Type Systems, the system is conditioned by three sets: a set S

of sorts; a set of pairs of sorts A describing what the legit axioms are; a set of pairs of sorts

R describing what the legit product rules are (in fully general PTS, this last contains

triplets instead of pairs, but we directly apply a usual restriction since the systems we

focus on in this paper are not the most general). We discuss here the main modifications

with respect to traditional Pure Type Systems.

— The (Struct) rule says that a structure A ≀ B can be typed with type C if A : C

and B : C, hence forcing all members of the structure to be of the same type;

— The (Abs) rule deals with λ-abstractions in which we bind over patterns. By means

of the well-formedness of the product type, it requires in particular that the pattern

and body of the abstraction are typable in the extended context Γ,∆;

— The (Appl) rule, which deals with applications, imposes that the resulting type in the
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(Sig)
∅ sig

(WeakΣ)
Σ sig ⊢Σ A : s f /∈ Dom(Σ)

Σ, f :A sig
(s ∈ S)

(Axiom)
Σ sig

⊢Σ s1 : s2

((s1,s2) ∈ A) (Const)
Σ sig f :A ∈ Σ

⊢Σ f : A

(Var)
Γ ⊢Σ A : s

Γ, x:A ⊢Σ x : A
(x /∈ Γ,s ∈ S) (Struct)

Γ ⊢Σ A : C Γ ⊢Σ B : C

Γ ⊢Σ A ≀ B : C

(WeakΓ)
Γ ⊢Σ A : B Γ ⊢Σ C : s x 6∈ Dom(Γ)

Γ, x:C ⊢Σ A : B
(x /∈ Γ,s ∈ S)

(Conv)
Γ ⊢Σ A : B Γ ⊢Σ C : s

Γ ⊢Σ A : C

 

s ∈ S

B =ρσδ C

!

(Abs)
Γ, ∆ ⊢Σ B : C Γ ⊢Σ ΠP :∆.C : s

Γ ⊢Σ λP :∆.B : ΠP :∆.C

 

Dom(∆) =FV (P )

(s ∈ S)

!

(Appl)
Γ ⊢Σ A : ΠP :∆.C Γ ⊢Σ [P ≪∆ B]C : s

Γ ⊢Σ A B : [P ≪∆ B]C
(s ∈ S)

(Prod)
Γ, ∆ ⊢Σ P : A Γ, ∆ ⊢Σ A : s1 Γ, ∆ ⊢Σ C : s2

Γ ⊢Σ ΠP :∆.C : s2

 

Dom(∆) =FV (P )

(s1,s2) ∈ R

!

(Match)
Γ, ∆ ⊢Σ P : A Γ ⊢Σ B : A Γ, ∆ ⊢Σ A : s1 Γ, ∆ ⊢Σ C : s2

Γ ⊢Σ [P ≪∆ B]C : s2

 

Dom(∆) =FV (P )

(s1,s2) ∈ R

!

Fig. 2. The typing rules of P 2TS.

conclusion features delayed matching. In case the delayed matching can be successfully

solved, one can recover the expected type by applying the conversion rule;

— The rules (Match) and (Prod) regulate the formation of product types. They ensure

that the pattern and the body of the product are typable in the extended context

Γ,∆. They are parametrized with pairs of sorts which can be either ∗ (for terms) or

� (for types). The legal pairs are given in a set R. A given choice of s1 and s2 then

leads to a type system where one can build “s2 depending on s1”. For instance, every

system includes the product rule (s1, s2) = (∗, ∗) so that terms depending on terms

(i.e. functions) can be built.

Remark 2 (Case-dependent structures).

The rule (Struct) is rather restrictive, since one can not build case-dependent ex-

pressions such as λ0.0 ≀ λ(s x).x because of the distinct patterns appearing in the types

Π0:∅.nat and Π(s x):(x:nat).nat. However, it is non-trivial to find a less strict rule such

that elaborated structures can be built without losing strong normalization. An example

of this phenomenon is developed in Subsection 3.4.
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Theorem 1 (Properties of the typed calculi). (Cirstea et al. 2002; Barthe et al.

2003)

1 Substitution

If Γ, x : C,∆ ⊢Σ A : D and Γ ⊢Σ B : C, then Γ,∆[x := B] ⊢Σ A[x := B] : D[x := B].

2 Subject reduction

If Γ ⊢Σ A : C and A 7→→ρσδ A′, then Γ ⊢Σ A′ : C.

3 Uniqueness of types up to second order

If R ⊆ {(∗, ∗), (�, ∗)} (i.e. if only terms depending on terms and terms depending on

types are allowed), then :

if Γ ⊢Σ A : C1 and Γ ⊢Σ A : C2, then C1 =ρσδ C2.

3.3. Specific properties of ρ→

In this paper, we mainly treat the case of the simply typed calculus ρ→, corresponding

to R = {(∗, ∗)}. Thus, in all the remainder except Section 8, the sorts s1, s2 appearing

in (Match) and (Prod) rules are always ∗. The sort � is still required for the typing

of ∗ itself, which is useful for type constants such as ι : ∗. In particular, this implies

uniqueness of types.

Let us prove some additional properties peculiar to the system ρ→, needed for the

translation into λ-calculus.

Lemma 1.

In the system ρ→, if Γ ⊢Σ A : � then A ≡ ∗.

Proof. By induction on a derivation for the judgment Γ ⊢Σ A : �, distinguishing over

the last rule we use.

Definition 4 (Types). In the system ρ→ and for a context Γ, we will call a type any

term C such that Γ ⊢Σ C : ∗ and such that there is no structure in C.

Lemma 2 (Shape of types).

Types belong to the following language:

C ::= x | ι | ΠP :∆.C | [P ≪∆ A]C

and for any type C

— the type variables x appearing in C are such that Γ, ∆ ⊢Σ x : ∗, where ∆ denotes

contexts appearing in the Π-abstractions and in the matching constraints in C;

— the atomic types ι appearing in C are constants in Σ such that ⊢Σ ι : ∗.

Proof. By induction on a derivation for the judgment Γ ⊢Σ C : ∗, distinguishing over

the last rule we use. Notice that the conversion rule is useless, since Γ ⊢Σ C : ∗ and ∗

can not be converted to any other typable term in ρ→ (this other term would have type

� too, and by Lemma 1 it must be ∗).

Notice that a type variable x can not be abstracted in ρ→, which makes it roughly

equivalent to a constant. Therefore, we can assume there is no type variable in a type.
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Let us recall that there is no arity attached to the constants of Σ; however, the types

allow us to recover this notion to a certain extent. The following lemma makes precise

an intuitive property of ρ→: that a term can be applied to as many arguments as there

are Π-abstractions in its type.

Definition 5 (Maximal arity).

We define the maximal arity α of a type by:

α(x)
△

= 0

α(ι)
△

= 0

α(ΠP :∆.C)
△

= 1 + α(C)

α([P ≪∆ A]C)
△

= α(C)

Lemma 3.

Let Γ be a fixed context. In ρ→, for any term A such that Γ ⊢Σ A : C, if

Γ ⊢Σ A B(1..k) : D, then k ≤ α(C) and α(D) = α(C) − k.

Proof. It is easy to check that α is stable by type conversion, since the variable x

occurring at the rightmost position in the type can not be instantiated (that would

require at least the rule (�, ∗)).

We proceed by induction on k.

if k = 0 : trivial

if 0 < k : the term A B(1..k) being typable, so are its subterms. Hence

Γ ⊢Σ A B(1..k−1) : E

for some E. By induction hypothesis, we have k−1 ≤ α(C) and α(E) = α(C)−(k−1).

It is easy to see that a derivation for A B(1..k) must use the rule

(Appl)
Γ ⊢Σ A B(1..k−1) : ΠQ:∆.E1 Γ ⊢Σ [Q ≪∆ Bk]E1 : s

Γ ⊢Σ A B(1..k) : [Q ≪∆ Bk]E1

where E =ρσδ ΠQ:∆.E1 and D =ρσδ[Q ≪∆ Bk]E1. We can now conclude that

α(E) = α(E1) + 1 ≥ 1 hence α(C) = α(E) + k − 1 ≥ k and also that

α(D) = α(E1) = α(E) + 1 = α(C) − (k − 1) + 1 = α(C) − k.

In particular, we will use this notion for constants and structures:

— if ⊢Σ f : C we note αf the integer α(C) and by abuse of language we can call it

maximal arity of f (since the signature Σ can be considered as fixed beforehand, and

any other type of f is convertible to C and thus has the same arity);

— if Γ ⊢Σ A ≀ B : C we note αA≀B the integer α(C).

Corollary 1 (Compatibility of arities in a matching equation).

