
HAL Id: inria-00186963
https://hal.inria.fr/inria-00186963v2

Submitted on 13 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ASPfun: A Functional and Distributed Object Calculus
Semantics, Type-system, and Formalization

Ludovic Henrio, Florian Kammüller, Henry Sudhof

To cite this version:
Ludovic Henrio, Florian Kammüller, Henry Sudhof. ASPfun: A Functional and Distributed Object
Calculus Semantics, Type-system, and Formalization. [Research Report] RR-6353, INRIA. 2007,
pp.18. �inria-00186963v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50348903?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00186963v2
https://hal.archives-ouvertes.fr

appor t
de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
63

53
--

F
R

+
E

N
G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

ASPfun:
A Functional and Distributed Object Calculus

Semantics, Type-system, and Formalization

Ludovic Henrio — Florian Kammüller — Henry Sudhof

N° 6353

November 2007

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

ASPfun:

A Functional and Distributed Object Calculus

Semantics, Type-system, and Formalization

Ludovic Henrio∗ , Florian Kammüller† , Henry Sudhof†

Thème COM — Systèmes communicants
Projet Oasis

Rapport de recherche n
�

6353 — November 2007 — 18 pages

Abstract: Several paradigms exist for distributed computing, this paper tries
to provide a sound foundation for autonomous objects communicating in a very
structured way. We define ASPfun, a calculus of functional objects, behaving
autonomously, and communicating by a request-reply mechanism: requests are
method calls handled asynchronously, futures represent awaited results for re-
quests, and replies return the result of a request to an object that holds the
corresponding future.

This report first presents the ASPfun calculus and its semantics. Secondly we
provide a type system for ASPfun, which ensure the “progress” property: while
there is a request that is not reduced to a value, the computation can continue.
ASPfun and its properties have been formalized and proved using the Isabelle
theorem prover.

Key-words: Object calculus, futures, active objects, typing, theorem proving

∗ CNRS – I3S – INRIA, Sophia-Antipolis
† Technische Universität Berlin

ASPfun:

Un calcul d’objets fonctionnel et distribué

Semantique, typage, et formalisation

Résumé : Ce rapport présente un calcul d’objet distribué et sans dead-locks.
Ce calcul repose sur un modèle à objets actifs, utilise la notion de futurs, et
d’appel de méthode asynchrone entre objets actifs. Ce dosument présente aussi
un système de types pour ce calcul. Le calcul, son système de type et ses pro-
priétés ont été formaisés et démontrés dans l’assistant de preuve Isabelle/HOL

Mots-clés : Calculs d’objets, distribution, futurs, objets actifs, typage,
preuves formelles

ASPfun 3

1 Introduction

We present here a formalisation of a functional active object language, featuring
first class futures: objects are distributed into several activities; communications
toward activities are asynchronous (remote) method calls; and futures are iden-
tifiers for the result of such asynchronous invocations. We call those futures
“first class” because they can be transmitted between activities as any object.

Several distributed frameworks rely on some form of distributed objects and
actors. Indeed, from the original actor paradigm [3], several languages have
been designed. Some languages directly feature distributed active objects, like
the ProActive library. Also several massively used distributed paradigms like
Workflows, Web-Services, . . . rely on some functional distributed objects/actors.
In this work we aim at a formalization helpful for the understanding of these
frameworks, and of the benefits brought by futures to these distributed lan-
guages.

Typing is a deeply studied technique for guaranteeing properties of programs
[17]. This paper proves a classical typing properties: progress, in an unusual
setting: distributed active objects.

We also believe that the formalisation of such a calculus in a theorem prover
will be helpful in the future design of distributed languages, and can provide
a reliable basis for proofs using paradigms such as distributed objects, futures,
remote method invocations, actors or active objects.

To our mind, the main contributions of this paper are the following:

� A functional active object calculus with futures,

� A proposal for a type-system for active object languages,

� An investigation on how to provide a dead-lock free calculus featuring
mono-threaded active objects and futures,

� A formalisation of those features in a theorem prover, that we expect re-
usable for investigating about futures, typing, or active objects paradigms.

This document is organized as follows. First based on a precise review on
existing distributed languages and calculi, and their formalisation, we explain
more precisely the objectives of this paper. Then Section 3 presents ASPfun

and its operational semantics. Section 4 provides a type system for ASPfun,
featuring two classical properties: subject-reduction and progress, implying the
absence of dead-locks in the calculus. These properties have been proved using
the Isabelle theorem prover as explained in Section 5.

2 Background and Objectives

It is not the purpose of this article to make an extensive review of concurrent cal-
culi and languages, we focus here on the ones that to our mind better illustrate
the impact of ASPfun.

Actors [3] is a relatively widely used paradigm for distributed autonomous
entities, and their interactions by messages. They are rather functional entities
but their behaviour can be changed dynamically, giving them a state.

RR n
�

6353

4 Henrio, Kammüller, and Sudhof

Futures have been studied several times in the programming languages lit-
erature, originally appearing in Multilisp [11] and ABCL [19]. Futures have
been formalised in several settings, generally functional-based [15, 8, 10]; those
developments rely on explicit creation of futures (via a future, or a thread cre-
ation primitive) in a concurrent but not distributed setting. ASP [4, 5] on the
contrary is distribution oriented by the fact that there is no shared memory, and
futures are created transparently upon a remote method invocation; moreover,
ASP is based on an imperative object calculus: the ςimp-calculus [1]. Explicit
creation of futures are also features by the Java language for example.

