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Analyse des moments dans les modèles markoviens à

récompenses

Résumé : Nous analysons les moments de la récompense cumulée sur l’intervalle (0, t)
dans une châıne de Markov à temps continu. Nous développons une procédure numérique
pour calculer efficacement les moments normalisés en utilisant la technique de l’uniformisation.
Notre algorithme met en jeu des quantités auxiliaires dont la convergence est analysée et pour
lesquelles nous fournissons une interprétation probabiliste.

Mots clés : Modèles markoviens, récompense cumulée, performabilité, uniformisation
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1 Introduction

In the dependability analysis of repairable computing systems, there is an increasing interest in
evaluating transient measures, and in particular, the accumulated reward over a given period.
This measure is also known as a performability measure that takes into account both the
performance of a system and its reliability. The state of the system is modeled by an irreducible
continuous-time homogeneous Markov chain X = {Xt, t ≥ 0}, over a finite state space S. To
each state i ∈ S, is associated a reward rate f(i), which is assumed to be a nonnegative
real number, without any loss of generality. The accumulated reward Y (t) over interval (0, t)
averaged over t and normalized by the maximum reward rate f = max{f(j), j ∈ S} is defined,
for every t > 0, by

Y (t) =
1

ft

∫ t

0

f(Xs)ds.

The distribution of accumulated reward has been considered in several papers (see, for instance,
[9, 6, 7, 2, 14, 10, 4, 8, 5, 3] and the references therein). This paper is concerned with the study
and the evaluation of the moments of accumulated reward. As we shall see there is no need
to evaluate the distribution if only some of the moments are required. Ther evaluation has
been studied in [11] where an algorithm has been proposed to compute them. In that paper
the moments considered are not averaged over (0, t) so that they increase to infinity when t
goes to infinity. The first moment of Y (t) has been analyzed in [13], where a stationary regime
detection has been developed to improve its computational time.

In this paper, we consider the moments averaged over (0, t). They are studied in Section 2
where we propose a first computational algorithm. Our approach, based on the uniformiza-
tion technique, only involves numbers in [0, 1], which provides numerical stability. Besides,
our method involves auxiliary quantities, called U(n, r) in the sequel, whose convergence is
studied in Section 3 which allows us to develop a new procedure to compute the moments
more efficiently. The U(n, r)’s are considered in Section 4 and they are characterized using a
probabilistic interpretation. Section 5 is devoted to a numerical example.

2 Moments analysis

We denote respectively by α and Q the initial distribution and the infinitesimal generator of
the irreducible continuous-time homogeneous Markov process X = {Xt, t ≥ 0} over the finite

state space S. For i ∈ S and r ≥ 0, we denote by m
(r)
i (t) the r-th moment of the accumulated

reward Y (t) over (0, t), given that the initial state of X is equal to i, i.e.

m
(r)
i (t) = E(Y (t)r|X0 = i).

We denote by m(r)(t) the column vector containing the m
(r)
i (t). Clearly, we have m(0)(t) = 1,

where 1 is the column vector with all entries equal to 1, its dimension being clear in the context.
The r-th moment of the accumulated reward over interval (0, t) is thus given, for r ≥ 0, by

E(Y (t)r) = αm(r)(t).

We denote by D the diagonal matrix defined by D = diag(d(i)), where d(i) = f(i)/f . The
column vectors m(r)(t) can be obtained recursively from the following result.

PI n˚1869



4 François Castella, Guillaume Dujardin & Bruno Sericola

Theorem 1. For every r ≥ 1 and t > 0, we have

m(r)(t) =
r

t

∫ t

0

eQ(t−u)Dm(r−1)(u)du. (1)

Proof. Let gr(s) be the random variable defined, for r ≥ 0 and 0 ≤ s ≤ t, by

gr(s) =

(∫ t

s

f(Xu)du

)r

.