If a redex (λ(f P (1..p)).A) (g B(1..q)) or [f P (1..p) ≪ g B(1..q)]A appears in a term ty-

pable in ρ→, then αf − p = αg − q.

Proof. Indeed, the rule (Match) must be used in any type derivation for such a term,
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and its premises enforce that Γ ⊢Σ f P (1..p) : A and Γ ⊢Σ g B(1..q) : Aθ. The shape of

types in ρ→ ensures that α(A) = α(Aθ), so immediately αf − p = α(A) = αg − q.

In particular, when f ≡ g, the condition αf − p = αg − q reduces to p = q, which is

essential for solving such a matching equation.

3.4. About strong normalization

Let us take back the example from Subsection 3.1 and try to typecheck it. With product

types, the type of the constant f should be given as follows:

Σ ≡ ι : ∗, f : Π(y : (Π(z : ι).ι)) . ι

Let ∆ ≡ x : Π(z:ι).ι, we have then:

⊢Σ λ(f x):∆.
(
x (f x)

)
: Π(f x):∆.ι

with ω
△

= λ(f x):∆.
(
x (f x)

)
. So, to form the term f ω, we should use the rule (Appl)

and then use (Match) for the second premise. This leads us into proving that the pattern

y (appearing in the type of f) has the same type as ω, which is not possible: y has type

Πz:ι.ι whereas ω has type Π(f x):∆.ι, and those two are not convertible because of their

distinct patterns.

As mentionned before, a more general typng rule for structures would open the door

again to such non-normalizing terms. For instance, one could imagine a rule keeping only

a “most general” pattern in the types, yielding:

λ0.0 : Π0:∅.nat λ(s x):(x:nat).x : Π(s x):(x:nat).nat

⊢ λ0.0 ≀ λ(s x).x : Πn:nat.nat

However, with such a rule, the term we studied in the previous subsection can be typed

again with a little modification: ω′ △

= λy:α.y ≀ λ(f x):∆.
(
x (f x)

)
where ∆ stands for

x : Π(z:α).α and Σ for f : Πx:∆.α.

⊢Σ λy:α.y : Πy:α.α ⊢Σ λ(f x):∆.
(
x (f x)

)
: Π(f x):∆.α

⊢Σ λy:α.y ≀ λ(f x):∆.
(
x (f x)

)
: Πw:α.α

Then ⊢ f ω′ : α and ⊢ ω′ (f ω′) : α and we have the infinite reduction:

ω′ (f ω′)
△

=
(
λy.y ≀ λ(f x) . (x (f x))

)
(f ω′)

7→δ (λy.y) (f ω′) ≀ (λ(f x) . (x (f x))) (f ω′)

7→ρ 7→σ f ω′ ≀ ω′ (f ω′)

7→→ρσδ f ω′ ≀ f ω′ ≀ ω′ (f ω′)

7→→ρσδ . . .

A promising research direction for relaxing the (Struct) rule without losing normaliza-

tion is to use intersection types, keeping both patterns in the types and carefully using

matching failures to simplify the intersection type when possible.

We have just seen that one cannot typecheck f ω (and thus ω (f ω)) in the type system

of Fig. 2. In fact, this property holds for any not strongly normalizing term:

Theorem 2 (Strong normalization of typable P 2TS terms).

For all Σ,Γ, A, C, if Γ ⊢Σ A : C in ρ→ then A is strongly normalizing.
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The remaining of the paper (except Section 8) is devoted to the proof of this theorem.

In Section 5, we will build an encoding function J K from P 2TS into λ-calculus such that

if A has an infinite reduction, then JA K has an infinite reduction. In Section 6, we will

enrich this translation so that if A is typable, then JA K is typable in System Fω. The

strong normalization of A is then a consequence of the strong normalization theorem for

System Fω.

As a conclusion to this paragraph, let us briefly explain why usual reducibility tech-

niques seem to fail for this typed calculus. Roughly speaking, the interpretation of a

type ΠP :∆.C should be a function space whose domain is defined not only as the in-

terpretation of the type of P but also as terms matching with P and whose suitable

subterms belong to the interpretations of the types appearing in ∆. This imbrication of

interpretations leads to circularities in the definitions of interpretations. Of course, our

translation would allow us to derive adequate but unnatural reducibility candidates from

those existing for System Fω; the direct definition of proper candidates based on P 2TS

types remains an open problem.

4. The System Fω

Our encoding will produce λ-terms typable in the type system Fω, first introduced and

studied in (Girard 1972). This formalism and its properties have been generalized to the

Calculus of Constructions (Coquand and Huet 1988), and later on to Pure Type Systems.

We follow here the generic presentation of (Barendregt 1992). The terms, types and kinds

are taken in the following set:

Pseudo−terms t ::= ∗ | � | x | λx:t.t | Πx:t.t | t t

The inference rules describing the legal terms are given in Fig. 3. Here, the possible

product rules (s1, s2) are {(∗, ∗), (�, ∗), (�,�)}. The one-step β-reduction

(λx:t.u) v 7→β u[x := v]

will be denoted 7→β ; its reflexive and transitive closure will be denoted 7→→β ; its symmetric,

reflexive and transitive closure will be denoted =β .

Notations By convention, objects belonging to the λ-calculus will be denoted with lower

case letters. In a given context Γ, a pseudo-term t is said to be:

— a kind (denoted k) if Γ ⊢Fω t : �.

— a type (denoted σ, τ) if there is a kind k such that Γ ⊢Fω t : k. Type variables are

denoted β, γ.

— a term (denoted t, u) if there is a type τ such that Γ ⊢Fω t : τ . Term variables are

denoted w, x, y, z.

The unicity of typing (Theorem 3.3) guarantees the non-overlapping of these three sets

of terms.

These rules use only Π-abstractions of shape Πx:σ.τ . However, if x /∈ FV (τ), the usual

type arrow σ → τ can be used as an abbreviation. We will use it in both following cases:
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⊢Fω ∗ : �
(axiom)

Γ ⊢Fω σ : s x 6∈ Dom(Γ)

Γ, x:σ ⊢Fω x : σ
(var)

Γ ⊢Fω t : σ Γ ⊢Fω τ : s x 6∈ Dom(Γ)

Γ, x:τ ⊢Fω t : σ
(weak)

Γ, x : σ ⊢Fω t : τ Γ ⊢Fω Πx:σ.τ : s

Γ ⊢Fω λx:σ.t : Πx:σ.τ
(abs)

Γ ⊢Fω t : Πx:σ.τ Γ ⊢Fω u : σ

Γ ⊢Fω t u : τ [x := u]
(appl)

Γ ⊢Fω t : τ Γ ⊢Fω σ : s σ =β τ

Γ ⊢Fω t : σ
(conv)

Γ ⊢Fω σ : s1 Γ, x:σ ⊢Fω τ : s2 (s1, s2) ∈ {(∗, ∗), (�, ∗), (�, �)}

Γ ⊢Fω Πx:σ.τ : s2

(prod)

Fig. 3. The typing rules of Fω.

— if ⊢Fω σ : ∗, then ⊢Fω τ : ∗ since we do not consider dependent types in the λ-

calculus. For the same reason, x does not appear in τ — it would require the product

rule (∗,�).

— if ⊢Fω σ : � and ⊢Fω τ : �, i.e. when Πx:σ.τ is a kind, we also know that x can not

appear in τ . It is essentially for the same reason as before: we would need a product

rule (�,△) with ⊢Fω � : △.

Theorem 3 (Properties of System Fω). (Girard 1972; Barendregt 1992)

1 Substitution

If Γ, x : σ, ∆ ⊢Fω t : τ and Γ ⊢Fω u : σ, then Γ,∆[x := u] ⊢Fω t[x := u] : τ [x := u].

2 Subject reduction

If Γ ⊢Fω t : σ and t 7→→β t′, then Γ ⊢Fω t′ : σ.

3 Unicity of typing

If Γ ⊢Fω t : � then t has no other type than �.

If Γ ⊢Fω t : k and Γ ⊢Fω t : k′, then k ≡ k′.

If Γ ⊢Fω t : σ and Γ ⊢Fω t : τ , then σ=βτ .

4 Strong normalization

If Γ ⊢Fω t : σ, then t has no infinite reduction.

5. Untyped translation

In this section we translate (into the λ-calculus) the untyped ρ→-terms with algebraic

(possibly non-linear) patterns and syntactic matching.

If we were to consider more elaborated matching theories, in most cases we should

choose an evaluation strategy for the rewriting calculus to be confluent, and it is this

particular strategy that we would be encoding, losing generality. Moreover, we should
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enrich our compilation in order to generate all the possible solutions of a matching

problem: for instance, associative matching can generate an arbitrarily high number of

distinct solutions. We conjecture that most syntactic equational theories (as defined in

(Kirchner and Klay 1990)) could be encoded, since they can be described by applying

one rule at the head of a term and then only considering subterms, which should be

feasible with typed λ-terms.