This paper presents a complementary calculus to the preceding ones: a func-
tional distributed object calculus with transparent futures. These futures can be
passed around between different locations in a much transparent way; thanks
to its functional nature, this calculus is deadlock free because a future can be
returned before the end of its computation. However, the semantics of the cal-
culus had to be carefully written in order to avoid operations that have a side
effect.

More recently, in [7, 9], the authors suggest a communication model, called
AmbientTalk, based on an actor-like language but with several queues for both
sending and receiving messages whenever possible, i.e. whenever connected.
Their communication model is quite similar to the ASP calculus presented in
[5], but with queues for message sending, handlers invoked asynchronously and
automatic asynchronous calls on futures; the resulting programming model is
slightly different from ASP because there is no blocking synchronization in Am-
bientTalk. This programming model seems particularly adapted to loosely cou-
pled small devices communicating over an ad-hoc network.

One contribution of this work is the formalization of the entire language, its
semantics and type system plus the proof of safety and progress in an interactive
theorem prover. We believe that in the disicipline of language development the
application of mechanical verification is particularly relevant even if it comes
at the prize of intensive and partly cumbersome work. Related works from
the viewpoint of mechanized verification of related languages is Ciaffaglione’s,
Liquori’s, and Miculan’s formalization of the imperative extension of the ς-
calculus in the theorem prover Coq most prominently using a coinductive def-
inition and higher order abstract syntax [6]. However, they do not consider
concurrency or distribution. With respect to concurrency, the formalization of
the π-calculus in Isabelle/HOL by Roeckl is related. There, again higher order
abstract syntax is employed. However, no objects are introduced. Ridge works
on a formalization of concurrent OCaml in Isabelle/HOL. However, he concen-
trates on concurrency using abstraction techniques to improve automization of
concrete algorithm proofs, and has not formalized objects at all.

What is new here is distribution. Not even considering the unusually high
quality achieved by full mechanization, the originality of our approach lies in its
distribution primitives.

Earlier work on a calculus of distributed objects is Jeffrey’s calculus [13]. Jef-
frey bases his distributed object calculus on Gordon and Hankin’s concurrent
object calculus by adding explicit locations in his extension. His main objective
is to avoid configurations where one object at one location is being accessed by
another. He enforces these restrictions by a type system. Apparently, already
preservation is very diffcult to achieve because migrating objects can carry re-
mote calls. By introducing serializable objects and corresponding types Jeffrey

INRIA

ASPfun 5

finally arrives at a calculus and type system with subject reduction. Interest-
ingly serializable objects are non-imperative. Compared to our calculus the
most decisive difference is that we do not consider locations instead activities.
The concept of futures explicitly supports remote access. In ASPfun activities
are all non-imperative, thus directly implementing the idea of serialization.

3 ASPfun: A Functional Active Object Calculus

3.1 Prerequisite: The ς-calculus

The Theory of Objects consists in various ς-calculi that only consider objects
and their manipulation as primitive [2]. The kernel calculus on which ASPfun

relies includes object definition, method invocation, and method override. An
object consists of a set of labelled methods. A method is a function with one
formal parameter that represents self, i.e., the object in which the method is
contained. The ς-calculus relies on the following syntax.

a, b ::= [lj = ς(xj)bj]
j∈1..n object definition

| a.li (i ∈ 1..n) method call
| a.li := ς(x)b (i ∈ 1..n) update

Object fields are not defined as they are considered as degenerate methods
not using the self parameter. Therefore selection of a field or invocation (call) of
a method are identical. Sigma calculus terms are identified modulo renaming of
variables (α-conversion). For a better integration with the distributed calculus,
we choose a small-step semantics (→ς) for the ς-calculus as follows.

call

li ∈ {lj}
j∈1..n

E
[

[lj = ς(xj)bj]
j∈1..n.li

]

→ς E [bi{xi ← o}]

update

li ∈ {lj}
j∈1..n

E
[

[lj = ς(xj)bj]
j∈1..n.li := ς(x)b

]

→ς E
[

[li = ς(x)b, lj = ς(xj)b
j∈(1..n)−{i}
j]

]

In this semantics E[t] denotes any term that contains the expression t. The
term E is a term containing a single hole (•), and E[t] is the term obtained by
replacing the single hole by t.

E ::= • | [li = ς(x)E, lj = ς(xj)b
j∈(1..n)−{i}
j] |E.li |E.li := ς(x)a | a.li := ς(x)E

3.2 Syntax

Like in ASP, one of the basic principle of ASPfun is to perform a minimal
extension of the syntax of ς-calculus. ASPfun programs only use one additional
primitive, Active, for creating an active object. The syntax for ASPfun is:

a, b ::= [lj = ς(xj)bj]
j∈1..n object definition

| a.li (i ∈ 1..n) method call
| a.li := ς(x)b (i ∈ 1..n) update
| Active(a) Active object creation

RR n
�

6353

6 Henrio, Kammüller, and Sudhof

3.3 Informal Semantics

Informally, an active object is an object (ς-calculus term) in a location. Acti-
vating an object, Active(a), means creating a new location with the object to
be activated, a becomes an active object. An activity consist in such a location
and contains an active object, and a set of tasks to be performed, this set of
tasks is called request queue. Upon creation of the activity, the request queue is
empty.