Differentiating with respect to s, we get

g′
r(s) = −rf(Xs)

(∫ t

s

f(Xu)du

)r−1

= −rf(Xs)gr−1(s),

which is equivalent to

gr(s) = r

∫ t

s

f(Xu)gr−1(u)du. (2)

Note that from the homogeneity of the Markov chain X, we have, for r ≥ 0 and 0 ≤ s ≤ t,

E(gr(s)|Xs = j) = E

((∫ t

s

f(Xu)du

)r

|Xs = j)

= E

((∫ t−s

0

f(Xu)du

)r

|X0 = j)

= f rtrm
(r)
j (t − s). (3)

Taking the expectation in (2), we get, using the Fubini theorem

E(gr(s)|X0 = i) = r

∫ t

s

E(f(Xu)gr−1(u)|X0 = i)du

= r

∫ t

s

∑
j∈S

E(f(Xu)gr−1(u)1{Xu=j}|X0 = i)du

= r

∫ t

s

∑
j∈S

f(j)E(gr−1(u)|Xu = j, X0 = i) Pr{Xu = j|X0 = i}du

= r

∫ t

s

∑
j∈S

f(j)E(gr−1(u)|Xu = j) Pr{Xu = j|X0 = i}du

= rf r−1tr−1

∫ t

s

∑
j∈S

f(j)m
(r−1)
j (t − u)eQu(i, j)du,

where the fourth equality follows from the Markov property and the fifth is due to homogeneity
property (3). Taking s = 0, we obtain

m
(r)
i (t) =

r

t

∫ t

0

∑
j∈S

d(j)m
(r−1)
j (t − u)eQu(i, j)du,

Irisa



Moments analysis in Markov reward models 5

which can be written, in matrix notation

m(r)(t) =
r

t

∫ t

0

eQuDm(r−1)(t − u)du,

or, by a variable change,

m(r)(t) =
r

t

∫ t

0

eQ(t−u)Dm(r−1)(u)du,

which completes the proof.

Differentiating relation (1) with respect to t, we get

rm(r)(t) + t
dm(r)(t)

dt
= tQm(r)(t) + rDm(r−1)(t). (4)

We now make use of the uniformization technique [12]. We introduce the uniformized
Markov chain Z = {Zn, n ≥ 0} associated to the Markov chain X, which is characterized by
its uniformization rate ν and by its transition probability matrix P . The uniformization rate
ν verifies ν ≥ max{−Q(i, i), i ∈ S} and matrix P is related to the infinitesimal generator Q
by P = I + Q/ν, where I denotes the identity matrix. The number of transitions during the
interval (0, t), which we denote by Nt, is a Poisson process with rate ν. Since Q = −ν(I − P ),
relation (4) can be written as

rm(r)(t) + t
dm(r)(t)

dt
= −νtm(r)(t) + νtPm(r)(t) + rDm(r−1)(t). (5)

In the following theorem, we determine the sequence of column vectors U(n, r) so that the
solution to (5) has the form of the series (6).

Theorem 2. For every t ≥ 0, we have

m(r)(t) =

∞∑
n=0

e−νt (νt)n

n!
U(n, r), (6)

where the column vectors U(n, r) = (Ui(n, r), i ∈ S) are given by

U(0, r) = Dr
1 for r ≥ 0, (7)

U(n, 0) = 1 for n ≥ 0, (8)

and, for n, r ≥ 1,

U(n, r) =
n

n + r
PU(n − 1, r) +

r

n + r
DU(n, r − 1). (9)

Proof. Differentiating expression (6) with respect to t, we get

t
dm(r)(t)

dt
= −νtm(r)(t) + νt

∞∑
n=0

e−νt (νt)n

n!
U(n + 1, r) = −νtm(r)(t) +

∞∑
n=0

e−νt (νt)n

n!
nU(n, r).

PI n˚1869



6 François Castella, Guillaume Dujardin & Bruno Sericola

Replacing this expression together with expression (6) in equation (5), we obtain, for every
t ≥ 0,

∞∑
n=0

e−νt (νt)n

n!
(n + r)U(n, r) =

∞∑
n=0

e−νt (νt)n+1

n!
PU(n, r) +

∞∑
n=0

e−νt (νt)n

n!
rDU(n, r − 1)

=
∞∑

n=0

e−νt (νt)n

n!
(nPU(n − 1, r) + rDU(n, r − 1)).

Note that for n = 0, it is not necessary to define U(n − 1, r) since, in that case, we have
nPU(n − 1, r) = 0. The equality holds for every t ≥ 0, so we get, for every n ≥ 0,

U(n, r) =
n

n + r
PU(n − 1, r) +

r

n + r
DU(n, r − 1).

The initial condition easily follows from the fact that the paths of the Markov chain X are
supposed right continuous at t = 0. We thus have, for every r ≥ 0

lim
t−→0

m(r)(t) = Dr
1.

Taking t = 0 in relation (6), we get

U(0, r) = Dr
1.