The process of syntactic matching consists in discriminating whether the argument

begins with the expected constant, and recursively use pattern matching on subterms.

It is this simple algorithm that we compile into the λ-calculus (without even checking

for the equality of the head constants). Non-linear patterns are linearized during the

compilation, so the equality tests that we should perform on subterms corresponding to

a non-linear variable are simply discarded. Therefore, our compilation is complete but

incorrect: it may yield a solution for a matching equation that is not solvable. However,

since we want to preserve the length of reduction, completeness is the only property we

are interested in.

For this encoding to work, we need to assume that each constant (or structure) is given

with a maximal arity (as defined in Lemma 3 and fulfilling Corollary 1). As shown in

Subsection 3.3, this notion of maximal arity is strongly linked to the existence of a typed

framework and a signature, but it could be adapted to some untyped situations too: for

instance, if we were to encode the repeated application of a Term Rewriting System,

structures would be used in a very restrictive way, and the arity of the constants would

be given.

The translation is given in Fig. 4, by a recursive function J · K mapping P 2TS-terms

to λ-terms. Since we are talking about untyped terms here, we do not treat the cases of

Π-abstractions, matching constraints and sorts, neither do we annotate abstractions with

contexts. Every variable we introduce must be fresh; they will be all bound in the λ-term,

except for the variable x⊥ which will remain free. We use it essentially for representing

some matching failures, and as a wildcard for some useless arguments of λ-terms. Recall

that αf (resp. αA≀B) denotes the maximal arity of f (resp. A ≀ B).

J x K
△

= x

J f K
△

= λx(1..αf ). λz.(z x(1..αf ))

J A ≀ B K
△

= λx(1..αA≀B).
`

(λz.J A Kx(1..αA≀B))(J B Kx(1..αA≀B))
´

J λx.A K
△

= λx.J A K

J λ(f P (1..p)).A K
△

= λu.(ux⊥(p+1..αf ) J λP (1..p).λx′
(p+1..αf ).A K)

(renaming the possible multiple occurrences of a variable in P (1..p))

J A B K
△

= J A K J B K

Fig. 4. Untyped term translation
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Remark 3. The special case of symbols with αi = 0 gives:

J f K
△

= λz.z

Jλf.A K
△

= λu.(uJA K)

Let us explain this translation:

— In J f K, the variables x1 . . . xαf
will be instantiated by the arguments B of f (which

explains why we had to bound the arity of f). The variable z can be instantiated

by any function which must fetch the different arguments of f , which allows the

simulation of matching.

— JA ≀ B K is translated into a λ-term which embeds both JA K and JB K, with the ab-

stractions needed to distribute some eventual arguments to both translated subterms.

The encoding differs from the usual pair of the λ-calculus in the sense that it can

reduce to (an η-expansion of) JA K only, but it is not a concern for proving strong

normalization. At the level of types, it will make the translation easier.

— In Jλx.A K, the abstraction over a single variable is straightforwardly translated into

a λ-abstraction.

— In Jλ(f P (1..p)).A K, the variable u takes the argument of this function (for instance

g B(1..q)) and applies it to various parameters. If necessary, the αf − p occurrences

of the variable x⊥ instantiate the remaining variables xq+1 . . . xαg
which can appear

in J g K: this is where we use the condition αf − p = αg − q. Then the last argument

instantiates z in J g K, so that each argument of g is matched against the corresponding

subpattern. The equality of the head constants is not checked.

The fresh variables x′
p+1 . . . x′

αf
will be instantiated by the αf − p first x⊥’s and do

not modify the remaining reductions since they do not appear in JA K. If a variable x

has multiple occurrences in the pattern, by α-conversion, only one of the subpatterns

Pi will get the “original” variable, and the other x’s are renamed to fresh variables

not occurring in JA K. The correctness of this choice will be proved in Theorem 4.

— JA B K just consists in applying the translation of one term to the translation of the

other.

Example 1 (Translation of a term).

Let a and f be two constants with αa = 0 and αf = 1. The term
(
λy.(λ(f x).x) y

)
(f a)

(types of variables are omitted) is translated as follows:

(λy.
(

Jλ(f x).x K
︷ ︸︸ ︷

(λu.(u (λx.x))) y
)

)
︸ ︷︷ ︸

Jλy.(λ(f x).x) y K

(
J f K

︷ ︸︸ ︷

(λx1.λz.(zx1))

J a K
︷ ︸︸ ︷

(λv.v)
)

Example 2 (Translation of a ρ-reduction).

The only reduction path from the term in example 1 is:

(λy.(λ(f x).x) y) (f a) 7→ρ (λ(f x).x) (f a) 7→ρ a

In particular the internal “redex” (λ(f x).x) y can be reduced only when y has been

instantiated. Let’s see how the translated term mimics this behavior: even if we reduce
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first the β-redexes in the subterm J (λ(f x).x) y K, we see that the instantiation of y is

mandatory here too in order to end the reduction.

At each reduction step, the selected λ-abstraction and its argument are underlined.

(λy.
(

(λu.(u(λx.x)))y
)

)
(

(λx1.λz.(zx1))(λv.v)
)

7→β

(
λy.(y(λx.x))

)(

(λx1.λz.(zx1))(λv.v)
)

7→β

(
λy.(y(λx.x))

)(
λz.(z(λv.v))

)

7→β

(
λz.(z(λv.v))

)
(λx.x)

7→β (λx.x)(λv.v)

7→β (λv.v)

= J a K

Let us consider now a matching failure.

Example 3 (Translation of a matching failure).

Let us take Σ = {g:Πx:(x:ι).ι, f :Πx:(x:ι).ι}, hence the maximal arities αf = αg = 1.

The term (λ(f x).x) (g y) is in normal form since the head constants f and g differ. Still,

as our translation does not take into account the head constants, this matching failure

is not reproduced in the translation.

(

Jλ(f x).x K
︷ ︸︸ ︷

λu.(u(λx.x))
)(

J g K
︷ ︸︸ ︷

(λx1.λz.(zx1)) y
)

7→β

(
λu.(u(λx.x))

)(
λz.(zy)

)

7→β

(
λz.(zy)

)
(λx.x)

7→β (λx.x)y

7→β y

We end this section by proving that the encoding preserves the reductions of the initial

ρ-term.

Lemma 4 (Closure by substitution).

For any ρ-terms A and B1, . . . , Bn, for any variables x1, . . . xn,

JA[x1 := B1 . . . xn := Bn] K = JA K[x1 := JB1 K . . . xn := JBn K] (1)

Proof. It is easy to see that free (resp. bound) variables remain free (resp. bound) in

the translation, and that x⊥ is the only new free variable.

We proceed by two nested inductions : one on the structure of A, then another on he

structure of the pattern (in the case where A is an abstraction). Variables are translated

as themselves and constants are not affected by the substitutions, hence the base cases

are correct.

In all the inductive cases except for the abstraction, the translation of A uses directly

the translation of all the subterms of A, hence the substitution is propagated directly to

those translated subterms.
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The case of abstraction is treated by another induction over the pattern P : we show

that, if A fulfills equation (1), then for any set of patterns P1 . . . Pm, the abstraction

λP (1..m).A fulfills it too.

The main point here is to check that the translation function J K evaluates in a finite

number of recursive calls: patterns are not affected by the substitution, so the propagation

of the property (1) during the induction is trivial.

The order on sets of patterns P (1..m) is defined by the following measure:

#(P (1..m)) =

m∑

j=1

#(Pj)

#(x) = 1

#(fP (1..p)) =

p
∑

j=1

#(Pj) + αf + 1

Let us check that this measure decreases during the translation. If the pattern P1 is only

a variable then the translation rule for Jλx.A K = λx.JA K applies, and the measure #

decreases by 1.

Otherwise, we have a term with shape JλfQ(1..p).λP2 . . . λPm.A K. The translation

decomposes the first pattern fQ(1..p) into its sub-patterns and at most αf abstractions

λx′, and the constant f disappears. The measure then decreases by at least 1:

#(Q(1..p) x′
(p+1..αf )) ≤ #(Q(1..p)) + αf = #(fQ(1..p)) − 1

We will use the same order to treat the case of abstractions in the proof of Theorem 4.

Theorem 4 (Faithful reductions).

For any terms A and B, if A 7→ρσδ B, then JA K 7→→βJB K in at least one step.

Proof. Again by induction on the structure of A.

As for the closure by substitution lemma, if the reduction occurs in a subterm of

A, the induction hypothesis applies immediately since the translation of A features the

translation of every subterm of A.