Every message sent toward this location is a method call to the activated ob-
ject, such a remote method invocation is asynchronous: the effect of this method
call is both to create a new request in the request queue of the destination and
to replace the original method invocation by a reference to the result of the
created request. Such a promised reply is called a future. in ASPfun, futures are
objects that can be passed to other objects, other requests, and other activities;
several activities may have a reference to the same future. Trying to access to
the content of a future (e.g. invoking a method on it) is a blocking operation,
but any request value (even partially evaluated) can be returned: the value of
the request replaces a reference to the corresponding future. This operation is
called a reply, and allowing replies with a partially evaluated term avoids having
deadlocks on future access.

ASPfun is a highly concurrent language where reductions can occur any-
where, in any request of any activity. The only restriction on the reduction is
that it is impossible for an object to be sent to another activity (e.g. an activity
creation) if this object has free variables. It is difficult to give a natural se-
mantics to the update of an active object, however, the functional nature of the
calculus (updating an object creates a copy) oriented us toward the following
semantics: a method update on an active object creates a new activity with the
method updated.

Proving the deterministic nature of the calculus is out of the scope of this
paper. Informally, depending on the execution the set of created activities and
the number of requests may vary, however the result of the computation is
always the same.

For example, evaluating Active([l = ς(x).a]).l) will first create an activity
with the object [l = ς(x).a], then perform a remote invocation on the method l
of this activity (which creates a future), and finally reply by replacing the future
by the result of the invocation: the term a (possibly partially evaluated).

Practically, implementing strictly the semantics presented here is not very
reasonable, because of its high concurrency, and the inefficiency of some ex-
ecution path. However, we consider this work as a reliable basis for further
studies on stateless objects, and as an interesting proposal for a semantics for
autonomous interdependent entities, which in case they are stateless can be
implemented such that they are deadlock free.

3.4 Small-Step Operational Semantics

First of all, the semantics requires to define two new sets of identifiers (in ad-
dition to the labels of ς-calculus): the activities (α,β,. . .) and the futures (fi).
The semantics of ASPfun also necessitates to define some structures that will be
used for the dynamic reduction, first of all we define a configuration as a (un-
ordered) set of activities: a configuration is a mapping from activity identifiers

INRIA

ASPfun 7

to activities. each activity is composed of a request queue (mapping from future
identifiers to terms), and an active object (term). As futures are referenced from
anywhere, two requests must correspond to two different futures; here, unicity
is ensured by indexing them over disjoint families.

C ::= αi[(fj 7→sj)
j∈Ii , ti]

i∈1..p where {Ii} are disjoint subsets of N

We extended also the syntax for terms as dynamically, they may contain refer-
ences to activities and futures:

s, t ::= a Static term, as defined above
α active object reference
fi future reference

For simplicity of the reduction rules we let Q, R ::= (fij 7→sij)
j∈1..np range

over request queues and identify mapping modulo reordering; α[fi 7→si ::Q, b] ::
C is a configuration containing the activity α which contains a request fi 7→ai,
and α[Q, a] ∈ C means α is an activity of C with request queue Q and active
object a (α[Q, a] ∈ C ⇔ ∃C ′. C = α[Q, a] :: C ′). Moreover, ∅ is the empty
mapping, and dom(C) is the domain of the mapping C (i.e. the set of activities
it defines). noFV(s) is true if s has no free variables (the only binder being ς
this definition is classical and straightforward). →‖is the parallel reduction on
configuration defined in Table 1. We explain below each of the reduction rules:

�
local performs a local reduction inside an activity: one step of ς-calculus
reduction is performed on one request.

�
active creates an activity, the term passed as argument is the active
object, it must not have free variables, that would escape the scope of their
binder. The newly created activity must correspond to a fresh activity
identifier, i.e. α 6= γ and γ is not defined in C. The newly created activity
has an empty request queue, and the new activity identifier γ replaces the
invocation to the Active primitive.

�
request sends a request from an activity α to another activity β (by
construction α 6= β)). A new request is created at the destination, invoking
the method l on the active object (‘t′); fresh future fk is associated to this
request, and replaces the invocation on the sender side.

�
self-request is the particular case of the rule request where the des-
tination is the sender (α = β).

�
reply updates a future: it picks the request calculating a value for the
future fk, and sends the current request value s back to the sender (or any
other activity that refers to the future), this value may be any partially
evaluated term. Note that necessarily noFV (s) holds. The premise of the
inference rule avoids having to deal separately with the case where α = β.

�
update-AO updates a field of an active object t′. It creates a new activity
whom active object performs a (local) update on t′ (t′.l := ς(x)s).

