
HAL Id: inria-00187303
https://hal.inria.fr/inria-00187303

Submitted on 14 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experiments in Theorem Proving for Topological Hybrid
Logic

Dmitry Sustretov, Guillaume Hoffmann, Carlos Areces, Patrick Blackburn

To cite this version:
Dmitry Sustretov, Guillaume Hoffmann, Carlos Areces, Patrick Blackburn. Experiments in Theorem
Proving for Topological Hybrid Logic. Methods for Modalities 5, Nov 2007, Cachan, France. �inria-
00187303�

https://hal.inria.fr/inria-00187303
https://hal.archives-ouvertes.fr

M4M 2007

Experiments in Theorem Proving for

Topological Hybrid Logic

Dmitry Sustretov, Guillaume Hoffmann, Carlos Areces,

and Patrick Blackburn

TALARIS
INRIA Lorraine

54602 Villers-lès-Nancy, France
firstname.lastname@loria.fr

Abstract

This paper discusses two experiments in theorem proving for hybrid logic under the topological interpre-
tation. We begin by discussing the topological interpretation of hybrid logic and noting what it adds to
the topological interpretation of orthodox modal logic. We then examine two implemented proof methods.
The first makes use of HyLoBan, a terminating theorem prover that searches for a winning search strategy
in certain topologically motivated games. The second is a translation-based approach that makes use of
HyLoTab [18], a tableaux-based theorem prover for hybrid logic under the standard relational interpretation.
We compare the two methods, and note a number of directions for further work.

Keywords: hybrid logic, topological semantics, theorem proving

1 Introduction

Topological semantics for modal logic is 20 years older than the (now standard)

relational semantics; moreover, it was the first framework in which deep technical

results about modal logic were proved. Alfred Tarksi’s 1938 paper [17] defined the

semantics and showed that S4 is complete with respect to the class of all topological

spaces. Then, in 1944, McKinsey and Tarski [12] proved an elegant result: S4 is

also the modal logic of the real numbers under the usual topology.

After the birth of relational semantics in the 1960s, topological semantics was

somewhat neglected, though technically interesting results continued to be proved

(see for example Esakia [6] and Shehtman [14]). More recently, however, partly

because of the growing interest in logics of space and in developing topological

accounts of knowledge, there has been a revival of interest; a good illustration of

such work is Aiello, van Benthem, and Bezhanishvili [1]. A theme emphasized in

this newer phase (particularly by van Benthem and his various co-authors) is the

need to move beyond the basic “box and diamond” modal language. As they point

out, the basic language is highly inexpressive with respect to the kinds of topological

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Sustretov, Hoffmann, Areces and Blackburn

spaces of interest to mathematicians. Indeed, this is already clear from the classic

McKinsey and Tarski results mentioned above. The real numbers (under the usual

topology) satisfy what topologists call the T0 and T1 separation axioms, and much

else besides; that is, the reals are a space with many special topological properties.

However the basic modal language sees no difference between this space and the

class of all topological spaces; both share the same modal logic, namely S4.

Recent work shows that matters become rather more interesting when the basic

modal language is enriched with the basic tools of hybrid logic, namely nominals

and the universal modality. As we shall discuss below, the increased expressivity

means that the hybrid logics of all topological spaces, of T0 topological spaces, and

of T1 topological spaces are all distinct.

But this increased expressivity has consequences for theorem proving. Nothing

needs to be said about topological theorem proving for ordinary modal logic — it’s

plain old S4 theorem proving, thus many good solutions already exist. But theorem

proving for hybrid logic is less well developed. In particular, at the moment there

are no terminating provers which handle logics richer than the minimal hybrid logic

K, or which cope with the universal modality. Now, our goal is to incorporate

topological theorem proving within the InToHyLo suit (Inference Tools for Hybrid

Logic; see [2]), a general inference framework for hybrid logic. Doing so will require

efficient and terminating tools for handling an S4 modality, nominals, the universal

modality, and topologically motivated constraints. Here we report on two prelimi-

nary experiments which we believe point the way to such an implementation. Both

approaches are based on Sustretov’s reductions of the hybrid logics of T0 and T1

spaces to the relational hybrid logics of two classes of finite frames (see [15,16]).