If the reduction occurs at the top-level of A, we distinguish three cases:

δ-reduction: the reduction J (A ≀ B) C K 7→β JA C ≀ B C K uses exactly one β-reduction:

it consists in instantiating by C the first variable of x(1..α) in JA ≀ B K.

ρ-reduction: as for the previous lemma, the property we check in fact is that J (λP .A) B K

7→ρ JAθ(P≪B) K for any set of patterns P . We proceed by induction over P using the

order induced by #.

if P ≡ x we have J (λx.A)B K = (λx.JA K)JB K 7→β JA K[x := JB K] and by Lemma 4

this term equals JA[x := B] K.

if P ≡ f P1 . . . Pp then

(λ(f P1 . . . Pp).A) (f B1 . . . Bp) 7→ρ Aθ(f P1 ... Pp≪f B1 ... Bp)

= Aθ(P1≪B1) . . . θ(Pp≪Bp)
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The simulation of this reduction begins with the following β-reductions, where αf

and p may be zero, but at least the last β-reduction (instantiating z) takes place.

J (λ(f P (1..p)).A) (f B(1..p)) K

=
((

λx(1..αf ). λz.(zx(1..xαf
))

)
JB K(1..p)

)

x⊥(p+1..αf ) JλP (1..p).λx′
(p+1..αf ).A K

7→→β

(

λx(p+1..αf ). λz.(zJB K(1..p)x(p+1..αf ))
)

x⊥(p+1..αf ) JλP (1..p).λx′
(p+1..αf ).A K

7→→β (λz.(zJB K(1..p)x⊥(p+1..αf )))JλP (1..p).λx′
(p+1..αf ).A K

7→→β JλP (1..p).λx′
(p+1..αf ).A KJB K(1..p)x⊥(p+1..αf )

Notice that, when considering non-linear patterns, if matching is successful, then

every subterm of the argument corresponding to a same variable are equal. That

justifies that, in the translation, we can choose any of these subterms, and the

other ones can instantiate fresh variables not occurring in the body A of the

abstraction.

By induction hypothesis over P1 . . . Pp, the p reductions corresponding to those

new patterns are correctly simulated. The variables x′
p+1 . . . x′

αf
are instantiated

by x⊥, but since they do not appear into JA K they do not affect the further

reductions of JA K. We have then

J (λ(f P (1..p)).A) (f B(1..p)) K

7→→β JλP (1..p).λx′
(p+1..αf ).A K JB K(1..p)x⊥(p+1..αf )

= J (λP (1..p).λx′
(p+1..αf ).A) B(1..p) Kx⊥(p+1..αf )

7→→β JAθ(P1≪B1) . . . θ(Pp≪Bp) K (by induction hypothesis)

= JAθ(f P1 ... Pp≪f B1 ... Bp) K

Now that we have shown how to translate terms preserving reductions, let us see how

types can be dealt with. First we discuss the main issues that appear, and then we give

the full typed translation.

6. The typed translation

To begin this section, we explain on some examples three key issues that appear in the

typed translation:

1 how to type (in Fω) the translation of a P 2TS constant (accounting for the use of

terms depending on types in the target language);

2 how to type (in Fω) the translation of a P 2TS variable (accounting for the use of

types depending on types in the target language);

3 how to translate the matching constraints appearing in the ρ-types (see Def. 4 for

details on what is a ρ-type).

We will see that the general structure of the previous untyped translation can be pre-

served, at the cost of adding some suitable type abstractions and instantiations. Then we

will detail a full typed translation and prove that it is correct with respect to reductions

and typing.
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Notations For the rest of the paper, we adopt the following abbreviation, for any types

σ, σ1, . . . , σα in Fω.
∧

σ(1..α)
△

= Πβ: ∗ .
(
(σ(1..α) → β) → β

)

In particular, when α = 0:
∧

∅
△

= Πβ: ∗ .(β → β)

and when α = 1:
∧

σ
△

= Πβ: ∗ .((σ → β) → β)

6.1. Typing the translation of a constant

Let us explain why the previous translation of constants cannot be typed without terms

depending on types; first we study a simple example, then we will generalize to any

constant.

Suppose that f is a constant with type Πx:ι.ι in ρ→, that B is a ρ-term such that

⊢Σ B : ι (in ρ→), and finally that A is a ρ-term typable in ρ→.

Clearly, (λ(fx).A)(fB) has the same type as A. If typing is preserved by the trans-

lation, we should have ⊢Fω JA K : τ and ⊢Fω J (λ(fx).A)(fB) K : τ for a certain τ in

Fω.

Let us determine how J (λ(fx).A)(fB) K = J (λ(fx).A) KJ (fB) K is typed in Fω.

We have αf = 1, so the translation of f is λx1.λz.(z x1) and its type is shown below.

⊢Fω λx1.λz.(z x1) : σ → (σ → β) → β

Here σ is supposed to be a correct type for the argument of J f K and β is some unknown

type to be precised, when we find more information on the type of z.

If typing is preserved by the translation, we should have ⊢Fω JB K : σ (since we defined

σ as the type expected by J f K), and thus ⊢Fω J f B K : (σ → β) → β .

To determine the value of β, let us study similarly the type of the translated abstraction

Jλ(f x).A K = λu.
(
u
(
λx.JA K

))
:

⊢Fω λu.
(
u
(
λx.JA K

))
: ((σ → τ) → γ) → γ

where we have defined τ as the type of JA K, and γ is some unknown type to be precised,

when we find more information on the type of u. We see that Jλ(f x).A K can be applied

to J f B K if and only if

(σ → τ) → γ = (σ → β) → β

which reduces to the simple condition τ = β = γ. However β appears in the type of J f K

and τ in the type of JA K. Since it is impossible to guess what function will be applied to

a given term, we have to make this translation more versatile: this leads us to introducing

the polymorphism of Girard’s System F in the target language.

By taking β as a type variable, we can write (with the type abbreviations defined

above):

J f K
△

= λx1.λβ: ∗ .λz.(zx1) : σ →
∧

σ

Jλ(f x).A K
△

= λu.(u τ λx.JA K) : (
∧

σ) → τ
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and then ⊢Fω Jλ(f x).A KJ f B K : τ for any B such that JB K : σ.

The general case is really similar: every term J f K has a type looking like

σ1 → . . . σαf
→

∧

σ(1..αf )

Another interest of polymorphism is that the variable x⊥ can be used whenever we

want a placeholder with an arbitrary type: we will take the type of x⊥ to be Π(ι : ∗).ι

(also denoted ⊥), so that if JΓ K ⊢Fω σ : ∗, then JΓ K ⊢Fω x⊥σ : σ. With this simple trick,

the use of x⊥ we had made in the untyped translation becomes compatible with typing.

To conform with the typing assumptions made when typing an abstraction, the various

placeholders x⊥ are given the type of x′
n in order to fit with the type expected by u.

6.2. Typing the translation of a variable

In this subsection, we explain that we will need a new type variable βx for each variable x

appearing in a ρ-term (including bound variables appearing in a type). The main reason

is that one can not predict which term A will instantiate a variable x, and even if some

terms A1, A2, . . . have the same type in ρ→, their translation can have many different

types. Consider the following examples (with Σ ≡ ι:∗, a:ι, f : Π(y:ι).ι):

x : Πy:ι.ι ⊢Σ x : Πy:ι.ι

⊢Σ λy:ι.y : Πy:ι.ι

⊢Σ λy:ι.a : Πy:ι.ι

⊢Σ f : Πy:ι.ι

The three terms λy.y, λy.a and f can instantiate x since they have the same type.

However, supposing the type ι is translated by a type βy, the translation gives:

⊢Fω λy:βy.y : βy → βy

⊢Fω λy:βy.J a K : βy →
∧
∅

⊢Fω J f K : βy →
∧

βy

The shape of the type we obtain is always the same, but the return type changes; it

may not even use βy. Thus, instead of having ⊢Fω x : βy → βy, we add a type variable

βx which allows us to build the return type as needed. The translation of Πy:ι.ι then

becomes βy → βxβy, where βx can be instantiated with a type depending on a type,

which justifies the use of Fω.

Henceforth, when translating an abstraction λx.A, we shall add the variable βx to the

context; and when translating an application A B, we shall abstract on βx and give an

additional argument in order to build the proper return type.
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In our examples, supposing that βy : ∗, the variable βx must be instantiated as follows:

λy.y βx := λβ: ∗ .β (λβ: ∗ .β) βy 7→β βy

λy.a βx := λβ: ∗ .
∧
∅ (λβ: ∗ .