Since m(0)(t) = 1, we obtain

U(n, 0) = 1, for every n ≥ 0,

which completes the proof.

2.1 The uniformization method

The computation of the moments of the normalized accumulated reward E(Y (t)r) is based on
the following relation, which can be easily obtained from relation (6),

E(Y (t)r) =
∞∑

n=0

e−νt (νt)n

n!
u(n, r),

where u(n, r) = αU(n, r). Note that since matrix P is stochastic and since diagonal matrix D
has its entries in the interval [0, 1], we easily obtain from relations (7), (8) and (9) that

0 ≤ Ui(n, r) ≤ 1, and thus 0 ≤ u(n, r) ≤ 1.

Let ε > 0 be a given specified error tolerance and N be defined as

N = min

{
n ∈ N

∣∣∣∣∣
n∑

j=0

e−νt (νt)j

j!
≥ 1 − ε

}
. (10)

Then we obtain

E(Y (t)r) =

N∑
n=0

e−νt (νt)n

n!
u(n, r) + e(N),

Irisa
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where the remainder of the series e(N) verifies

0 ≤ e(N) =

∞∑
n=N+1

e−νt (νt)n

n!
u(n, r) ≤

∞∑
n=N+1

e−νt (νt)n

n!
= 1 −

N∑
n=0

e−νt (νt)n

n!
≤ ε.

The computation of integer N can be made without any numerical problems even for large
values of νt by using the method described in [1].

The truncation level N is in fact a function of t, say N(t). For a fixed value of ε, N(t) is an
increasing function of t. It follows that if we want to compute E(Y (t)r) for J distinct values
of t, denoted by t1 < · · · < tJ , we only need to compute u(n, r) for n = 1, . . . , N(tJ ) since the
values of u(n, r) are independent of the parameter t.

The pseudo code of the uniformization method can then be written as follows.

input : ε, t1 < · · · < tJ , R
output : E(Y (tj)

r) for j = 1, . . . , J and r = 1, . . . , R
Compute N from Relation (10) with t = tJ
for r = 0 to R do

U(0, r) = Dr
1

u(0, r) = αU(0, r)
endfor
for n = 1 to N do

U(n, 0) = 1

for r = 1 to R do

U(n, r) =
n

n + r
PU(n − 1, r) +

r

n + r
DU(n, r − 1)

u(n, r) = αU(n, r)
endfor

endfor
for j = 1 to J do

for r = 1 to R do

E(Y (tj)
r) =

N∑
n=0

e−νtj
(νtj)

n

n!
u(n, r)

endfor
endfor

Table 1: Algorithm for the computation of E(Y (t)r).

3 Stationarity detection

We consider in this section the sequence of column vectors U(n, r) and we show that it converges
when n tends to infinity. This allows us to stop the computation of the U(n, r) as soon as
they are close enough to their limit. In the following theorem, we express the vectors U(n, r)
recursively over index r. This recursive expression will be used in Theorem 4 to prove the
convergence of the sequence U(n, r).

PI n˚1869



8 François Castella, Guillaume Dujardin & Bruno Sericola

Theorem 3. For every n ≥ 0 and r ≥ 1,

U(n, r) =
1(

n + r

r

) n∑
`=0

(
` + r − 1

r − 1

)
P n−`DU(`, r − 1). (11)

Proof. We prove this relation by recurrence over index n. For n = 0, this relation gives
U(0, r) = DU(0, r − 1). This leads to U(0, r) = DrU(0, 0) = Dr

1, which is relation (7).
Suppose that relation (11) is true for integer n. We have to show that

U(n + 1, r) =
1(

n + 1 + r

r

) n+1∑
`=0

(
` + r − 1

r − 1

)
P n+1−`DU(`, r − 1).

From relation (9) and using the recurrence hypothesis, we have

U(n + 1, r) =
n + 1

n + 1 + r
PU(n, r) +

r

n + 1 + r
DU(n + 1, r − 1)

=
n + 1

(n + 1 + r)

(
n + r

r

) n∑
`=0

(
` + r − 1

r − 1

)
P n+1−`DU(`, r − 1)

+
r

n + 1 + r
DU(n + 1, r − 1)

=
1(

n + 1 + r

r

) n∑
`=0

(
` + r − 1

r − 1

)
P n+1−`DU(`, r − 1)

+
r

n + 1 + r
DU(n + 1, r − 1)

=
1(

n + 1 + r

r

) n+1∑
`=0

(
` + r − 1

r − 1

)
P n+1−`DU(`, r − 1),

which is the desired result.