But the two approaches exploit Sustretov’s reductions differently:

• First we discuss a game-based prover called HyLoBan, a direct implementation of

Sustretov’s game-based proofs of the PSPACE-completeness of the logics of T0

and T1 spaces. The interest of this approach is that termination is guaranteed

and the underlying game-based architecture seems of independent interest; its

disadvantage is that (at present) it is extremely inefficient.

• The second approach makes use of the fact that the relevant classes of finite frames

used in the reductions can be encoded with the help of the universal modality.

Thus we can translate topological satisfiability problems into relational satisfiabil-

ity problems involving the universal modality, and solve them using HyLoTab [18],

the only existing prover capable of handling an S4 modality together with the

universal modality and nominals. This approach turns out to be more efficient

than the present implementation of HyLoBan; its disadvantage is that HyLoTab

is not an optimised prover and is not guaranteed to terminate on all inputs (and

indeed, as we shall see, it can loop on quite simple formulas).

We proceed as follows. In Section 2 we discuss topological semantics for hybrid

logic, and the hybrid axiomatisations of T0 and T1 spaces. In Section 3 we present

the game-based approach to topological theorem proving, and its implementation

in HyLoBan. In Section 4 we discuss the translation-based approach using HyLoTab.

In Section 5 we evaluate the two approaches, and in Section 6 we conclude.

2

Sustretov, Hoffmann, Areces and Blackburn

2 Topological Semantics for Hybrid Logics

We assume that the reader is familiar with the basics of hybrid logic under the

relational interpretation (for example, [4] contains all the required background).

Here we are going to work with the basic hybrid language, but under another

semantics: formulas will be interpreted on topological spaces.

The language we shall work with is generated by the following grammar:

ϕ ::= p | i | ϕ ∧ ϕ | ¬ϕ | ✷ϕ | Eϕ

where p is one of the ordinary propositional letters and i is one of the distinguished

propositional letters called nominals. We use letters p, q, r, . . . for ordinary proposi-

tional variables and i, j, k, . . . for nominals. We define dual modalities ✸ and A as

usual: ✸ϕ ≡ ¬✷¬ϕ and Aϕ ≡ ¬E¬ϕ, and we sometimes write @iϕ for E(i ∧ ϕ).

Nominals are required to always evaluate to singleton sets and Eϕ is interpreted

as “there exists some point in the model where ϕ holds”. This interpretation of

the hybrid machinery is quite general and has been most often used together with

classical relational interpretation of the modal operators. As we shall now see, these

ideas transfer straightforwardly to the topological treatment of modality.

Definition 2.1 (Topological models) A topological space is a pair (T, τ) where

τ ⊆ P(T) such that ∅, T ∈ τ and τ is closed under finite intersections and arbitrary

unions. Elements of τ are called open sets or opens, and an open containing a

point x is called a neighborhood of the point x. Complements of open sets are

called closed sets.

A topological model M is a tuple (T, τ, V) where (T, τ) is a topological space

and the valuation V maps propositional letters and nominals to subsets of T , with

nominals always being assigned singleton subsets.

Definition 2.2 (Topological semantics) Truth of a formula ϕ at a point w in

a topological model M (denoted by M, w |= ϕ) is defined inductively as follows:

M, w |= p iff x ∈ V (p)

M, w |= i iff x ∈ V (i)

M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ
M, w |= ¬ϕ iff M, w 2 ϕ

M, w |= ✷ϕ iff ∃O ∈ τ such that w ∈ O and ∀v ∈ O.(M, v |= ϕ)

M, w |= Eϕ iff ∃v such that M, v |= ϕ.

It follows that for all nominals i, M, w |= @iϕ iff there is v such that M, v |= i and

M, v |= ϕ, just as in relational semantics.

What is known about hybrid logic under this interpretation? For a start, the

hybrid logic of all topological spaces coincides with the hybrid logic of transitive

reflexive frames under the relational semantics: that is, both are hybrid S4. However

it’s not “S4 all the way up to the Reals,” as is the case for orthodox modal languages.