∧
∅) βy 7→β

∧
∅

f βx := λβ: ∗ .
∧

β (λβ: ∗ .
∧

β) βy 7→β

∧
βy

We will design a function K(· ; ·) to compute a suitable kind for βx according to the

kinds of the type variables βy which are the arguments of βx. For instance, here, we

should take βx : ∗ → ∗.

6.3. Translating matching constraints appearing in ρ-types

A third issue with the typed translation is the presence of matching constraints in ρ→
types. When such a constraint can be resolved, we will simplify it systematically to be

as close as possible to the case of types with the shape of a Π-abstraction.

However, if a term (λP :∆.A) B has type [P ≪∆ B]C and this constraint can not be re-

solved, we will represent it as follows: the term will be translated into JλP :∆.A K(wJB K),

where w is a fresh variable called on purpose postponement variable. Taking ⊢Fω w : σ →

τ1 if ⊢Fω JB K : σ, we will have indeed ⊢Fω J (λP :∆.A) B K : τ2 but the reduction will be

frozen until w is instantiated.

If further reductions transform B into B′ such that the constraint can be resolved, that

will ensure that P and B′ have a same type; then we will instantiate w with the identity,

which will erase the encoding of the constraint in the translation too. This mechanism

will be detailed in the typed translation.

6.4. The full typed translation

As we will produce typed λ-terms, we will index every λ-abstraction with the type of the

corresponding bound variable. Thus, the first step of the typed translation is to define a

translation for some types.

Recall that, according to Lemma 2, in the P 2TS system we consider, types can be well

identified, which allows us to stratify the translations throughout the paper.

As explained before, for each variable x in the ρ-term we translate, we will use a type

variable βx. The function K(C ; k) computes a correct kind for this new variable, using

k as an accumulator for the kinds of the variables appearing in C.

If the original variable x has type C, the type of βx will be found by computing K(C ; )

(i.e. starting with an empty accumulator).
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Definition 6 (Kind of the type variable associated to a P 2TS variable).

K(ι ; k)
△

= k → ∗

K(ΠP :∆.C ; k)
△

= K(C ; k, K(Cy ; )((y:Cy)∈∆))

K([P ≪∆ B]C ; k)
△

= K(C ; k)

Then, we can define the translations of types. We need three mutually dependent

definitions : LP M gives the type of the variable u that appears in JλP.A K ; we use JC Kx
γ

to translate the type C of a variable x ; similarly JC Kf
τ translates the type C of a constant

f .

First LP ; ∆M finds the type of the variable u that appears in JλP :∆.A K.

Definition 7 (Type of the variable associated to a pattern).

Lf P ; ∆M
△

= JC Kf

LP ; ∆M
if ∆ ⊢Σ f P : C

Lx ; ∆M
△

= JC Kx if ∆ ⊢ x : C

To lighten notations, we will generally forget ∆ and write LP M.

For instance we will have

Lf (g x1) x2M =
∧ (

(
V

Jσ1 Kx1), Jσ2 Kx2

)

Again, as for the encoding of matching, the shape of patterns is preserved but the

head constants are forgotten.

Then, JC Kx
γ translates the type C supposing it is the type of a variable x. The various

new type variables and postponement variables will be added to the context.

Definition 8 (Translation for the type of a P 2TS variable).

J ι Kx
γ

△

= βxγ if ι is atomic

JΠP :∆.C Kx
γ

△

= LP M → JC Kx

γ,βy
with the βy chosen so that y ranges over Dom(∆)

J [P ≪∆ B]C Kx
γ

△

= JC Kx
γ

Finally JC Kf
τ translates the type C when it is the type of a constant, and it differs from

JC Kx
γ only by the return type, which will be some

∧
τ instead of βxγ.

Definition 9 (Translation for the type of a P 2TS constant).

J ι Kf
τ

△

=
∧

τ if ι is atomic

JΠP :∆.C Kf
τ

△

= LP M → JC Kf

τ, LP M

J [P ≪∆ B]C Kf
τ

△

= JC Kf
τ
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We can now give the translation of contexts for which the reader is reported to Fig. 5.

The translation of Γ knowing we are typing JA K is denoted JΓ/A;CK, where we will

need some additional variables. The third argument C is the type of A, which in some

cases needs to be browsed to translate the context. The base case is JΓ/ ; K which is

common to every translation. As said above, we use x⊥ with type ⊥.

J∅/ ; K
△

= x⊥ : ⊥

JΓ, x:C/ ; K
△

= JΓ/ ; K, βx : K(C ; ), x : J C Kx ( if Γ ⊢Σ C : ∗)

JΓ, x: ∗ / ; K
△

= JΓ/ ; K, x : ∗

JΓ/x; ΠPn:∆n.CK
△

= JΓ/x; CK, βy:K(Cy ; )((y:Cy)∈∆n)

JΓ/x; [P ≪∆ B]CK
△

= JΓ/x; CK

JΓ/x; ιK
△

= JΓ/ ; K, βx:K(Cx ; )

JΓ/f ; ΠPn:∆n.CK
△

= JΓ/f ; CK, βy:K(Cy ; )((y:Cy)∈∆n)

JΓ/f ; [P ≪∆ B]CK
△

= JΓ/f ; CK

JΓ/f ; ιK
△

= JΓ/ ; K

JΓ/A ≀ B; CK
△

= JΓ/A; CK, JΓ/B; CK

JΓ/λx:(x:C).A; Πx:C.DK
△

= JΓ, x:C/A; DK \ x

JΓ/λP :∆.A; ΠP :∆.CK
△

= JΓ, ∆/A; CK \ Dom(P )

JΓ/A B; [P ≪∆ B]CK
△

=
`

JΓ/A; ΠP :∆.CK \ βx, w
´

, JΓ/B; DK , w′

if there exists τx, JΓ/B; DK ⊢Fω J B K : LP M[βx := τx]x∈Dom(∆)

where Γ ⊢Σ B : D as in the type derivation for [P ≪∆ B]C

where βx, w are the variables updated by P ≪∆ B

and w′ are the postponement variables created by the update

JΓ/A B; [P ≪∆ B]CK
△

= JΓ/A; ΠP :∆.CK , JΓ/B; DK , w(P≪B) : σ → LP M

if JΓ/B; DK ⊢Fω J B K : σ

and there exists no τx, σ=β LP M[βx := τx]x∈Dom(∆)

where Γ ⊢Σ B : D as in the type derivation for [P ≪∆ B]C)

Fig. 5. Translation of contexts.

The translation of terms is given in Fig. 6.
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J x K
△

= x

J f K
△

= λx: LP M(1..αf ).λβ: ∗ .λz:( LP M(1..αf ) → β).(zx(1..αf ))

where ⊢Σ f : ΠP :∆(1..αf ).ι

J A ≀ B K
△

= λx: LP M(1..αA≀B).
“

λz:σ.J A K x(1..αA≀B)

”

(J B K x(1..αA≀B))

where Γ ⊢Σ A ≀ B : ΠP :∆(1..αA≀B).ι

and JΓ/B; ΠP :∆(1..αA≀B).ιK ⊢Fω J B Kx : σ

J λx:(x:C).A K
△

= λx:J C Kx . (λy:τ .J A K) J D K

where D are the terms appearing in C and J Γ K ⊢Fω J D K : τ

J λ(f P (1..p)):∆.A K
△

= λu: Lf P M.(u(x⊥ LP ′M)(p+1..αf ) τ J λP :∆(1..p)λx′:(x: LP ′M)(p+1..αf ).A K)

where ∆ ⊢Σ f P (1..p) : ΠP ′:∆(p+1..αf ).ι and JΓ/A; CK ⊢Fω J A K : τ

where Γ ⊢Σ A : C as in the type derivation for λ(f P (1..p)):∆.A

J A B K
△

=
`

λβx.λw.J A K
´

θ(βx) θ(w) J B K

where βx, w are the variables updated by P ≪ B

if there exists τx, JΓ/B; DK ⊢Fω J B K : LP M[βx := τx]x∈Dom(∆)

J A B K
△

= J A K (w(P≪B) J B K)

if there exists no τx, JΓ/B; DK ⊢Fω J B K : LP M[βx := τx]x∈Dom(∆)

Fig. 6. Typed translation.

In the translation of the abstraction over a variable x, we add some redexes accounting

for the terms appearing in the type of x, so that the reductions occurring in a context

∆ are not forgotten in the translation (in a given type the number of σ-reductions is

bounded but in [P ≪ B]C an infinite reduction of B can occur). This technique is

common when translating systems where the types can feature terms.

The translation of application in the case of a solvable constraint uses a notion of

variable update generated by a constraint, defined as follows.

Definition 10 (Variable update generated by a constraint).

Let P ≪∆ B be a matching constraint.

