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1 Introduction

Abstract Categorial Grammars (ACG), in their original definition [3], are based
on the linear λ-calculus. This choice derives from the traditional categorial gram-
mars, which are based on resource sensitive logics [8].

From a language-theoretic standpoint, this linearity constraint does not re-
sult in a weak expressive power of the formalism [4, 5]. In particular, the string
languages generated by the second-order ACGs (whose parsing is known to be
polynomial [12]) corresponds to the class of mildly context sensitive languages.
From a more practical point of view, however, it would be interesting to increase
the intentional expressive power of the formalism by providing high level con-
structs. For instance, one would like to provide the ACGs with feature structures,
as it is the case in most current grammatical formalisms.

In [3], a possible way of extending the ACGs is proposed. It consists of
enriching the type system of the formalism with new type constructors. The
present paper, which elaborates on this proposal, is organized as follows:

– In the next section, we remind the reader of the definition of an ACG. Then,
we explain why the ACG architecture is well-suited for type-theoretic exten-
sions.

– In Section 3, we briefly review and motivate possible extensions based on the
following type constructors: non-linear functional types, cartesian product,
disjoint union, unit type, and dependent product.

– In Section 4, we define formally the type system underlying the extensions
proposed in Section 3.

– Finally, we illustrate the resulting system by providing a toy example.

2 The ACG architecture

An Abstract Categorial Grammar consists of two signatures together with a
morphism that allows the types and the terms built on the first signature to be
interpreted as types and terms built on the second signature. This morphism



(which is called the lexicon of the grammar) is required to commute with the
typing relation, which ensures that well-typed terms are interpreted as well-typed
terms.

More formally, let T (A) denotes the set of linear functional types1 built from
the set of atomic types A, and define a higher-order linear signature Σ to be
a triple 〈A,C, τ〉, where A is a finite set of atomic types, C is a finite set of
constants, and τ : C → T (A) is a function that assigns a linear functional type
to each constant. Given such a signature Σ, define Λ(Σ) to be the set of (well-
typed) linear λ-terms built on Σ. Then, given two higher-order linear signatures
Σ1 = 〈A1, C1, τ1〉 and Σ2 = 〈A2, C2, τ2〉, define a lexicon from Σ1 to Σ2 to be a
pair L = 〈η, θ〉 where η : A1 → T (A2) and θ : C1 → Λ(Σ2) are such that:

−Σ2
θ(c) : η(τ1(c)) for all c ∈ C1

This condition ensures that the homomorphic extensions of η and θ are such
that well-typed terms are interpreted by well-typed terms.

Using the above definitions,, an abstract categorial grammar is defined to be
a quadruple G = 〈Σ1, Σ2,L , s〉 where:

1. Σ1 and Σ2 are two higher-order linear signatures;
2. L is a lexicon form Σ1 to Σ2;
3. s is an atomic type of Σ1 called the distinguished type of the grammar.

From a methodological point of view, the first signature (which is called
the abstract vocabulary) is used to specify the abstract parse structures of the
grammar, while the second signature (which is called the object vocabulary) is
used to express the surface forms of the grammar.2 More precisely, an Abstract
Categorial Grammar generates two languages: an abstract language, which corre-
sponds to Curry’s tectogrammatics, and an object language, which corresponds
to Curry’s phenogrammatics [2]. From a formal point of view, the abstract lan-
guage is simply defined to be the set of closed terms, built on the abstract
vocabulary, that are of the given distinguished type:

A(G ) = {t ∈ Λ(Σ1) | −Σ1
t : s}

Then, the object language is defined to be the image of the abstract language
under the lexicon:

O(G ) = {t ∈ Λ(Σ2) | ∃u ∈ A(G ). t = θ(u)}

It is important to note that this architecture is in fact independent of the
underlying type system. This provides us with a systematic way of extending
the expressive power of the ACG framework, simply by enriching the underlying
type theory.