It turns out that the hybrid machinery is sensitive to the two simplest separation

axioms, the conditions that define what topologists call T0 and T1 spaces:

3

Sustretov, Hoffmann, Areces and Blackburn

Definition 2.3 (Separation axioms)

T0 for any two distinct points x, y there is either an open neighborhood of x that

does not contain y, or an open neighborhood of y that does not contain x;

T1 any singleton set is closed.

Both conditions are definable in the hybrid language. The formulas

(T0) @i¬j → (@i✷¬j ∨ @j✷¬i) and (T1) ✸i→ i

define the classes of T0 and T1 spaces respectively. We denote the hybrid logics of

these spaces as Log(T0) and Log(T1). It is easy to see that every T1 space is T0

space (but not conversely) and hence Log(T0) is a proper subset of Log(T1).

Let’s take a closer look at these axioms, starting with the simpler T1 axiom.

This may be familiar under its relational interpretation: there ✸i → i defines the

class of frames that consist of isolated reflexive points. The hybrid logic of this class

of frames is barely different from classical propositional logic and is NP-complete.

On the other hand, as we’ve just said, in topological semantics this axiom defines

the class of T1 spaces, whose logic is far richer — in fact, it is PSPACE-complete

(see [15,16] for details). As this example makes clear, the same axiom may have

quite different effects in the two semantics, and these differences can affect both the

proof theory and the computational complexity of the resulting logics. Similarly, the

more complex formula defining T0 spaces has a very different meaning in relational

semantics: there it defines the class of antisymmetric frames.

In spite of these differences, it is possible to characterise the topological logics

Log(T0) and Log(T1) in relational terms, and indeed all our subsequent work depends

on this reduction. In particular, Sustretov [15,16] has proved that these logics are

complete with respect to classes of finite transitive and reflexive relational models

satisfying some extra condition. Those conditions are:

Definition 2.4 (Relational model conditions)

T0 There are no non-trivial cycles involving points named by nominals;

T1 Points named by nominals have no incoming arcs other than from themselves.

[15,16] uses this reduction to show that Log(T0) and Log(T1) are both PSPACE-

complete. These are the logics on which we will conduct our first topological theorem

proving experiments. We will investigate two approaches, both of which depend on

this relational characterisation. In the first experiment, we will directly implement

Sustretov’s PSPACE algorithm. In the second, we shall characterise the frame

classes just mentioned with the help of the universal modality, and then hand the

universal-modality-encoded-problem to a tableau-based prover.

3 Game-based Satisfiability Checking

In this section we introduce HyLoBan 1 , a proof of concept implementation of the

game-based approach developed in [15,16].

1 The name is an allusion to Sokoban, a game that is recently proven to be PSPACE-complete. Our prover
plays games in order to do its job; hence, since the hybrid logics it deals with are PSPACE-complete, one can
(in theory!) use our prover to play Sokoban (or conversely, use Sokoban to judge topological satisfiability).

4

Sustretov, Hoffmann, Areces and Blackburn

The prover works by searching for a winning strategy in a two player game which

we will present below; there are two variants of the game: one for T0, another for

T1. The game is played by putting structures called Hintikka sets on the board and

linking them with each other by a relation.

Definition 3.1 (Hintikka set) Let Σ be a set of formulas closed under subfor-

mulas and single negations (from now on, we will denote the closure of a set of

formulas Γ under subformulas and single negations as Cl(Γ)). A set A ⊆ Σ is

called a Hintikka set if it is a maximal subset satisfying the following conditions:

(i) if ¬ϕ ∈ Σ then ϕ ∈ A iff ¬ϕ /∈ A

(ii) if ϕ ∧ ψ ∈ Σ then ϕ ∧ ψ ∈ A iff ϕ ∈ A and ψ ∈ A.