We denote by π the stationary probability distribution of the Markov chain X. This row
vector satisfies πA = 0 or equivalently π = πP .

Theorem 4. For every r ≥ 0, we have

lim
n−→∞

U(n, r) = (πD1)r
1. (12)

Proof. We proceed by recurrence over integer r. The result is true for r = 0, since we have
U(n, 0) = 1.

Suppose the result is true for integer r − 1, i.e. suppose that limn−→∞ U(n, r − 1) =
(πD1)r−1

1.
Let us define

β(n, `) =

(
` + r − 1

r − 1

)
(

n + r

r

) , H(`) = P `D, U(`) = U(`, r − 1), and V (n) = U(n, r).
Irisa
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We have β(n, `) ≥ 0 and
n∑

`=0

β(n, `) = 1,

and, since the sequence β(n, `) is increasing with `,

lim
n−→∞

sup
0≤`≤n

β(n, `) = lim
n−→∞

β(n, n) = lim
n−→∞

r + 1

n + r + 1
= 0.

To ensure the convergence of the sequence of matrices P n, we require either that the output
rates −Q(i, i), i ∈ S, of the Markov chain X are not all equal or that the uniformization rate ν
is such that ν > max{−Q(i, i), i ∈ S}. This guarantees that the transition probability matrix
P is aperiodic which means that it is ergodic and thus, we have

H = lim
`−→∞

H(`) = ΠD,

where Π is the matrix with all its lines equal to π. By using the recurrence hypothesis, we get

U = lim
`−→∞

U(`) = (πD1)r−1
1 = (ΠD)r−1

1.

From relation (11) and by using Lemma 10, we get

lim
n−→∞

U(n, r) = lim
n−→∞

V (n) = ΠD(ΠD)r−1
1 = (ΠD)r

1 = (πD1)r
1,

which completes the proof.

Using this result, the algorithm of Table 1 can be modified as follows to take into account
the convergence of the sequence U(n, r) and thus of the sequence u(n, r). In order to do that
we consider that we make the following assumption, which is satisfied in practice.

if ∃ K < N s. t. max
r≤R

|u(K, r) − (πD1)r| ≤ ε then ∀n ≥ K, max
r≤R

|u(n, r) − (πD1)r| ≤ ε.

If such a K does not exist, there is no stationarity detection and we come back to the previous
algorithm. Such a situation means that the value of N is not large and neither is the value of
tJ . If such a K exists, we have

E(Y (t)r) =
K∑

n=0

e−νt (νt)n

n!
u(n, r) + (πD1)r

(
1 −

K∑
n=0

e−νt (νt)n

n!

)
+ e1(K),

where the remainder of the series e1(K) verifies

|e1(K)| =

∣∣∣∣∣
∞∑

n=K+1

e−νt (νt)n

n!
(u(n, r) − (πD1)r)

∣∣∣∣∣ ≤
∞∑

n=K+1

e−νt (νt)n

n!
|u(n, r) − (πD1)r| ≤ ε.

We obtain the following algorithm, in which we suppose that πD1 has been computed before-
hand.

PI n˚1869



10 François Castella, Guillaume Dujardin & Bruno Sericola

input : ε, t1 < · · · < tJ , R
output : E(Y (tj)

r) for j = 1, . . . , J and r = 1, . . . , R
Compute N from Relation (10) with t = tJ
for r = 0 to R do

U(0, r) = Dr
1

u(0, r) = αU(0, r)
endfor
K = N
for n = 1 to N do

U(n, 0) = 1

for r = 1 to R do

U(n, r) =
n

n + r
PU(n − 1, r) +

r

n + r
DU(n, r − 1)

u(n, r) = αU(n, r)
endfor
if |u(n, r) − (πD1)r| ≤ ε for every r = 1, . . . , R then

K = n
break

endif
endfor
for j = 1 to J do

if K = N then
for r = 1 to R do

E(Y (tj)
r) =

N∑
n=0

e−νtj
(νtj)

n

n!
u(n, r)

endfor
endif
if K < N then

for r = 1 to R do

E(Y (tj)
r) =

K∑
n=0

e−νtj
(νtj)

n

n!
u(n, r) + (πD1)r

(
1 −

K∑
n=0

e−νtj
(νtj)

n

n!