RR n
�

6353

8 Henrio, Kammüller, and Sudhof

local

s→ς s′

α[fi 7→s ::Q, t] :: C →‖ α[fi 7→s′ ::Q, t] :: C

active

γ /∈ dom(C) ∪ {α} noFV(s)

α[fi 7→E[Active(s)] ::Q, t] :: C →‖ α[fi 7→E[γ] ::Q, t] :: γ[∅, s] :: C

request

fk fresh

α[fi 7→E[β.l] ::Q, t] :: β[R, t′] :: C →‖ α[fi 7→E[fk] ::Q, t] :: β[fk 7→t′.l ::R, t′] :: C

self-request

fk fresh

α[fi 7→E[α.l] ::Q, t] :: C →‖ α[fk 7→t.l :: fi 7→E[fk] ::Q, t] :: C

reply

β[fk 7→s ::R, t′] ∈ α[fi 7→E[fk] ::Q, t] :: C

α[fi 7→E[fk] ::Q, t] :: C →‖ α[fi 7→E[s] ::Q, t] :: C

update-AO

γ fresh noFV(ς(x)s) β[Q, t′] ∈ (α[fi 7→E[β.l := ς(x).s] :: Q, t] :: C)

α[fi 7→E[β.l := ς(x).s] :: Q, t] :: C →‖ α[fi 7→E[γ] :: Q, t] :: γ[∅, t′.l := ς(x).s] :: C

Table 1: ASPfun semantics

3.5 Well-formed Configuration

To prove basic correctness of the semantics, we define a well-formed configura-
tion as referencing only existing activities and futures.

Definition 1 (Well-formed configuration) A configuration C is well-formed,
denoted wf (C) if and only if for all α, fi, s, Q, and t:

α[fi 7→s ::Q, t] ∈ C ⇒
{

(∃E.(s=E(β) ∨ t=E(β))) ⇒ β ∈ dom(C)
(∃E.(s=E(fk) ∨ t=E(fk)))⇒ (∃ γ, R, t′. γ[R, t′]∈C ∧ fk∈dom(R))

And we prove that any reduction preserves well-formedness of configurations.

Property 1 (Reduction preserves well-formedness)

(s→‖ t ∧ wf (s)) ⇒ wf (t)

3.6 Initial Configuration

In most distributed languages, programmers do not write configurations, but
usual programs with additional primitives, this is reflected by the ASPfun syntax
given in Section 3.2. A “program” is a term a given by this static syntax. In

INRIA

ASPfun 9

order to be evaluated, this program must be placed in an initial configuration of
the form: α[f0 7→a, []]. Note that this configuration is necessarily well-formed,
and the activity α will never be accessible.

4 Typing Active Objects

This section provides a type-system for ASPfun. First, our objective is to design
a type-system for ASPfun, which involves typing the Active primitive, but also
type-checking an ASPfun configuration. Then, two questions arise: first, is the
type system correct, i.e. does it ensure subject reduction, second, is the type
system decidable. This second question is trivially answered in the ς-calculus
by typing all objects. Moreover the fact that the type system is formalised in
Isabelle/HOL (see Section 5) using only inductive definitions, implicitly proves
that there is an algorithm for deciding the typability relation: from any inductive
definition in Isabelle/HOL we can automatically generate executable ML-code.
But a type system is mainly interesting for the properties ensured. This one
guarantees type uniqueness, and well-formedness of configurations, and more
importantly progress (absence of dead-locks).

4.1 Type System for the ς-calculus

In this section we very briefly recall (a slightly adapted version of) the definition
of the simple type system that Abadi and Cardelli devised as Ob1 in [2].

Val x
x ∈ dom(T)

T ` x : T (x)

Object Formation

` Bi ∀i ∈ 1..n (li distinct)

T ` [li : B i∈1..n
i]

Type Object

xi :A :: T ` bi : Bi ∀i ∈ 1..n where A = [li : B i∈1..n
i]

T ` [li = ς(xi : A)b i∈1..n
i] : A

Type Call

T ` a : [li : B i∈1..n
i] ∀j ∈ 1..n

T ` a.lj : Bj

Type Update

T ` a : A x :A :: T ` b : Bj ∀j ∈ 1..n where A = [li : B i∈1..n
i]

T ` a.lj := ς(x : A)b : A

A and B range over types. The variable T represents a type environment con-
taining type assumptions for variables. A type environment is a mapping from
variables to types, its extension by an new assumption of x has type T is de-
noted by T :: x : A (which supposes x /∈ T); and rule Val x accesses to the
environment. The rule Object Formation ensures the correct formation of
object types. As an object type is a finite mapping from labels to types, the
rule only ensure the finiteness of each type. Type Object describes how an
object’s type is checked from its constituents: an object of type [li : B i∈i..n

i] is
formed from bodies bi of types Bi that may use the self parameter xi. When a

RR n
�

6353

10 Henrio, Kammüller, and Sudhof

method lj is invoked on an object a of type [li : B i∈i..n
i] the result a.lj has type

Bj (Type Call). Similarly an update of a method may take place in a position
lj of an object that has the right body type under the assumption of the self pa-
rameter (Type Update). In [2], additional rules ensure that the environment
is well-formed, we simplified it here by defining environment as a mapping, and
checking that added variables are fresh ones, possibly using equivalence modulo
renaming of variables.

4.2 A Type System for ASPfun

The type system for ASPfun is based on an inductive typing relation on ASPfun

terms. The typing rules for the ς-calculus can be adopted almost one to one
for ASPfun. The only difference is that In addition to typing of variables, we
need to add types for futures and activities. Thus, we integrate a pair of pa-
rameters 〈Γact, Γfut〉 in the assumptions of a typing statement, i.e. we write

〈Γact, Γfut〉, T ` x : A instead of just T ` x : A. These parameters consist of

a mapping Γact from activities to the type of their active object, and another
one Γfut from future identifiers to the type of the corresponding request value.

In a first step, we add to the four rules of the previous section (adorned with
the additional parameters) the following three rules for local typing of ASPfun.