There are two players: ∀belard (male) and ∃loise (female). Let ϕ be the formula

that they are checking for satisfiability. ∃loise plays by putting Hintikka sets on the

board and defining a transitive and reflexive relation R on them; ∀belard introduces

challenges that she must meet. ∃loise starts the game by putting a set {X0, . . . , Xk}
(for k ≤ |Cl(ϕ)|) on the board, and defining R as the minimal reflexive relation on

them. The sets must satisfy the following conditions:

(root) X0 contains ϕ,

(init-nom) each nominal appears in exactly one Hintikka set,

(init-univ) for all Xl and all Eχ ∈ Cl(ϕ), Eχ ∈ Xl iff χ ∈ Xj for some j,

(init-diamond) for all ✸χ ∈ Cl(ϕ), if RXlXj and ✸χ /∈ Xl then ✸χ /∈ Xj and

χ /∈ Xj ,

If the conditions do not hold, ∃loise loses immediately. ∀belard’s turn consists

of selecting a Hintikka set Xl and picking a formula ✸ψ out of it. ∃loise must meet

the challenge by putting a Hintikka set Y on the board and link it with Xl, such

that the following conditions hold:

(diamond) ψ ∈ Y , RXlY and for all ✸χ ∈ Cl(ϕ), if ✸χ /∈ Xl then ✸χ /∈ Y

and χ /∈ Y ,

(univ) for all Xl and for all Eχ ∈ Cl(ϕ), Eχ ∈ Xl iff χ ∈ Xj for some j,

(nom) if i ∈ Y for some nominal i then Y is one of the Hintikka sets ∃loise

played during the first move. If this is the case, the game stops

and she wins (unless one of the next two special rules is violated,

in which case she loses),

(cycles) R does not have non-trivial cycles that involve Hintikka sets that

contain distinct nominals [for the T0 game].

(no-incoming) points named by nominals have no incoming arcs other than from

themselves [for the T1 game],

If ∃loise cannot find a Y that satisfies those conditions, then the game stops

and ∀belard wins. Otherwise, ∀belard must choose a formula of the form ✸ψ from

the last played set (that is, Y) and the game continues in a similar way. If ∃loise

manages to meet all ∀belard’s challenges and if he has no more challenges to present,

5

Sustretov, Hoffmann, Areces and Blackburn

she wins. This does not guarantee that the game will stop at some point, so we

introduce an extra rule. A list of formulas played by ∀belard is kept, if he plays

a formula a second time, ∃loise must respond with the same Hintikka set as she

did when he played the formula for the first time. If her set satisfies the conditions

from the previous paragraph, ∃loise wins; otherwise, she loses. In any case, the

game stops immediately.

3.1 Implementing the game

HyLoBan is written in the functional language Haskell [11], using the Glasgow

Haskell Compiler (GHC) [8]. The code is released under the GNU GPL and can be

downloaded from http://hylo.loria.fr/intohylo/hyloban.php.

Apart from the main loop of the algorithm, which is an instance of minimax, the

most important part of the implementation is the generation of Hintikka sets. At

each turn, ∃loise plays Hintikka sets subject to certain conditions on the board. This

means that the implementation should include an efficient procedure for generating

Hintikka sets that satisfy given conditions.

Our current implementation generates all possible Hintikka sets from the input

formula at the beginning of the game. In the course of the game when we need

Hintikka sets that meet particular conditions, we scan the generated Hintikka sets

and filter the good ones. Let us see how this is done.

3.2 How ∃loise moves

∃loise’s first turn: For her first move, ∃loise’s natural strategy is to put as few

Hintikka sets as possible on the board in order to reduce the chances of ∀belard

finding a challenge that will make her lose. Therefore, our implementation tries to

generate initial boards as small as possible.

The conditions that must be fulfilled by the Hintikka sets that are put on the

board during the first turn are the following:

- at least one formula must contain the input formula ϕ,

- every nominal which occurs in the input formula should belong to some set.

For each formula Eψ ∈ Cl(ϕ), the (init-univ) condition leaves two possibilities

which lead to further constraints:

- ψ belongs to one of the Hintikka sets and Eψ should belong to all generated

Hintikka sets (let us say then that ψ occurs existentially),

- ψ and Eψ should not belong to any of the generated Hintikka sets (¬ψ occurs

universally).