1 We use the connective −◦ —i.e., the linear implication symbol— to denote the linear
functional type constructor.

2 It may also be the case that the object vocabulary is used to express the logical
forms of the grammar. In the present setting, the notions of syntax, semantics, parse
structure, surface form, logical form, ... are purely methodological. These notions do
not belong to the theory of ACGs.



3 The need for type-theoretic extensions

In [3], we suggest that all the connectives of linear logic (seen, through the
Curry-Howard isomorphism, as type constructors) are natural candidates for
extending the ACG typing system. In this paper, we propose extensions based
on the following type constructors:

– Non-linear functional type. This corresponds, by the Curry-Howard isomor-
phism, to intuitionistic implication. It is not a primitive connective of linear
logic, but may be defined by means of the linear implication and the “of
course” modality.

– Cartesian product, disjoint union, and unit type. These corresponds to the
additive conjunction and disjunction, and the multiplicative unit.

– Dependent product. This type construct does not correspond to any linear
logic primitive. It comes from Matin-Löf type-theory [7] and has been used
in a linear logic context by Pfenning and Cervesato [1].

This choice is not a matter of doctrine. It rather results from experiments in
writing toy grammars.

Non-linearity. Categorial grammars are based on linear type-theories because
grammatical composition has been identified as a resource-sensitive process. This
does not mean, however, that grammatical composition is always linear. It rather
means that categorial type logics should allow for linearity.

Non linear combinators are quite usual in semantics. For instance, the lexical
semantics of an intersective adjective such as red is given by the following non-
linear λ-term:3

λ◦P. λx. (P x) ∧ (redx) : (ι → o) −◦ (ι → o) (1)

Another typical use of non-linearity is provided, on the syntactic side, by feature
agreement. This is well exemplified in Ranta’s GF [11].

In the ACG framework, both syntax and semantics are modeled using the
same primitives. As a consequence, a λ-term such as (1) must be allowed as
a possible lexical entry. Consequently, there is a crucial need for non-linear λ-
abstraction.

From a technical point of view, mixing linear and non-linear functional types
results in a typing system with two kinds of contexts: linear contexts, and non-
linear contexts. Such a system will be defined in Section 4.

Cartesian product, disjoint union, and unit. As we already mentioned in
the introduction of this paper, we feel a need for providing ACGs with feature
structures. These may be defined using records, variants, and enumerated types

3 We write λ
◦

x. t for a linear λ-abstraction, and λx. t for a non-linear (i.e., usual)
λ-abstraction.



(which may appear to be particular cases of variants). For instance, the following
feature matrix:





inflection =

[

gender = masc
number = sing

]

function = object (indirect (a Prep))





may be expressed as a well-typed term of the following signature:4

Gender = {masc | fem} : type
Number = {sing | plur} : type

Inflection = [gender : Gender ; number : Number ] : type
Preposition = {a Prep | de Prep} : type

Direction = {direct | indirect of Preposition} : type
Function = {subject | object of Direction} : type
Features = [inflection : Inflection; function : Function] : type

From a type theoretic standpoint, records, variants, and enumerated types
may be defined using cartesian products, disjoint unions, and unit types.

Dependent product Dependent product is a quite powerful type construc-
tion. It allows ones to specify types that depend upon terms. This is exactly
what is needed if one wants to define generic syntactic categories (for instance,
NP for noun phrase) that can be instantiated according to the value of some
feature (for instance, (NP f ) for feminine noun phrase, (NP m) for masculine

noun phrase, etc.)
Dependent products are not that much popular in the type logical grammar

community, even if some weak form of dependent function is mentioned by both
Morrill [9] and Moortgat [8]. There is, however, quite an exception to this matter
of fact, namely, Ranta’s type-theoretical grammars [10]. If Ranta’s Grammatical
Framework is definitively an achievement that speaks for itself, it also speaks for
the use of dependent products.

4 The extended typing system

In the presence of dependent products, the well-formedness of types may depend
upon the well-typedness of terms. The usual solution to this is to consider a third
level of expressions: the kinds. These are to the types what the types are to the
terms. Consequently, the extended typing system we propose relies on four sorts
of typing judgements that are defined by mutual induction:

– The judgement that a signature is well-formed.
– The judgement that a kind is well-formed.