Type Active

〈Γact, Γfut〉, T ` a : A

〈Γact, Γfut〉, T ` Active(a) : A

Type Activity Reference

β ∈ dom(Γact)

〈Γact, Γfut〉, T ` β : Γact(β)

Type Future Reference

fk ∈ dom(Γfut)

〈Γact, Γfut〉, T ` fk : Γfut(fk)

These first three rules ensure the use of only defined references with respect to an
environment, and define typing of the Active primitive. Next rule incorporates
into a configuration the local typing assertions.

Type Configuration

dom(Γact) = dom(C) dom(Γfut) =
⋃

{dom(Q) | ∃ α, a. α[Q, a] ∈ C}

∀α, Q, a, C ′. C =α[Q, a] ::C ′ ⇒

{

〈Γact, Γfut〉, ∅ ` a : Γact(α) ∧

∀ fi∈dom(Q). 〈Γact, Γfut〉, ∅ ` Q(fi) : Γfut(fi)

` C : 〈Γact, Γfut〉

This rule states that a configuration C has the configuration type 〈Γact, Γfut〉

if the following conditions hold. The activity names defined in the configuration
C and its activity type Γact are the same; the set of all future references defined
in an activity of C and in Γfut are the same. And, for any activity of C, its

active object a is well-typed with the typed defined in Γact for this activity,
and each request is well-typed with the typed defined in Γfut for the future

corresponding to this request. One could relate activity or future references to
reference types [17], but also to typing rules for futures [15].

As a first interesting property, each expression in ASPfun has a unique type.

INRIA

ASPfun 11

Theorem 1 (Unique Type)

〈Γact, Γfut〉, T ` a : A ∧ 〈Γact, Γfut〉, T ` a : A′ =⇒ A = A′

4.3 Subject Reduction

Subject reduction ensures that evaluation given by the reduction relation pre-
serves the typing relation. Therefore it is often also called preservation. We
prove subject reduction of ASPfun with respect to the type system given in the
previous section. In addition we prove that a well-typed term is well-formed.

We prove first the subject reduction property for the local reduction, i.e. for
the ς-calculus.

Proposition 1 (Local Subject Reduction)

〈Γact, Γfut〉, T ` t : A ∧ t→ς t′ ⇒ 〈Γact, Γfut〉, T ` t′ : A

Then, we prove subject reduction for the full typing relation of configurations.

Theorem 2 (Subject Reduction)

` C : 〈Γact, Γfut〉 ∧ C →‖ C ′ ⇒ ∃ Γ′
act, Γ

′
fut . ` C ′ : 〈Γ′

act, Γ
′
fut〉

Interestingly, we also prove that typing ensures well-formedness:

Proposition 2
` C : A⇒ wf (C)

4.4 Progress and Absence of Deadlocks

Finally we can prove progress for the type system. Progress states that any
expression of the language is either a value, i.e. cannot be evaluated any further,
or can be reduced. For ASPfun, we prove that either every request is a value

Theorem 3 (Progress)

` C : 〈Γact, Γfut〉 ∧ α[fi 7→a :: Q, t] ∈ C ⇒ isvalue(a) ∨ ∃ C ′ . C →‖ C ′

where isvalue(a) is true if a is either an object [li = ς(xi : A)bi∈1..n
i] or a

reference to an activity. Indeed, both objects and activity references can only
be considered as totally evaluated terms, and evaluated results.

By proving progress we also show that ASPfun is deadlock free: as any term
that is not already a value must progress, this ensures the absence of deadlock.

5 A Mechanised Proof in Isabelle

We formalised the entire theory presented in this paper in the interactive the-
orem prover Isabelle/HOL [16]. All presented results have been mechanically
verified. This is a considerable effort but, as we believe, a necessary prerequi-
site for the development of complex languages. In this section we will give an
outline of this mechanisation. The relevant Isabelle/HOL sources are available

RR n
�

6353

12 Henrio, Kammüller, and Sudhof

from the authors web-page. Where appropriate we depict examples from the
formalisation explaining necessary Isabelle/HOL syntax on the fly.

Isabelle/HOL is the most often used instantiation of the generic theorem
prover Isabelle. Isabelle/HOL offers a classical higher order logic as a basis
for the modelling of application logics. It has been successfully used in the
analysis of type safety of Java and its Virtual Machine [18, 14]. Besides a
sophisticated proof automation to help users develop interactive proofs it offers
strong support for user defined concrete syntax enabling very natural notations.
Inductive definitions and datatype definitions close to programming language
syntax are sophisticated support methods for reasoning about programming
language semantics. In particular datatype definitions are natural and also
efficient. Whenever possible it is sensible to employ this feature for modelling
as a datatype comes equipped with induction schemes and various properties
like injectivity theorems of the constructors. All these properties are provided
automatically by Isabelle/HOL. In addition semantic properties over datatypes
are most often expressed in a clear manner using primitive recursion which is
supported with powerful proof automation using rewriting techniques.

The semantics for the ς-calculus in Isabelle/HOL has been defined in [12], we
proved its equivalence with the shorter version presented in Section 3.1. The for-
malisation of the ς-calculus in Isabelle/HOL presents a formal model of objects
and its operational semantics based on DeBruijn indices, a parallel reduction
relation for objects, the proof of confluence for the theory of objects reusing
as much as possible Nipkow’s HOL-framework for the lambda calculus. As a
further evolution of [12] we have meanwhile extended this basic formalisation
with a simple type system and proved type safety for the ς-calculus. This basic
theory is now extended to support ASPfun as we are going to outline in the
current section.