Note that some conditions have an impact on all generated Hintikka sets while

some only concern individual Hintikka sets. If we want to generate all possible

Hintikka sets, we should consider all combinations of conditions of the second type.

Since every condition should be satisfied by at least one Hintikka set, it seems

plausible to use the following approach. We generate all possible partitions of the

set of all conditions. Each equivalence class of a partition corresponds to a Hintikka

set that satisfies conditions from this class.

6

http://hylo.loria.fr/intohylo/hyloban.php

Sustretov, Hoffmann, Areces and Blackburn

For example, consider the formula ϕ = i∨j. We have three conditions associated

with this formula: i should occur somewhere, j should occur somewhere, ϕ should

occur somewhere. Possible partitions are:

i | j | ϕ i, j | ϕ i | j, ϕ
i, ϕ | j i, j, ϕ

In our implementation we generate all partitions of conditions using the technique

described in [13].

For each generated partition, we go through its equivalence classes and for each of

them we generate all Hintikka sets that satisfy the conditions in that class. We then

put together Hintikka sets that satisfy sets of conditions from different equivalence

classes to form candidate initial boards. Then for every generated initial board,

all the “global” conditions (for example, that there is no nominal that belongs to

several distinct Hintikka sets) are checked in order to ensure that it is well-formed.

Existential formulas are treated separately. Before the generation of partitions

we go through all formulas of the form Eψ from Cl(ϕ) and decide for each of them if

ψ should occur existentially or ¬ψ should occur universally. In the first case we get

one “individual” condition that participates in partition generation and a “global”

condition, while in the other case we have two global conditions. We then generate

the partitions and initial boards as described above. This procedure is repeated for

all possible combinations of occurrence types of ψs.

∃loise’s subsequent turns: When ∀belard points to a formula ✸ψ on the board,

the Hintikka set that ∃loise builds in response must contain ψ. Moreover, it must

not contain any ψ for which Eψ ∈ Cl(ϕ) and there is already in the board a Hintikka

set that does not contain Eψ.

When ∀belard reuses a formula, ∃loise must answer with the same Hintikka set

that she used to respond to the formula the first time. In such cases, there is no

Hintikka set to be generated. Hence we keep a map between formulas put on the

board by ∀belard, and the Hintikka sets used to respond to them by ∃loise; we use

this information to retrieve the required previously-played Hintikka set.

3.3 Structures

Hintikka sets: We represent the set of all possible Hintikka sets of the input

formula as a binary tree: each branch represents a set (see the example in Figure 1).

A node at distance n from the root of the tree represents the nth formula in the list

of all positive formulas of Cl(ϕ), and for each node, the left (resp. right) outgoing

edge represents the choice of including this formula (resp. its negation) in the set.

A leaf that is not at distance n + 1 from the root means that there is no possible

set with the choices made in its branch.

Let c = |Cl(ϕ)|. With a simple list of all sets, the maximum size needed would

be c ∗ 2c, whereas the binary tree needs at most 2c+1 nodes. So the binary tree

provides a smaller representation, and hence faster Hintikka sets queries.

The Board: HyLoBan uses a global state where the main data structure is Board-

Data, which contains a Board object, the non-negative subformula closure of the

input formula and the set of all possible Hintikka sets for the input formula. The

7

Sustretov, Hoffmann, Areces and Blackburn

Figure 1. Representation of the possible Hintikka sets of ¬(✸p) ∧ p as a tree

main components of the Board object are three lists and a matrix:

• hSets :: [HintikkaSet]. The Hintikka sets on the board. The order in the list

matters: the tail of the list is the latest Hintikka set added.

• relationMatrix :: Matrix. Represents the R relation between Hintikka sets. We

do not enforce the reflexivity and transitivity of R, but we extend the (diamond)

condition to check reflexive consistency.

• firstHSets :: [Int]. Ordered indexes (among all possible Hintikka sets for the input

formula) of the first Hintikka sets put on the board. This serves as a hash for the

board.

• forcedFormulas :: [Formula]. Formulas that must be present in all Hintikka sets.