)

endfor
endif

endfor

Table 2: Algorithm for the computation of E(Y (t)r) using stationarity detection.

The following section is devoted to probabilistic interpretations of the sequence U(n, r).

4 Probabilistic interpretation

In the following theorem, we obtain an explicit expression of the column vectors U(n, r) using
the matrices P and D.

Irisa



Moments analysis in Markov reward models 11

Theorem 5. For every n ≥ 0 and r ≥ 1, we have

U(n, r) =
1(

n + r

r

) n∑
`1=0

P n−`1D

`1∑
`2=0

P `1−`2D · · ·
`r−2∑

`r−1=0

P `r−2−`r−1D

`r−1∑
`r=0

P `rD1. (13)

Proof. For r = 1, the expression (13) reads

U(n, 1) =
1

n + 1

n∑
`1=0

P `1D1,

which is obtained by (11) and (8).
Suppose that relation (13) is true for integer r − 1, i.e. suppose that, for every `1 ≥ 0,

U(`1, r − 1) =
1(

`1 + r − 1

`1 − 1

) `1∑
`2=0

P `1−`2D

`2∑
`3=0

P `2−`3D · · ·
`r−2∑

`r−1=0

P `r−2−`r−1D

`r−1∑
`r=0

P `rD1.

Using relation (11), we obtain directly (13).

The first interpretation of the U(n, r) we obtain is given by the following theorem.

Theorem 6. For every n ≥ 0, r ≥ 1 and i ∈ S, we have

Ui(n, r) =
1(

n + r

r

)E


 n∑

`1=0

d(Z`1)

n∑
`2=`1

d(Z`2) · · ·
n∑

`r−1=`r−2

d(Z`r−1)

n∑
`r=`r−1

d(Z`r)
∣∣∣Z0 = i


 .

(14)

Proof. The relation is true for r = 1 since the right hand side becomes

1

n + 1
E

(
n∑

`1=0

d(Z`1)
∣∣∣Z0 = i

)
=

1

n + 1

n∑
`1=0

E (d(Z`1)|Z0 = i)

=
1

n + 1

n∑
`1=0

∑
j∈S

P `1
i,jdj

=
1

n + 1

n∑
`1=0

(P `1D1)i

= Ui(n, 1).

Suppose that the relation is true for integer r − 1; i.e. that

Ui(n, r − 1) =

E


 n∑

`1=0

d(Z`1)

n∑
`2=`1

d(Z`2) · · ·
n∑

`r−2=`r−3

d(Z`r−2)

n∑
`r−1=`r−2

d(Z`r−1)
∣∣∣Z0 = i




(
n + r − 1

r − 1

) .

PI n˚1869



12 François Castella, Guillaume Dujardin & Bruno Sericola

We then have

E


 n∑

`1=0

d(Z`1)

n∑
`2=`1

d(Z`2) · · ·
n∑

`r−1=`r−2

d(Z`r−1)

n∑
`r=`r−1

d(Z`r)
∣∣∣Z0 = i




=
∑
j∈S

E


 n∑

`1=0

d(Z`1)

n∑
`2=`1

d(Z`2) · · ·
n∑

`r−1=`r−2

d(Z`r−1)

n∑
`r=`r−1

d(Z`r)
∣∣∣Z`1 = j, Z0 = i


P `1

i,j

=
n∑

`1=0

∑
j∈S

P `1
i,jd(j)E


 n∑

`2=`1

d(Z`2) · · ·
n∑

`r−1=`r−2

d(Z`r−1)
n∑

`r=`r−1

d(Z`r)
∣∣∣Z`1 = j, Z0 = i




=
n∑

`1=0

∑
j∈S

P `1
i,jd(j)E


 n∑

`2=`1

d(Z`2) · · ·
n∑

`r−1=`r−2

d(Z`r−1)
n∑

`r=`r−1

d(Z`r)
∣∣∣Z`1 = j




=
n∑

`1=0

∑
j∈S

P `1
i,jd(j)E


n−`1∑

`2=0

d(Z`2) · · ·
n−`1∑

`r−1=`r−2

d(Z`r−1)

n−`1∑
`r=`r−1

d(Z`r)
∣∣∣Z0 = j




=

n∑
`1=0

∑
j∈S

P `1
i,jd(j)

(
n − `1 + r − 1

r − 1

)
Uj(n − `1, r − 1)

=

n∑
`1=0

(
`1 + r − 1

r − 1

)∑
j∈S

P n−`1
i,j d(j)Uj(`1, r − 1)

=

n∑
`1=0

(
`1 + r − 1

r − 1

)
(P n−`1DU(`1, r − 1))i

=

(
n + r

r

)
Ui(n, r),

which completes the proof. Note that the third equality follows from the Markov property, the
fourth equality follows from the homogeneity of the Markov chain {Z}, the fifth one follows
from the recurrence hypothesis and the last one is relation (11).