The variable update generated by this constraint is a substitution θ such that:

— If JΓ/B; K ⊢Fω JB K : LP M[βx := τx(x∈Dom(∆))], then

1 For every x ∈ Dom(∆), we have θ(βx) = τx.

2 Let θ(w(P≪B)) = λx: LP M[βx := τx(x∈Dom(∆))].x

3 For every wQ≪D whose type features a variable βx ∈ Dom(θ), add to θ the variable

update generated by Q ≪ Dθ.

— Otherwise, θ(w(P≪B)) = w′
(P≪B) with type σ → LP Mθ, where σ is the type of JB K.
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Notice θ is built recursively, and this recursion is well-founded: the constraint P ≪ B

can update a variable wQ≪D only if FV (D)∩FV (P ) 6= ∅, which generates a well-founded

order over the constraints. Notice too that:

— θ associates a type to every type variable;
— θ associates either a new postponement variable or the identity to every postponement

variable.

7. Correctness of the typed translation

Finally, we can prove that our translation preserves reductions and typability. These

technical lemmas flesh out the sketch of proof we gave for Theorem 2.

Lemma 5 (Well-kindedness).

If Γ ⊢Σ C : ∗ then JΓ/x;CK ⊢Fω JC Kx : ∗ for some fresh variable x.

Proof. Nearly immediate. The definition of K(C ; k) ensures that each βx has the

suitable kind.

Theorem 5 (Typed faithful translation).

For all Σ,Γ, A, C, if Γ ⊢Σ A : C : ∗ then, for some fresh variable z,

there exists τA, JΓ/A;CK ⊢Fω JA K : JC Kz[βz := τA]

Proof. We prove by case analysis on term A that τA can be defined as follows:

τx
△

= βx

τf
△

= λβy.
∧

LPnM(1..αf ) if f : ΠP1 . . .ΠPαf
.ι

τA≀B
△

= τA

τλP :∆.A
△

= λβx.τA if FV (P ) = x

τA B
△

= τA τy if there exists τy, JΓ/B;DK ⊢Fω JB K : LP M[βy := τy]

τA B
△

= τA βx otherwise

It is easy to see that if two types C and C ′ are convertible modulo =ρσδ, then JC Kz and

JC ′ Kz are convertible modulo =β , so we can choose any representative of the type of A.

The proof proceeds by induction on the structure of term A which does not contain any

matching constraint.

For a variable x we have

(Var)
Γ ⊢Σ C : s

Γ, x:C ⊢Σ x : C

The sort s must be ∗. By Lemma 5, we have JΓ/x;CK ⊢Fω JC Kx : ∗, hence

(Var)
JΓ/ ; K, βx : K(C ; ) ⊢Fω JC Kx : ∗

JΓ, x:C/ ; K ⊢Fω x : JC Kx

For a constant f we have

(Const)
Σ sig f : C ∈ Σ

⊢Σ f : C
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Then in the derivation of Σ sig, we can find ⊢Σ′ C : s for some prefix Σ′ of Σ, and

the sort s must be ∗. We must show that J∅/f ;CK ⊢Fω J f K : JC Kf . The matching

constraints appearing in C have not been translated in JC Kf , so it is sufficient to

notice that the variables x(1..αf ) bound in J f K have the expected corresponding types

LP M(1..αf ).

Finally, by definition of JC Kf , its return type is
∧

LP M(1..αf ), which is indeed a valid

type for λβ: ∗ .λz.(zx(1..αf )).

Let us express this type as JC Kz[βz := τf ] for some τf . It is sufficient that τf builds the

LP M using the βy occurring into JΓ/f ;CK, which is immediate (modulo α-conversion

of the βy) :

τf
△

= λβy.
∧

LPnM(1..αf )

Notice that, by Lemma 5 and by definition of
∧

, we have J∆ K ⊢Fω

∧
LPnM(1..αf ) : ∗

so τf has indeed the same kind as βz.

For a structure A ≀ B we have

(Struct)
Γ ⊢Σ A : C Γ ⊢Σ B : C

Γ ⊢Σ A ≀ B : C

By induction hypothesis JΓ/A;CK ⊢ JA K : JC Kz[βz := τA] and

JΓ/B;CK ⊢ JB K : JC Kz[βz := τB ]. Recall that the structure is not translated as the

usual pair of the λ-calculus but as (λz.JA K)JB K, hence the type of JA ≀ B K is also

the type of JA K, hence τA≀B = τA.

We still have to see that the variables x1 . . . xαA≀B
bound in JA ≀ B K have respectively

types LPnM, which is immediate. The context JΓ/A ≀ B;CK is defined as the union of

two contexts, which allows to type the whole term JA ≀ B K, provided the same βy

are used into JA K, JB K and the types of x(1..αA≀B).

For an abstraction λP :∆.A we have

(Abs)
Γ,∆ ⊢Σ A : C Γ ⊢Σ ΠP :∆.C : s

Γ ⊢Σ λP :∆.A : ΠP :∆.C

Then necessarily s ≡ ∗. We discuss according to pattern P .

If P is only a variable x then in the translation x has type JCx Kx. By induction

hypothesis JΓ, x:Cx/A;CK ⊢Fω JA K : JC Kz[βz := τA], and the terms JD K are typable

(it is the only information needed to type the redexes (λy. . . .) JD K, which do not

influence typing elsewhere). We conclude that

JΓ/λx.A; Πx.CK ⊢Fω Jλx.A K : JΠx.C Kz[βz := λβx.τA]

Otherwise, in Jλ(f P (1..p)).A K, the variable u has type Lf P (1..p)M. It is then suffi-

cient to check that u(x⊥ LP ′M)(p+1..αf ) τ JλP :∆(1..p).λx′: LP ′M(p+1..αf ).A K has type

JC Kz[βz := τ ] for some τ .

By definition Lf P (1..p)M ≡ LP ′M(p+1..αf ) →
∧

LP M(1..p), LP ′M(p+1..αf ).

The arguments x⊥ LP ′M absorb the first arguments expected by u, and then τ in-

stantiates the type variable bound in
∧

LP M(1..p), LP ′M(p+1..αf ). Finally, by induction
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hypothesis, we have

JΓ/λP .λx′.A; ΠP .ΠP ′.CK ⊢Fω

JλP :∆(1..p).λx′: LP ′M(p+1..αf ).A K : JΠP (1..p).ΠP ′
(p+1..αf ).C Kz[βz := τ ]

with τ ≡ λβx.τA where βx = FV (P , P ′). The free variables in P ′ have been intro-

duced only for the translation, hence we can do without the corresponding βx.

We conclude that

JΓ/λf P (1..p).A; Πf P (1..p).CK ⊢Σ

Jλf P (1..p).A K : Lf P (1..p)M → JC Kz[βz := λβx(x∈FV (P )).τA]

and we have

Lf P (1..p)M → JC Kz[βz := λβx(x∈FV (P )).τA] = JΠf P (1..p).C Kz[βz := λβx(x∈FV (P )).τA]

Finally we obtain the result since τλP :∆.A
△

= λβx.τA

For an application A B we have

(Appl)
Γ ⊢Σ A : ΠP :∆.C Γ ⊢Σ [P ≪∆ B]C : s

Γ ⊢Σ A B : [P ≪∆ B]C

Then necessarily s ≡ ∗.

We distinguish two cases, according to typed translation of Fig. 6.

If there exists τx, JΓ/B;DK ⊢Fω JB K : LP M[βx := τx] then

JA B K = (λβx.λw.JA K) θ(βx) θ(w) JB K. By induction hypothesis over A we have

JΓ/A; ΠP :∆.CK ⊢Fω JA K : JΠP :∆.C Kz[βz := τA].

Let us check that it is correct to instantiate some wQ≪D with the identity: indeed,

if the constraint Q ≪ D is solvable, then

JΓ/A B; [P ≪∆ B]CK ⊢Fω JD K : LQM[βy := τy(y∈FV (Q))]

and we have added the abstractions λβy and the corresponding arguments τy.

Hence

JΓ/A B; [P ≪∆ B]CK ⊢Fω wQ≪D : LQM[βy := τy(y∈FV (Q))] → LQM[βy := τy(y∈FV (Q))]

and we can instantiate it with λx: LQM[βy := τy(y∈FV (Q))].x. Then
(
JΓ/A; ΠP :∆.CK \ βx, w

)
, w′ ⊢Fω (λβx.λw.JA K) τx t : JΠP :∆.C Kz[βz := τA][βx := τx].