For each formula E(ψ) in Cl(ϕ), either E(ψ) belongs to this list, or both ¬E(ψ)

and ¬ψ do.

We will see right away how we use some parts of this object to provide a basic

optimisation.

3.4 Caching

The procedure for setting up initial boards can generate the same board twice.

Consider the following two partitions from our previous example:

i, ϕ | j i | j, ϕ

Starting from both partitions, one can generate the following initial board:

{{i, ϕ}, {j, ϕ}}.

In order to solve this problem, we use caching. For each input formula, Cl(ϕ)

is fixed, and so is the set of all possible Hintikka sets. So we can associate to each

Hintikka set an integer. This is what we do in the firstHSets field of the Board

object. Thus, each initial board is identified by the list of Hintikka set indexes,

in increasing order. We store hashes of each initial board that has been already

considered in order to avoid analysing the same game twice.

4 Translation-based Satisfiability Checking

The game-based approach to topological theorem proving embodied in HyLoBan

uses Sustretov’s reduction of the logics of T0 and T1 to relational semantics in the

most direct way possible: by actually playing the PSPACE game he defines for the

8

Sustretov, Hoffmann, Areces and Blackburn

relevant frame classes. But there is a simpler way of exploiting the reduction: with

the help of the universal modality, we can encode the required frame conditions.

Let’s see how to do this.

Let’s first consider Log(T1). Let ϕ be a formula containing nominals i1, . . . , ik.

Then it is immediate that the formula

ψ1(ϕ) = ϕ ∧
k∧

i=1

A(✸ik → ik)

is satisfiable on a finite relational S4 model iff this model satisfies the condition T1

from Definition 2.4, for all the nominals occurring in ϕ. After all, A(✸ik → ik) is a

direct statement of the T1 condition: it clearly asserts (for every nominal occurring

in ϕ) that all points named by nominals have no incoming arcs other than from

themselves. In effect, we have used the universal modality to globally force the

required constraint on models.

Matters are almost as straightforward for Log(T0). Let Nom(ϕ) be the set of

nominals in ϕ. Then the formula:

ψ0(ϕ) = ϕ ∧
∧

i,j∈Nom(ϕ)

@i¬j → (@i✷¬j ∨ @j✷¬i)

is satisfiable on a finite relational S4 model iff this model satisfies the condition

T0 from Definition 2.4, for all pairs of nominals occurring in ϕ. After all, the

conjunction over these pairs systematically excludes non-trivial cycles involving the

points named by these nominals. Once again we are using the universal modality

to globally force the required constraint on models (recall that @ is defined using

the universal modality).

Thus the following proposition holds:

Proposition 4.1

• A formula ϕ belongs to Log(T0) iff ψ0(ϕ) → ϕ is valid on the class of S4 frames.

• A formula ϕ belongs to Log(T1) iff ψ1(ϕ) → ϕ is valid on the class of S4 frames.

What does this give us? For a start, there is now a simpler proof of the PSPACE

completeness of the logics of T0 and T1. After all, the logic of S4 frames in hy-

brid logic enriched with the universal modality is known to be PSPACE complete

(see [3]), and we have just encoded T0 and T1 validity in this logic.

More to the point for present purposes, however, is the fact that it gives us a

new approach to hybrid topological theorem proving. Given a hybrid logic prover

that can handle S4 and the universal modality, the previous proposition gives us

a simple recipe for using it for topological theorem proving purposes. Fortunately,

such a prover exists, namely HyLoTab [18] 2 . Hence, armed with HyLoTab, we

have a second way of doing topological theorem proving, one we can compare with

HyLoBan.

2 A referee asked if the description logic prover FaCT++ (see http://owl.man.ac.uk/factplusplus/) could
be used instead. Indeed, it seems to provide everything we need: the O (one-of) operator could play the role
of nominals, the TBox could play the role of the universal modality, and the prover does handle transitive
roles. It is not clear to us if the present version handles reflexive roles. We are contacting the developers
about this issue, and in the case of a possitive answer we will include FaCT++ in our future experiments.