Clearly, for r = 1, Ui(n, 1) is the expectation of of the number of visits to each state i
during the n first transitions, weighted by the reward d(i), averaged by n+1. For r ≥ 2, such a
simple interpretation of Ui(n, r) is not at hand. The remainder part of this section is devoted to
establishing another way to obtain a probabilistic interpretation of Ui(n, r). The two following
lemmas will be used to prove Theorem 9.

Lemma 7. For every t ≥ 0, we have∫ t

0

(t − u)`undu =
tn+`+1

(n + ` + 1)

(
n + `

`

) .

Proof. Let I(n, `) denote the integral in the right hand side. Using an integration by parts,
we obtain

I(n, `) =
n

` + 1
I(n − 1, ` + 1).

Irisa



Moments analysis in Markov reward models 13

This leads to

I(n, `) =

(
n + `

`

)
I(0, n + `) =

(
n + `

`

)
tn+`+1

n + ` + 1
,

which completes the proof.

We define Gi(t, n, r) = E(Y (t)r|Nt = n, X0 = i).

Lemma 8. For every t ≥ 0, n ≥ 1, r ≥ 0 and i ∈ S, we have

Gi(t, n, r) =
n

tn+r

r∑
`=0

(
r

`

)
d(i)`

∑
j∈S

pi,j

∫ t

0

(t − u)`un+r−`−1Gj(u, n − 1, r − `)du.

Proof. We introduce the quantity Vi(t, n, r) = E(Y (t)r1{Nt=n}|X0 = i). Let T1 be the sojourn
time in the initial state. Using a renewal argument, we have

Vi(t, n, r)

= E(Y (t)r1{Nt=n}|X0 = i)

=

∫ t

0

∑
j∈S

pi,jE(Y (t)r1{Nt=n}|Xu = j, T1 = u, X0 = i)νe−νudu

=

∫ t

0

∑
j∈S

pi,jE

([
fiu +

∫ t

u

f(Xs)ds

]r

1{Nt−Nu=n−1}|Xu = j, T1 = u, X0 = i

)
νe−νudu

=

∫ t

0

∑
j∈S

pi,jE

([
fiu +

∫ t

u

f(Xs)ds

]r

1{Nt−Nu=n−1}
∣∣∣Xu = j

)
νe−νudu

=

∫ t

0

∑
j∈S

pi,jE
(
[fiu + Y (t − u)]r 1{Nt−Nu=n−1}|Xu = j

)
νe−νudu

=

∫ t

0

∑
j∈S

pi,jE
(
[fiu + Y (t − u)]r 1{Nt−u=n−1}|X0 = j

)
νe−νudu

=

r∑
`=0

(
r

`

)
f(i)`

∑
j∈S

pi,j

∫ t

0

u`E
(
Y (t − u)r−`1{Nt−u=n−1}|X0 = j

)
νe−νudu

=

r∑
`=0

(
r

`

)
f(i)`

∑
j∈S

pi,j

∫ t

0

u`Vj(t − u, n − 1, r − `)νe−νudu.

Unconditioning on the number of transitions during (0, t), we get

Gi(t, n, r) =
n!Vi(t, n, r)

f rtre−νt(νt)n
,

and thus

Gi(t, n, r) =
n

tn+r

r∑
`=0

(
r

`

)
d(i)`

∑
j∈S

pi,j

∫ t

0

u`(t − u)n+r−`−1Gj(t − u, n − 1, r − `)du

=
n

tn+r

r∑
`=0

(
r

`

)
d(i)`

∑
j∈S

pi,j

∫ t

0

(t − u)`un+r−`−1Gj(u, n − 1, r − `)du,

which completes the proof.
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The following theorem gives a clearer interpretation of Ui(n, r) in terms of the normalized
accumulated reward Y (t) and of the Poisson process Nt.