Now

JΠP :∆.C Kz[βz := τA][βx := τx] = LP M[βx := τx] → JC Kz

βx
[βz := τA][βx := τx]

= LP M[βx := τx] → JC Kz
τx

[βz := τA]

= LP M[βx := τx] → JC Kz[βz := τA τx]

The expected type for the argument corresponds to the type of JB K, and the

typing context for the application is the union of two contexts, where

JΓ/A B; [P ≪∆ B]CK ⊢Fω JA B K : JC Kz[βz := τA τx], thus in that case

τA B
△

= τAτx
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Otherwise, JA B K = JA K(wJB K) where w has type σ → LP M (where σ is the type

of JB K).

By induction hypothesis, JΓ/A; ΠP :∆.CK ⊢Fω JA K : JΠP :∆.C Kz[βz := τA], but

JΠP :∆.C Kz[βz := τA] = LP M → JC Kz

βx
[βz := τA]

= LP M → JC Kz[βz := τA βx]

The typing context for the application is the union of two contexts in which we

have added the variable w, hence

JΓ/A B; [P ≪∆ B]CK ⊢Fω JA B K : JC Kz[βz := τA βx], thus

τA B
△

= τAβx

Lemma 6 (Typed faithful reductions).

Lemma 4 (closure by substitution) and Theorem 4 (faithful reductions) are still valid

in the typed translation.

Proof. The proof resembles closely the untyped case: we have only added λ-abstractions

and applications on types, on terms appearing in the ρ-types, and on postponement

variables. It is sufficient to check that these ones behave as expected.

1 The only abstractions and applications on types appear in the translation of constants,

abstractions and applications. It is immediate to see that every type abstraction has

exactly one corresponding type application.

Thus, it is sufficient to check that the type variables have the expected kind (Lemma 5)

and that the λ-terms produced by J K are well-typed (Theorem 5).

2 The redexes added in λx:C.A allow to translate the reductions of shape λP :∆.A 7→ρσδ

λP :∆′.A, where ∆′ is ∆ in which a type C has undergone a reduction 7→ρσδ. This type

C is necessarily the type of a variable x in P , hence in the translation JλP :∆.A K, we

translate some λx:C.A′. Thus, for the subterm D of C in which the reduction occurs,

the λ-term JD K appears in JλP :∆.A K hence by induction hypothesis the reduction

is also translated into JD K.

When we want to translate the reduction of a redex (λP :∆.A) B, it is enough to

reduce first all the redexes (λy.JA′ K) JD K appearing in J (λP :∆.A) B K. The reduction

of these redexes is not an issue, since the variables y are fresh, and the ρ-reduction

erases the context ∆ from the original term, so it is unnecessary to copy the terms

JD K into the translated term. Then we proceed as in the untyped case.

3 The most important point is to check that our use of postponement variables is

correct. We will show the two following properties.

(a) Solvable constraints are not postponed.

Let (λP.A) B be a term such that the constraint P ≪ B is solvable. Then there

exists τx such that

JΓ/B;DK ⊢Fω JB K : LP M[βx := τx]x∈Dom(∆)
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where D is the (common) type of P and B. In particular, this ensures that

(λP.A) B is not translated as JλP.A K (w JB K).

Indeed, if this constraint is solvable, we have B = PθP≪B . According to Lemma 4,

we have JB K = JP KJ θP≪B K[βx := τxθ]. Theorem 5 shows that

JΓ/P ;DK ⊢Fω JP K : JD Kz[βz := τP ] = LP M.

Moreover we have JΓ/P ;DK \ βx ⊆ JΓ/B;DK and

JD Kz[βz := τB ] = JD Kz[βz := τP ][βx := τxθ] = LP M[βx := τxθ]

Typing being closed by substitution in Fω, we can conclude

JΓ/B;DK ⊢Fω JB K : LP M[βx := τxθ]

(b) The constraints that become solvable appear in the type of the (super-)term where

they become solvable.

Let (λP.A) B be a ρ-term such that the matching constraint P ≪ B is not solvable.

If (λP.A) B is a subterm of a term A′ in which the constraint becomes solvable,

then in the typing of A′ the constraint becomes solvable.

To show that, it is sufficient to consider a kind σ-long form for types. Let us

proceed by induction on the structure of A′:

If A′ is the term A itself then trivially the constraint appears into the type

[P ≪ B]C of A.

If A′ ≡ A1 ≀ A2 then necessarily A′ and A1 and A2 have a common type. By

induction hypothesis, the constraint [P ≪ B] appears in the type of whichever

subterm A1 or A2 of which A is a subterm, hence it appears in the type of A′.

If A′ ≡ λP.A1 then by induction hypothesis, the constraint appears in the type

D of A1, hence it appears in the type ΠP.D of A′.

If A′ ≡ A1 A2 where A is a subterm of A1 by inspection of a typing deriva-

tion we have ⊢ A1 : ΠQ.C ′. The constraint [P ≪ B] being unsolvable, A must

be a strict subterm of A1; by induction hypothesis, we can take C ′ such that

C ′ the constraint appears in it, hence it appears in the type [Q ≪ A2]C
′ of

A′. Moreover if it is the σ-reduction of Q ≪ A2 which makes the constraint

P ≪ B solvable, then we have [Q ≪ A2]C
′ =σ C ′θQ≪A2

where the constraint

P ≪ Bθ becomes solvable.

If A′ ≡ A1 A2 where A is a subterm of A2 then by inspection of a typing

derivation ⊢ A1 : ΠQ.C ′ hence, as A is a subterm of A2, it appears (and

so does the constraint) in the type [Q ≪ A2]C
′ of A′.

This last property justifies that the matching constraints that become solvable can

be detected during typing, hence during the translation too. The instantiations

of postponement variables occurring during the translation of applications are

then sufficient, and into the λ-term JA′ K the only postponement variables left

correspond to definitive matching failures.
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Theorem 6 (Strong normalization of typable ρ-terms).

For all Σ,Γ, A, C, if Γ ⊢Σ A : C then A is strongly normalizing.

Proof.

If Γ ⊢Σ C : ∗ then by Theorem 5, we know that there exists τ such that

JΓ/A;CK ⊢Fω JA K : JC Kz[βz := τ ].

By Lemma 6, if A has an infinite reduction, then JA K has an infinite reduction. But

by strong normalization of System Fω, the term JA K has no infinite reduction. Thus,

A is strongly normalizing.

If Γ ⊢Σ C : � then A is a ρ-type. Considering the shape of types the only reductions

which can occur in A are:

— σ-reductions, whose number is bound by the number of matching constraints

appearing into A;

— reductions into the terms appearing in A, which are finite because of the previous

cases.

8. Strong normalization in the dependent type system

Now we extend the previous result for the P 2TS system with dependent types, i.e.

allowing the product rules (∗, ∗) and (∗,�).

To achieve so, we do not need a new target system more powerful than Fω. Indeed, this

proof relies on an encoding of P 2TS with dependent types into P 2TS without dependent

types. Thus, we reap immediately the benefits of our strong normalization property for

ρ→ by using it to prove strong normalization for ρP .

Theorem 7 (Strong normalization in ρP ).

Every ρ-term typable in ρP is strongly normalizing.

Proof. We follow the main lines of the proof of strong normalization for LF (Harper

et al. 1993). We define a translation τ of sorts and types, and a translation | · | of ρP -

terms and types into ρ→-terms and types, such that | · | erases all dependent types and

preserves reductions. We will use a particular constant 0 such that ⊢Σ 0 : ∗ and a family

of constants πP :∆ for each pattern P and each context ∆. The constant πP :∆ has type
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Πx1:0 . . .Πxn:0.Πy:(ΠP :τ(∆).0).0 where n is the number of free variables in P .

ε(�)
△

= 0

ε(∗)
△

= 0

ε(x)
△

= x if ⊢Σ x : C : �

ε(f)
△

= f if ⊢Σ f : C : �

ε(ΠP :∆.C)
△

= ΠP :ε(∆).ε(C)

ε(λP :∆.A)
△

= ε(A)

ε([P ≪∆ B]C)
△

= [P ≪ε(∆) |B|]ε(C)

ε(A B)
△

= ε(A)

|x|
△

= x

|f |
△

= f

|ΠP :∆.C|
△

= πP :∆ |C1| . . . |Cn| (λP :ε(∆).|C|)

if ∆ ≡ x1:C1 . . . xn:Cn

|λP :∆.A|
△

= λP :ε(∆).
(
(λy1:0 . . . λyn:0.|A|) |C1| . . . |Cn|

)

if ∆ ≡ x1:C1 . . . xn:Cn

|A ≀ B|
△

= |A| ≀ |B|

|A B|
△

= |A| |B|

|[P ≪∆ B]C|
△

= [P ≪ε(∆) |B|]
(
(λy1:0 . . . λyn:0.|C|) |C1| . . . |Cn|

)

if ∆ ≡ x1:C1 . . . xn:Cn

The function ε is extended to contexts and signatures, where it operates over each type.