9

http://owl.man.ac.uk/factplusplus/

Sustretov, Hoffmann, Areces and Blackburn

 0.1

 1

 10

 100

 0 2 4 6

M
ed

ia
n

us
er

 e
xe

cu
tio

n
tim

e
(s

)

Number of clauses

Test with V = 2, N = 2, R = 1, D = 1, L = [1..5]

hylobanT0
hylotabT0

Figure 2. Median time versus size of formulas, for SAT test with T0 axiom, between HyLoBan and HyLoTab

5 Performance Evaluation

We shall now evaluate the performance of the two approaches. After implementing

the T0 and T1 translation-based satisfiability tests using HyLoTab 3 , we compared

it with HyLoBan’s game-based approach; the chart in Figure 2 is for formulas with

the T0 axiom, and Figure 3 is for formulas with the T1 axiom. These charts were

obtained by running HyLoBan and HyLoTab on batches of random formulas of the

language described in Section 2; the formulas contained 2 propositional symbols, 2

nominals, 1 relational symbol, and had a modal depth of 1. The formulas ranged

from size 1 to size 5 in the number of conjunctions of clauses.

As we can clearly see, HyLoBan’s performance is poor: even though it guarantees

termination, HyLoBan median time is much higher than HyLoTab’s. On the other

hand, the tests also showed that there are simple formulas on which HyLoTab timed

out, but which HyLoBan was able to solve. For example, the formula

¬p ∧A(p ∨ ✸(¬p ∧ n))

makes HyLoTab loop, while HyLoBan instantly claims its satisfiability with respect

to the T0 axiom.

We have identified one main performance weakness in HyLoBan, namely the way

we generate Hintikka sets. Currently we generate all Hintikka sets that contain

a formula ψ. We could instead only generate all sets that contain ψ ∪ csq(ψ),

where csq(ψ) is a set of “consequence” formulas obtained by running a simplified

tableaux algorithm on the formula ψ. These consequence formulas might be, for

example, the set of formulas present in a branch of the tableaux algorithm without

having used a branching rule. Using such a combination of the game and tableaux-

based approached we may be able to get both better performance and guarantee

3 This modified version of HyLoTab is available at http://trac.loria.fr/projects/hylotab

10

http://trac.loria.fr/projects/hylotab

Sustretov, Hoffmann, Areces and Blackburn

 0.1

 1

 10

 100

 0 2 4 6

M
ed

ia
n

us
er

 e
xe

cu
tio

n
tim

e
(s

)

Number of clauses

Test with V = 2, N = 2, R = 1, D = 1, L = [1..5]

hylobanT1
hylotabT1

Figure 3. Median time versus size of formulas, for SAT test with T1 axiom, between HyLoBan and HyLoTab

termination.

Another optimisation would be to use an auxiliary tableaux algorithm to remove

parts of the input formula that are already unsatisfiable in weaker hybrid logics.

For example, if the input formula is ϕ∨ψ, and if we can prove that ψ is unsatisfiable

in a weaker hybrid logic for which a terminating prover exists (in particular, the

minimal hybrid logic K), then we can simply launch the game-based prover on ϕ.

6 Conclusion

In this paper we have discussed two preliminary experiments in theorem proving

for topological hybrid logic; the long term goal of these experiments is to integrate

such theorem proving into the InToHyLo [2] framework.

As the evaluation clearly shows, the current version of the game-based approach

implemented in HyLoBan is inferior to the translation-based approach using the

universal modality. But we believe that it is worth experimenting further with the

game-based approach. For a start, there are a number of obvious optimisations

which could be built into the system. Furthermore, HyLoBan is essentially a generic

game-based theorem proving tool. In our view, such a tool could be a useful ad-

dition to the InToHyLo framework. For example, we believe it may be useful for

experimenting with theorem proving for hybrid neighbourhood logics (see [7] for

some preliminary work on such logics).

Be that as it may, the current best-bet for better topological hybrid theorem

prover lies with the translation-based approach. And it seems clear that the per-

formance of this approach can be much enhanced. For a start, as we have already

noted, the description logic prover FaCT++ might offer us everything we need; if

it can handle reflexive roles then it will surely be a strong candidate for an effi-

cient prover for topological hybrid logics. Moreover, the first version of HTab, a

terminating tableau prover for hybrid logic was recently implemented (see [9,10]).