5.1 Defining ASPfun

The formalisation of functional ASP is constructed as an extension of the base
Isabelle/HOL theory for the ς-calculus. The term type of the ς-calculus is rep-
resented by an Isabelle/HOL datatype definition called dB. According to the
minimal extension of ASPfun we extend this basic datatype by three additional
fields for activities, references to activities, and references to futures. The re-
sulting datatype for basic terms of ASPfun is then as follows.

datatype dB =

Var nat

| Obj Label ⇒f dB

| Call dB Label

| Upd dB Label dB

| Active dB

| ActRef ActivityRef

| FutRef FutureRef

In this datatype definition Objects are represented as finite maps marked by the
type constructor ⇒f we developed especially for this purpose. 1 It is crucial to
have this basic type to be able to employ the Isabelle/HOL datatype construc-
tion here because the Object constructor of the type dB is recursive. Although

1Surprisingly the standard Isabelle/HOL library does not offer finite maps.

INRIA

ASPfun 13

the semantics of activities is based on the local evaluation of basic terms, it
relies on parallel configurations. Therefore at the level of local term reduction,
there are no substantial rules added for the three new constructors apart from
standard context reduction rules. Consequently, the proof of confluence already
performed for the ς-calculus could be upgraded with only minor changes to the
local reduction of terms.

In the next step we modelled configuration of activities. To this end, we use
simply partial functions (expressed by the type constructor 6 ⇒) from activity
names to activities at the surface and partial functions from future names to
futures inside the local structures. As configurations are functions the order
does not matter, as they are partial they may be arbitrarily extended. Hence
the following partial function types in Isabelle/HOL are a natural basis for the
representation of configurations.

futmap = FutureRef 6 ⇒ dB

configuration = ActivityRef 6 ⇒ (futmap × dB)

To give some more flavour of the complexity of the Isabelle/HOL model we
depict the following central rule local for local reduction and explain it in detail
below. This rule is part of an inductive definition for the reduction relation→‖

on configurations. An inductive definition in Isabelle/HOL defines a set, here the
relation→‖, by a set of simple rules. The set defined by an inductive definition is
the least set that is closed under those rules. The rules of the inductive definition
for →‖ are exactly the corresponding rules active, request (see also below),
self-request, reply, and update of the active object (updateAO).

local: J a →β a’; C A = Some (m,a’’); m(fk) = Some a K
=⇒ C →‖ C (A 7→ (m (fk 7→ a’), a’’))

The assumption of the rules – enclosed in Isabelle/HOL’s meta-logic brackets
JK – presuppose that a term a locally reduces to term a’ and that a given
configuration C contains for name A the future map/activity pair (m,a’’) — in
Isabelle/HOL a defined point in a partial function is described by the option
constructor Some. Furthermore, the rule for local reduction of configurations
assumes that the previous local term a is contained in the future map at position
fk, i.e., a is a future. Given the setup described by these assumptions, the next
configuration is defined from the current configuration C by replacing the activity
A with an updated value in the future map m at position fk. Update of partial
maps is quite concisely annotated using 7→as an infix operator.

The other rules are expressed in a similar fashion. However, for the natural
expression of these semantic rules we need a particular feature commonly used
in semantic description, but not easily expressed in Isabelle/HOL: the “hole”-
notation as introduced in Section 3.1. The context expresses context information
as a prerequisite for a rule application. An example where this feature is used
it the rule for request (see Section 3.4).

In our Isabelle/HOL model we developed an elegant mechanisation of a
“context” using again the datatype feature that we have already seen above
as a means to express dB terms. Isabelle/HOL internally generates rules for
a datatype specification, most notably induction rules for recursive types and
injectivity rules for the constructors. Pattern matching facilitates case analysis
proofs crucial for reasoning with complex languages.

RR n
�

6353

14 Henrio, Kammüller, and Sudhof

datatype general_context =

cHole

| cObj FmapLabel general_context

| cCall general_context Label

| cUpdL general_context Label dB

| cUpdR dB Label general_context

| cActive general_context;

In this original representation of contexts by a specific datatype constructor we
exploit the power of the efficient datatype feature of Isabelle while at the same
time finding a first class representation of the syntactical concept of “context”.
For the use of contexts we define an operator to “fill” the “hole” enabling a
fairly natural notation of E↑t for E[t].

consts Fill :: [general_context, dB] ⇒ dB ("↑")

Functions over datatypes may be defined in a particularly efficient way in Is-
abelle/HOL using primitive recursion. Efficient means in this context that
proofs involving these operators may be mostly solved automatically using au-
tomatic rewriting techniques provided in Isabelle. The semantics of the Fill

operator is described by the following set of equations.

primrec

Fill cHole x = x

Fill (cObj f E) x = Obj ((FLmap f)((FLlabel f)7→(Fill E x)))

Fill (cCall E l) x = Call (Fill E x) l

Fill (cUpdL E l (y::dB)) x = Upd (Fill E x) l y

Fill (cUpdR (y::dB) l E) x = Upd y l (Fill E x)

Fill (cActive E) x = Active (Fill E x)

We can illustrate the benefits of our context concept most directly by the Is-
abelle/HOL representation of the configuration rule for requests.

request: J ∀ A∈ dom c. fn /∈ dom(fst(the(C A)));

C A’ = Some(m’,a’); m’(fk) = Some(E↑(Call(ActRef B) li);

C B = Some(mb, a);A’6= B K
=⇒ C →‖ C (A’7→ (m’ (fk 7→ (E↑(FutRef(fn)))), a’))

(B 7→ (mb (fn 7→ (Call a li)), a))

Here we can very naturally express that if in the current configuration c a
future fk of activity A’ holds a term that contains syntactically a call to some
other activity B, then this request can be dealt with by replacing the request
subterm Call(ActRef B) li in the caller context by “fresh” future reference
fn and queueing the request into activity B’s future list. Similarly we can
encode the other rules to provide a small step operational semantics given by
this inductively defined →‖ relation.