The correctness of these functions is ensured by the three following lemmas.

Lemma 7.

If Γ ⊢Σ B : C : � or Γ ⊢Σ B : � in ρP , then ε(Γ) ⊢ε(Σ) ε(B) : ∗ in ρ→.

Proof. By induction on B. Immediate if ⊢Σ B : �, the only interesting cases for

⊢Σ B : C : � are abstraction and application:

If B ≡ λP :∆.B1 then C =ρσδ ΠP :∆.C1 with Γ,∆ ⊢Σ B1 : C1 and Γ ⊢Σ ΠP :∆.C1 : �,

hence Γ,∆ ⊢Σ C1 : �.

By induction hypothesis ε(Γ,∆) ⊢ε(Σ) ε(B1) : ∗, hence the same is true for λP :∆.B1.

If B ≡ B1 B2 then C =ρσδ[P ≪ B2]C1 with Γ ⊢Σ B1 : ΠP.C1 and Γ ⊢Σ [P ≪ B2]C1 : �.

Then we have Γ ⊢Σ C1 : �, hence Γ ⊢Σ B1 : ΠP.C1 : �; by induction hypothesis

ε(Γ) ⊢Σ ε(B1 B2) = ε(B1) : ∗.

Lemma 8.

If Γ ⊢Σ A : C in ρP , then ε(Γ) ⊢ε(Σ) |A| : ε(C) in ρ→.

Proof. By induction on a derivation of Γ ⊢Σ A : C, distinguishing over the last used

rule.

If the last rule is (Sig), (WeakΣ) or (Axiom) it is immediate. For every premise

⊢Σ C : s, according to Lemma 7 we have ⊢ε(Σ) ε(C) : ∗.
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If the last rule is

(Var)
Γ ⊢Σ C : s

Γ, x:C ⊢Σ x : C

By Lemma 7 we have ε(Γ) ⊢ε(Σ) ε(C) : ∗. As ε(Γ, x:C)(x) = ε(C) we have

ε(Γ, x:C) ⊢ε(Σ) x : ε(C).

If the last rule is

(Const)
Σ sig f : C ∈ Σ

⊢Σ f : C

Immediately ε(Σ)(f) = ε(C) and by Lemma 7 we have ⊢ε(Σ) ε(C) : ∗.

If the last rule is (WeakΓ) it is immediate: ε(Γ, x:C) = ε(Γ), x:ε(C) and by Lemma 7

we have ε(Γ) ⊢ε(Σ) ε(C) : ∗.

If the last rule is (Conv) it is easy to see that if C =ρσδ B, then ε(C) =ρσδ ε(B), and by

Lemma 7 we have ε(Γ) ⊢ε(Σ) ε(C) : ∗. We can apply the induction hypothesis and a

conversion step in ρ→.

If the last rule is

(Struct)
Γ ⊢Σ A : C Γ ⊢Σ B : C

Γ ⊢Σ A ≀ B : C

By induction hypothesis ε(Γ) ⊢ε(Σ) |A| : ε(C) and ε(Γ) ⊢ε(Σ) |B| : ε(C), hence

ε(Γ) ⊢ε(Σ) |A ≀ B| : ε(C)

If the last rule is

(Abs)
Γ,∆ ⊢Σ A : C Γ ⊢Σ ΠP :∆.C : s

Γ ⊢Σ λP :∆.A : ΠP :∆.C

By induction hypothesis ε(Γ,∆) ⊢ε(Σ) |A| : ε(C) and by Lemma 7 we have

ε(Γ) ⊢ε(Σ) ε(ΠP :∆.C) : ∗.

Moreover, |λP :∆.A| = λP :ε(∆).
(
(λy1:0 . . . λyn:0.|B|) |C1| . . . |Cn|

)
, where the n argu-

ments |Ci| are absorbed by the n abstractions over the yi, and do not influence typing

(by induction hypothesis we have ε(Γ) ⊢ε(Σ) |Ci| : ε(s) = 0 which is the expected

type for yi).

Indeed ε(Γ) ⊢ε(Σ) |λP :∆.A| : ΠP :ε(∆).ε(C) = ε(ΠP :∆.C).

If the last rule is

(Appl)
Γ ⊢Σ A : ΠP :∆.C Γ ⊢Σ [P ≪∆ B]C : s

Γ ⊢Σ A B : [P ≪∆ B]C

By induction hypothesis, ε(Γ) ⊢ε(Σ) |A| : ε(ΠP :∆.C) = ΠP :ε(∆).ε(C) and by

Lemma 7 we have ε(Γ) ⊢ε(Σ) ε([P ≪∆ B]C) : ∗, hence

ε(Γ) ⊢ε(Σ) |A B| : [P ≪ε(∆) |B|]ε(C) = ε([P ≪∆ B]C).

If the last rule is

(Prod)
Γ,∆ ⊢Σ P : A Γ,∆ ⊢Σ A : s1 Γ,∆ ⊢Σ C : s2

Γ ⊢Σ ΠP :∆.C : s2

By induction hypothesis ε(Γ,∆) ⊢ε(Σ) |C| : ε(s2) = 0 and for every (xi:Ci) ∈ ∆ we
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have ε(Γ,∆) ⊢ε(Σ) |Ci| : ε(s) = 0. Given the type of πP :∆, we have

ε(Γ) ⊢ε(Σ) |ΠP :∆.C| : 0 = ε(s3).

If the last rule is

(Match)
Γ,∆ ⊢Σ P : A Γ ⊢Σ B : A Γ,∆ ⊢Σ A : s1 Γ,∆ ⊢Σ C : s2

Γ ⊢Σ [P ≪∆ B]C : s2

Notice that |P | = P . By induction hypothesis ε(Γ,∆) ⊢ε(Σ) P : ε(A) and

ε(Γ,∆) ⊢ε(Σ) |B| : ε(A) and ε(Γ,∆) ⊢ε(Σ) |C| : ε(s2) = 0.

Still by induction hypothesis, for every (xi:Ci) ∈ ∆ we have

ε(Γ,∆) ⊢ε(Σ) |Ci| : ε(s) = 0 which correspond indeed to the type expected by the yi.

Thus, we have ε(Γ) ⊢ε(Σ) |[P ≪∆ B]C| : 0 = ε(s3).

Lemma 9.

If A 7→ρσδ A′, then |A| 7→→ρσδ |A
′| in at least one step.

Proof. Immediate: for each term A, for whichever subterm B that can be reduced (even

if B appears in a type), the term |B| appears in |A|. Moreover, the ρ (resp. δ)-redexes

are translated by ρ (resp. δ)-redexes.

9. Conclusion and perspectives

In this paper, we have proved strong normalization of the simply-typed and dependently-

typed P 2TS. The proof relies on a faithful translation from simply-typed P 2TS into

System Fω, and then from dependently-typed P 2TS into simply-typed P 2TS.

In the untyped framework, we encoded pattern matching in the λ-calculus in a quite ef-

ficient way, ensuring that every ρσδ-reduction is translated into (at least) one β-reduction.

Introducing types in the translation proved an interesting challenge. One difficulty comes

from the pattern matching occurring in the P 2TS types, which calls for accurate adjust-

ments in the translation. Another remarkable point is that the typing mechanisms of even

the simply-typed P 2TS can be expressed only with the expressive power of System Fω,

which is rather surprising since Fω is a higher-order system featuring types depending

on types.

An interesting development of this work would be to adapt the proof for the other type

systems of P 2TS. Two work directions are possible. On the one hand, we can adapt the

typed translation for typing judgments in the more complex type systems. On the other

hand, we can expect to find (typed) translations from some type systems of P 2TS into

other ones, as we have done for dependent types.

It would also be interesting to devise a model-theoretic proof of strong normalization

for P 2TS: an interpretation of types as functional spaces is generally the first step towards

their interpretation as propositions, which is a key to the definition of a Curry-Howard

isomorphism. The encoding presented here could provide a basis for this interpretation:

all the translated contexts contain the hypothesis x⊥ : ⊥ (falsum). However, if we manage
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to characterize which λ-terms produced by the encoding do not use the assumption ⊥,

we already have a suitable interpretation for the corresponding P 2TS terms.

A third research direction is to focus on the (Struct) rule: it seems that, with inter-

section types, we could obtain an original treatment of the conjunction connector, where

structures correspond to introduction and matching failures enable elimination.

In the long term, we expect to use P 2TS as the base language for a powerful proof

assistant combining the logical soundness of the λ-calculus and the computational power

of the rewriting. This proof of strong normalization is a main stepstone for this research

direction, since logical soundness is deeply related to strong normalization.
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