Theorem 9. For every n ≥ 0, r ≥ 0, i ∈ S and t ≥ 0, we have

Ui(n, r) = E(Y (t)r|Nt = n, X0 = i). (15)

Proof. Conditioning on Nt, we have

E(Y (t)r|X0 = i) =
∞∑

n=0

e−νt (νt)n

n!
E(Y (t)r|Nt = n, X0 = i),

and from (6), we have

E(Y (t)r|X0 = i) =

∞∑
n=0

e−νt (νt)n

n!
Ui(n, r).

So, to prove the theorem, we just have to show that E(Y (t)r|Nt = n, X0 = i) is independent of
t. We proceed by recurrence over index n.

For n = 0, we have E(Y (t)r|Nt = 0, X0 = i) = d(i)r since Y (t) = f(i)t when Nt = 0 and
X0 = i.

Suppose that Ui(n−1, r) = E(Y (t)r|Nt = n−1, X0 = i). Using this hypothesis and Lemma
8, we obtain

Gi(t, n, r) =
n

tn+r

r∑
`=0

(
r

`

)
d(i)`

∑
j∈S

pi,jUj(n − 1, r − `)

∫ t

0

(t − u)`un+r−`−1du.

Using now Lemma 7, we obtain

Gi(t, n, r) =
n

tn+r

r∑
`=0

(
r

`

)
d(i)`

∑
j∈S

pi,jUj(n − 1, r − `)

∫ t

0

(t − u)`un+r−`−1du

=
n

n + r

r∑
`=0

(
r

`

)
d(i)`

(
n − 1 + r

`

)∑
j∈S

pi,jUj(n − 1, r − `),

which is independent of t.

It is worthwhile noting that the moments of the normalized accumulated reward Y (t), given
the number of transitions over (0, t) in the uniformized process, are independent of t.

In the next section, we present some numerical experiments to show the importance of the
stationarity detection in the reduction of the computational time of the moments E(Y (t)r).

5 Numerical example

We consider a fault-tolerant multiprocessor system which consists of n identical processors and
b buffer stages. Processors fail independently at rate λ and are repaired singly with rate µ.
Buffers stages fail independently at rate γ and are repaired with rate τ . Processor failures cause
a graceful degradation of the system and the number of operational processors is decreased by

Irisa



Moments analysis in Markov reward models 15

one. The system is in a failed state when all the processors have failed or any of the buffer
stages has failed. No additional processor failures are assumed to occur when the system is in
a failed state. The model is represented by a Markov process with state transition diagram
shown in Figure 1. The state space of the system is S = {(i, j); 0 ≤ i ≤ n, j = 0, 1}. The
component i of a state (i, j) means that there are i operational processors and the component
j is zero if any of the buffer stages has failed, otherwise it is one. It follows that the set U of
operational states is U = {(i, 1); 1 ≤ i ≤ n}. The reward structure we choose here is given by
f(i) = 1 if i ∈ U and f(i) = 0 otherwise. We suppose that the initial state of the system is
state (n, 1). The number of processors is fixed to 16, each with a failure rate λ = 0.00006 per
hour and a repair rate µ = 0.1666 per hour. The number of buffer stages is fixed to 1024, each
with a failure rate γ = 0.00131 per hour and a repair rate τ = 0.1666 per hour. The error
tolerance is ε = 0.00001.

1,1 0,1

λ

ττττ γγγ bbbγb

µµµµ

µµµµ

λλ2

n,1 n-1,1

n,0 0,0

(n-1)

n-1,0 1,0

λn

Figure 1: State-transition diagram for a n-processor system.

In Figure 2, we plot the first five moments Y (t), as a function of t.
Let us now consider higher values of t. Solving the linear system πA = 0 with π1 = 1, we

obtain πD1 = 0.110475. The complexities of the two algorithms in Table 1 and Table 2 are
mainly due to the products of matrix P by vector U(n − 1, r). The number of such products
is equal to NR for the algorithm of Table 1 and it is equal to KR, with K ≤ N , for the
algorithm of Table 2. We show in Figure 3, the values of K and N obtained when R = 5, for
different values of t = tJ . As expected the value of N = N(tJ) increases with tJ and the value
of K constant after the first instant where K < N . This instant which we denote by Tε, does
dependent on ε, and may be called the time to stationarity. It is defined as

Tε = inf{t ≥ 0|K < N(t)}.