4 We use square brackets for records and curly brackets for variants. We hope that the
reader will find this syntax self-explanatory. If this is not the case, we refer him/her
to Section 4.



– The judgement that a type is well-kinded.

– The judgement that a term is well-typed.

These judgements manipulate expressions that obey the following raw syntax.

Signatures

Σ ::= () (Empty signature)
| Σ; a : K (Atomic type declaration)
| Σ; a = R : type (Record type declaration)
| Σ; a = V : type (Variant type declaration)
| Σ; c : τ (Constant declaration)

Kinds

K ::= type (Kind of types)
| (τ)K (Kind of dependent types)

Types

τ ::= a (Atomic type)
| (λx. τ) (Type abstraction)
| (τ t) (Type application)
| (τ1 −◦ τ2) (Linear functional type)
| (Πx : τ1) τ2) (Dependent product)

Record types

R ::= [l1 : τ1; . . . ; ln : τn] (Record type)

Variant types

V ::= {c1 of τ1| . . . |cn of τn} (Variant type)

Terms

t ::= c (Constant)
| x (Variable)
| (λ◦x. t) (Linear abstraction)
| (λx. t) (Non-linear abstraction)
| (t1 t2) (Application)
| [l1 = t1; . . . ; ln = tn] (Record)
| t.l (Selection)
| {(c1 x1) → t1 | . . . | (cn xn) → un} (Case analysis)

In this grammar, a, c, x, and l (possibly with subscripts) range over type con-
stants, λ-term constants,5 λ-variables, and record labels, respectively. In a vari-
ant type the “ of τi” part is optional. In which case, the corresponding variant

5 Variant constructors are considered as a special case of constants.



constructor ci amounts to a constant. This allows enumerated types to be seen
as particular cases of variants.

Given a (raw) signature Σ, we define three partial functions. The first one,
kindΣ , takes a type constant as an argument and possibly yields a kind as a
result. It is inductively defined as follows:

kind ()(a) is undefined

kindΣ; a1:K(a) =

{

K if a = a1

kindΣ(a) otherwise

kindΣ; a1=R:type(a) =

{

type if a = a1

kindΣ(a) otherwise

kindΣ; a1=V:type(a) =

{

type if a = a1

kindΣ(a) otherwise

kindΣ; c:τ (a) = kindΣ(a)

Similarly, type
Σ

assigns types to λ-term constants:

type()(c) is undefined

type
Σ; a1:K(c) = type

Σ
(c)

type
Σ; a1=R:type(c) = type

Σ
(c)

type
Σ; a1=V:type(c) = type

Σ
(c)

type
Σ; c1:τ (c) =

{

τ if c = c1

type
Σ

(c) otherwise

Finally, binding
Σ

, takes a type constant as an argument and possibly yields a
record or variant type:

binding()(a) is undefined

binding
Σ; a1:K(a) =

{

undefined if a = a1

binding
Σ

(a) otherwise

binding
Σ; a1=R:type(a) =

{

R if a = a1

binding
Σ

(a) otherwise

binding
Σ; a1=V:type(a) =

{

V if a = a1

binding
Σ

(a) otherwise

binding
Σ; c:τ (a) = binding

Σ
(a)



As we already said, the rules of the typing system involve four sorts of judge-
ments. They are of the following forms:

sig (Σ) (Σ is a well-formed signature)

−Σ K : kind (Given the signature Σ, K is a well-formed kind)

Γ −Σ α : K (Given the signature Σ, α is a type of kind K according to

the non-linear typing context Γ )

Γ ; ∆ −Σ t : α (Given the signature Σ, t is a term of type α according

to the non-linear typing context Γ and the linear typing

context ∆)

We are now in a position of giving the very rules of the typing system.