11

Sustretov, Hoffmann, Areces and Blackburn

This new prover convincingly outperforms HyLoTab for the basic logic K, and we

believe it will be straightforward to incorporate into HyLoTab recently announced

terminating tableaux algorithms which covers hybrid S4 enriched with the universal

modality (see [5]). This seems likely to lead to substantial performance gains, and

hope to run HTab-based experiments on topological theorem proving shortly.

References

[1] M. Aiello, J. van Benthem, and G. Bezhanishvili. Reasoning about space: The modal way. Journal of
Logic and Computation, 13(6):889–929, 2003.

[2] C. Areces, P. Blackburn, D. Goŕın, and G. Hoffmann. Inference tools for hybrid logics (InToHyLo).
Manuscript, LORIA, available from http://www.loria.fr/~areces, 2007.

[3] C. Areces, P. Blackburn, and M. Marx. The computational complexity of hybrid temporal logics. Logic
Journal of the IGPL, 8(5):653–679, 2000.

[4] C. Areces and B. ten Cate. Hybrid logics. In P. Blackburn, F. Wolter, and J. van Benthem, editors,
Handbook of Modal Logics. Elsevier, 2006.

[5] T. Bolander and P. Blackburn. Terminating tableaux calculi for hybrid logics extending K. Submitted
to Method For Modalities, 2007.

[6] L. Esakia. Diagonal constructions, Löb’s formula, and Cantor’s scattered spaces. In Studies in Logic
and Semantics, pages 128–143. Metsniereba, 1981. In Russian.

[7] D. Figueira. Bisimulation and complexity for neighbourhood semantics. Technical report, LORIA,
2007.

[8] GHC, The Glasgow Haskell Compiler. http://www.haskell.org/ghc/. Last visited: 15/09/07.

[9] G. Hoffmann. HTab: Terminating tableaux system for hybrid logic. Master’s thesis, Département de

formation doctorale en informatique, UFR STMIA. École doctorale IAEM Lorraine, 2007. (English
Version).

[10] G. Hoffmann and C. Areces. HTab: a terminating tableaux system for hybrid logic. Submitted to
Method For Modalities, 2007.

[11] S. Peyton Jones and J. Hughes (editors). Haskell 98: A non-strict, purely functional language. Technical
report, Haskell.org, 1999.

[12] J. McKinsey and A. Tarski. The algebra of topology. Annals of Mathematics, 45:141–191, 1944.

[13] M. Orlov. Efficient generation of set partitions. Technical report, Faculty of Engineering and Computer
Sciences, University of Ulm, 2002. http://www.cs.bgu.ac.il/~orlovm/papers/partitions.pdf.

[14] V. Shehtman. Modal logics of domains of the real plane. Studia Logica, 42:63–80, 1983.

[15] D. Sustretov. Topological semantics and decidability. http://www.arxiv.org/abs/math/0703106.

[16] D. Sustretov. Topological semantics and decidability. In J. Villadsen, T. Bolander, and T. Braüner,
editors, International Workshop on Hybrid Logic 2007 (HyLo 2007), Dublin, Ireland, 2007.

[17] A. Tarski. Der Aussagenkalkül und die Topologie. Fund. Math., 31:103–134, 1938.

[18] J. van Eijck. HyLoTab — Tableau-based theorem proving for hybrid logics. Manuscript, CWI, available
from http://www.cwi.nl/~jve/hylotab, 2002.

12

http://www.loria.fr/~areces
http://www.haskell.org/ghc/
http://www.cs.bgu.ac.il/~orlovm/papers/partitions.pdf
http://www.arxiv.org/abs/math/0703106
http://www.cwi.nl/~jve/hylotab

	Introduction
	Topological Semantics for Hybrid Logics
	Game-based Satisfiability Checking
	Implementing the game
	How loise moves
	Structures
	Caching

	Translation-based Satisfiability Checking
	Performance Evaluation
	Conclusion
	References