5.2 Proving Correctness of the Reduction

Based on the formalisation of a configuration and the extended small-step op-
erational semantics we first prove that the well-formedness of a configuration is
preserved by the reduction relation.

When comparing to the definition of well-formedness as given in Section
3.5 the Isabelle version of these properties is straightforward, based on the

INRIA

ASPfun 15

definition of configuration as seen in the previous section. For example the first
well-formedness property wf 1a reads in Isabelle/HOL as follows.

∀ A ∈ dom C. ∀ d m E B. C A = Some(m,d) ∧ d = E↑(ActRef B) −→ B ∈ dom C

The other three properties are translated into Isabelle/HOL in the same straight-
forward way. We then simply define well-formedness as the conjunction of the
four properties.

wf_conf :: configuration ⇒ bool

wf_conf C == wf_1a C ∧ wf_1b C ∧ wf_2a C ∧ wf_2b C

We prove subject reduction formally in Isabelle/HOL. More precisely we prove
the following properties based on the above definition.

C →‖ C’ −→ (wf_1a C ∧ wf_1b C −→ wf_1a C’ ∧ wf_1b C’)

C →‖ C’ −→ (wf_2a C ∧ wf_2b C −→ wf_2a C’∧ wf_2b C’)

The proofs of the wellformedness preservation properties are about 1100 lines
of Isabelle/HOL proof script code. However, one has to count here the additional
1000 lines of proofs we performed on the theory infrastructure (lemmata) for the
general contexts. They form the basis for the definition of the configuration’s
small step semantics. Corresponding lemmata are prerequisite for the proof of
the wellformedness properties. The proofs of the basic properties of context
are often tricky as they involve simultaneous induction over the terms caused
by the partiality of the map structure of objects that enforce the consideration
of definedness. The wellformedness properties are difficult in theory already
and technically the complexity of the involved functional structure adds to the
challenge.

Once we have defined typing – which we will do shortly in the next section –
we will be able to use well-formedness to extend correctness to the type system.
We formally proved in Isabelle the following theorem.

theorem Typing_implies_WF: ` C : B =⇒ wf_conf C

5.3 Typing and Progress

We define a typing relation that inductively builds up term-to-type pairs with
respect to two parameters: one is a configuration and one is a type environment.
This corresponds to the two-layered structure of base terms and configurations
of ASPfun.

typing :: (Ctype × (type list) × dB × type) set

where the two parameter types are the following datatypes.

datatype type = Object (Label ⇒f type)

datatype Ctype = TConfig (ActivityRef 6 ⇒ type)(FutureRef 6 ⇒ type)

("〈 _,_ 〉")

We define the standard infix syntax for typing statements.

C, E ` a : A

RR n
�

6353

16 Henrio, Kammüller, and Sudhof

which is just syntactic sugar for the inhabitance of the previously defined rela-
tion.

(C, E, a, A) ∈ typing

Then the relation typing is defined using an Isabelle/HOL inductive definition.
The rules of the inductive definition are exactly the typing rules for ASPfun

introduced in Section 4. For comparison we show just the rule Type Object

J dom b = do B; ∀ l ∈ do B. C, E<0:B> ` the(b l): B!l K
=⇒ C, E ` Obj b B: B

The second layer of typing characterises the relationship between the first con-
figuration parameter and the actual configuration by enforcing that the locally
well-typed terms adhere to the definedness conditions of the first configuration
parameter C. To encode this in Isabelle/HOL we first define a second inductive
set that expresses typing without assumptions, i.e. no parameters.

Ctyping :: (configuration × Ctype) set

We overload the same operator ` C: T to abbreviate C, T ∈ Ctyping. The
complex rule Type Configuration encoding the semantic well-formedness on
configurations in Isabelle/HOL is as follows.

J dom fa = dom C; dom ff = Union{ dom m | m. ∃ A a. C A = Some (m,a)};

∀ A m a . C A = Some (m,a) −→ 〈 fa, ff〉,[]` a:the(fa A) ∧
∀ fi ∈ dom m. 〈 fa, ff〉,[] ` the(m fi):the(ff fi) K
=⇒ ` C: 〈 fa, ff 〉

We completely proved in Isabelle/HOL Theorems 2 and 3.

theorem Csubject_reduction:

` C : B =⇒ (∀ C’ . C →‖ C’ −→ ∃ B’. ` C’ : B’)

theorem progress_ASP :

J ` C: B; C A = Some (m,a); m fi = Some t; ¬ (isvalue t) K
=⇒ ∃ C’. C →‖ C’

6 Conclusion

The formalisation in Isabelle/HOL adds the necessary quality assurance to a
language development where rules and properties are intricate while the need
for verification is as worthwhile as imperative.