In our example, it is between 50000 and 60000. A more detailed analysis shows that dTεe =
55482.

t 50000 60000 70000 80000 90000 100000

N 76621 91823 107015 122200 137379 152154
K 76621 84955 84955 84955 84955 84955

Figure 3: Stationarity detection for different values of t when R = 5.
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Figure 2: From top to the bottom: E(Y (t)r) for r = 1, 2, 3, 4, 5.

Appendix

Let β(n, `), for n ≥ 0 and 0 ≤ ` ≤ n, be real numbers, H(`) be a sequence of matrices and
U(`) be a sequence of column vectors with the same finite dimension We define the sequence
of column vectors V (n) by

V (n) =

n∑
`=0

β(n, `)H(n − `)U(`).

We have the following result.

Lemma 10. Assume that

β(n, `) ≥ 0,

n∑
`=0

β(n, `) = 1, lim
n−→∞

sup
0≤`≤n

β(n, `) = 0, lim
`−→∞

H(`) = H and lim
`−→∞

U(`) = U

then
lim

n−→∞
V (n) = HU.

Proof. The convergence of the sequences H(`) and U(`) implies that both sequences are
uniformly bounded, i.e. there exists an integer M such that, for every ` ≥ 0,

‖H(`)‖ ≤ M and ‖U(`)‖ ≤ M.

Moreover, their convergence implies that for any ε > 0, there exists L such that for any `, m ≥ L,
we have

‖H(m) − H‖ + ‖U(`) − U‖ ≤ ε

2M
.
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As a consequence, for n ≥ 2L, we recover

‖V (n) − HU‖ =

∥∥∥∥∥
n∑

`=0

β(n, `)H(n − `)U(`) − HU

∥∥∥∥∥
=

∥∥∥∥∥
n∑

`=0

β(n, `)[H(n − `)U(`) − HU ]

∥∥∥∥∥
≤

∥∥∥∥∥
L−1∑
`=0

β(n, `)[H(n − `)U(`) − HU ]

∥∥∥∥∥+

∥∥∥∥∥
n−L∑
`=L

β(n, `)[H(n − `)U(`) − HU ]

∥∥∥∥∥
+

∥∥∥∥∥
n∑

`=n−L+1

β(n, `)[H(n − `)U(`) − HU ]

∥∥∥∥∥ .

We start with the second term. Since L ≤ ` ≤ n − L, we have ` ≥ L and n − ` ≥ L, we can
write

‖H(n − `)U(`) − HU‖ = ‖[H(n − `) − H ]U(`) + H [U(`) − U ]‖
≤ ‖H(n − `) − H‖ ‖U(`)‖ + ‖H‖ ‖U(`) − U‖
≤ M (‖H(n − `) − H‖ + ‖U(`) − U‖) ≤ ε

2
.

We thus have∥∥∥∥∥
n−L∑
`=L

β(n, `)[H(n − `)U(`) − HU ]

∥∥∥∥∥ ≤
n−L∑
`=L

β(n, `) ‖H(n − `)U(`) − HU‖

≤ ε

2

n−L∑
`=L

β(n, `) ≤ ε

2
.

Concerning the first and the third terms, we use the fact that, for every 0 ≤ ` ≤ n, we have

‖H(n − `)U(`) − HU‖ = ‖H(n − `)U(`)‖ + ‖HU‖ ≤ ‖H(n − `)‖ ‖U(`)‖ + ‖H‖ ‖U‖ ≤ 2M2.

Let us define the sequence β(n) = sup0≤`≤n β(n, `). Since, by hypothesis, β(n) converges to 0
when n goes towards infinity and since L is fixed, we can determine N such that for any n ≥ N ,
we have β(n) ≤ ε/(8M2L).

We then have∥∥∥∥∥
L−1∑
`=0

β(n, `)[H(n − `)U(`) − HU ]

∥∥∥∥∥+

∥∥∥∥∥
n∑

`=n−L+1

β(n, `)[H(n − `)U(`) − HU ]

∥∥∥∥∥
≤

L−1∑
`=0

β(n, `) ‖H(n − `)U(`) − HU ]‖ +
n∑

`=n−L+1

β(n, `) ‖H(n − `)U(`) − HU ]‖

≤ 2M2

(
L−1∑
`=0

β(n, `) +

n∑
`=n−L+1

β(n, `)

)
≤ 4M2Lβ(n) ≤ ε

2
.

Putting together these two results, we obtain for every n ≥ max(2L, N),

‖V (n) − HU‖ ≤ ε,

which completes the proof.
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