Altogether the entire development takes just under 10000 lines of Isabelle/HOL
code. The line numbers of proofs do not necessarily reflect the difficulty and
the amount of time that went into a definition or a proof. Once a good model
is found proofs become simple. The most difficult steps were the first model
for object terms, the translation of common semantic notions and rules into
Isabelle/HOL. The progress proof was harder than subject reduction although
the former is much longer.

We have presented here a functional calculus for distributed activities. This
calculus has several nice properties. The design of the distributed calculus allows
to return future evaluations before the end of their computation. The absence
of dead locks comes from this functional nature. It avoids blocking.

INRIA

ASPfun 17

The absence of message not understood is due to typing. Additionally dis-
tributed reduction behaves well with respect to typing. We have additionally
shown that well formedness is ensured by typing.

The proof of confluence is what we envisage as our ultimate goal. Therefore,
we are currently working on the definition of a parallel evaluation relation that
will enable us to reduce the confluence property of the original reduction of
configurations to the diamond property of this parallel reduction. The current
difficulty is to generalize the notion of reduction contexts such that parallel
evaluation can be expressed.

References

[1] Mart́ın Abadi and Luca Cardelli. An imperative object calculus. In Peter D.
Mosses, Mogens Nielsen, and Michael I. Schwartzbach, editors, TAPSOFT,
volume 915 of Lecture Notes in Computer Science, pages 471–485. Springer,
1995.

[2] Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag,
New York, 1996.

[3] Gul Agha. An overview of actor languages. ACM SIGPLAN Notices,
21(10):58–67, 1986.

[4] D. Caromel, L. Henrio, and B. Serpette. Asynchronous and deterministic
objects. In Proceedings of the 31st ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 123–134. ACM Press, 2004.

[5] Denis Caromel and Ludovic Henrio. A Theory of Distributed Object.
Springer-Verlag, 2005.

[6] A. Ciaffaglione, L. Liquori, and M. Miculan. Reasoning about object-based
calculi in (co)inductive type theory and the theory of contexts. JAR, Jour-
nal of Automated Reasoning, 39:1–47, 2007.

[7] Tom Van Cutsem, Jessie Dedecker, and Wolfgang De Meuter. Object-
oriented coordination in mobile ad hoc networks. In Amy L. Murphy and
Jan Vitek, editors, COORDINATION, volume 4467 of LNCS, pages 231–
248. Springer, 2007.

[8] Frank S. de Boer, Dave Clarke, and Einar Broch Johnsen. A complete
guide to the future. In ESOP, pages 316–330, 2007.

[9] Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Theo D’Hondt, and
Wolfgang De Meuter. Ambient-oriented programming in ambienttalk. In
Dave Thomas, editor, ECOOP, volume 4067 of LNCS, pages 230–254.
Springer, 2006.

[10] Cormac Flanagan and Matthias Felleisen. The semantics of future and an
application. Journal of Functional Programming, 9(1):1–31, 1999.

[11] Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic
computation. ACM Transactions on Programming Languages and Systems
(TOPLAS), 7(4):501–538, 1985.

RR n
�

6353

18 Henrio, Kammüller, and Sudhof

[12] Ludovic Henrio and Florian Kammüller. A mechanized model of the theory
of objects. In 9th IFIP International Conference on Formal Methods for
Open Object-Based Distributed Systems (FMOODS), LNCS. Springer, June
2007.

[13] Alan Jeffrey. A distributed object calculus. In ACM SIGPLAN Workshop
Foundations of Object Oriented Languages, 2000.

[14] G. Klein and T. Nipkow. Verified bytecode verifiers. Theoretical Computer
Science, 298(3):583–626, April 2002.

[15] Joachim Niehren, Jan Schwinghammer, and Gert Smolka. A concurrent
lambda calculus with futures. Theoretical Computer Science, 364(3):338–
356, November 2006.

[16] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL – A Proof As-
sistant for Higher-Order Logic, volume 2283 of LNCS. Springer-Verlag,
2002.

[17] Benjamin C. Pierce. Types and Programming Languages. MIT Press, March
2002.

[18] D. v. Oheimb and T. Nipkow. Machine-checking the java language specifi-
cation: Proving type-safety. In Jim Alves-Foss, editor, Formal Syntax and
Semantics of Java, volume 1523 of LNCS, pages 119–156. Springer-Verlag,
1999.

[19] Akinori Yonezawa, Etsuya Shibayama, Toshihiro Takada, and Yasuaki
Honda. Modelling and programming in an object-oriented concurrent
language ABCL/1. In A. Yonezawa and M. Tokoro, editors, Object-
Oriented Concurrent Programming, pages 55–89. MIT Press, Cambridge,
Massachusets, 1987.

INRIA

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)��������� �	��
�

���������� ��� ���

ISSN 0249-6399

	Introduction
	Background and Objectives
	ASPfun: A Functional Active Object Calculus
	Prerequisite: The -calculus
	Syntax
	Informal Semantics
	Small-Step Operational Semantics
	Well-formed Configuration
	Initial Configuration

	Typing Active Objects
	Type System for the -calculus
	A Type System for ASPfun
	Subject Reduction
	Progress and Absence of Deadlocks

	A Mechanised Proof in Isabelle
	Defining ASPfun
	Proving Correctness of the Reduction
	Typing and Progress

	Conclusion