Well-formed signatures

sig ( )

sig (Σ) −Σ K : kind

sig (Σ; a : K)

sig (Σ) −Σ α1 : type · · · −Σ αn : type

sig (Σ; a = [l1 : α1; . . . ; ln : αn] : type)

sig (Σ) −Σ α1 : type · · · −Σ αn : type

sig (Σ; a = {c1 of α1| . . . |cn of αn} : type)

sig (Σ) −Σ α : type

sig (Σ; c : α)

In the above rules, all the introduced symbols (a, l1, . . . , ln, c1, . . . , cn, c) must
be fresh with respect to Σ.

Well-formed kinds

−Σ type : kind

−Σ α : type −Σ K : kind

−Σ (α) K : kind

Well-kinded types

−Σ a : kindΣ(a) (type const.)



−Σ α : type Γ −Σ β : K
(type weak.)

Γ, x : α −Σ β : K

Γ, x : α −Σ β : K
(type abs.)

Γ −Σ λx. β : (α) K

Γ −Σ α : (β) K Γ ; −Σ t : β
(type app.)

Γ −Σ α t : K

Γ −Σ α : type Γ −Σ β : type
(lin. fun.)

Γ −Σ α −◦ β : type

Γ −Σ α : type Γ, x : α −Σ β : type
(dep. prod.)

Γ −Σ (Πx : α) β : type

In Rule (type weak.), x must be fresh with respect to Γ .

Well-typed terms

; −Σ c : type
Σ

(c) (const.)

Γ −Σ α : type
(lin. var.)

Γ ; x : α −Σ x : α

Γ −Σ α : type
(var.)

Γ, x : α; −Σ x : α

Γ −Σ α : type Γ ; ∆ −Σ t : β
(weak.)

Γ, x : α; ∆ −Σ t : β

Γ ; ∆1, x : α, y : β, ∆2 −Σ t : γ
(perm.)

Γ ; ∆1, y : β, x : α, ∆2 −Σ t : γ

Γ ; ∆, x : α −Σ t : β
(lin. abs.)

Γ ; ∆ −Σ λ◦x. t : α −◦ β



Γ ; ∆1 −Σ t : α −◦ β Γ ; ∆2 −Σ u : α
(lin. app.)

Γ ; ∆1,∆2 −Σ t u : β

Γ, x : α; ∆ −Σ t : β
(abs.)

Γ ; ∆ −Σ λx. t : (Πx : α) β

Γ ; ∆ −Σ t : (Πx : α)β Γ ; −Σ u : α
(app.)

Γ ; ∆ −Σ t u : β[x:=u]

binding
Σ

(a) = [l1 : α1; . . . ; ln : αn] Γ ; ∆ −Σ ti : αi (1 ≤ i ≤ n)
(rec.)

Γ ; ∆ −Σ [l1 = t1; . . . ; ln = tn] : a

binding
Σ

(a) = [l1 : α1; . . . ; ln : αn] Γ ; ∆ −Σ t : a
(sel.)

Γ ; ∆ −Σ t.li : αi

binding
Σ

(a) = {c1 of α1| . . . |cn of αn}
(inj.)

; −Σ ci : αi −◦ a

binding
Σ

(a) = {c1 of α1| . . . |cn of αn} Γ ; ∆, xi : αi −Σ ti : β (1 ≤ i ≤ n)
(case)

Γ ; ∆ −Σ {(c1 x1) → t1 | . . . | (cn xn) → tn} : a −◦ β

In Rules (lin. var.) and (var.), x must be fresh with respect to Γ . In Rule (weak.),
x must be fresh with respect to both Γ and ∆. Moreover, t must be either a
λ-variable, a constant, or a variant constructor. In Rule (abs.), x cannot occur
free in ∆.

Both the abstract and the object language of an ACG are defined modulo
an appropriate notion of equality between λ-terms. In the original definition of
an ACG, this notion of equality is the usual relation of βη-conversion. In the
present setting, an equivalence relation akin to β-conversion may be defined as
the reflexive, transitive, symmetric closure of the reduction relation induced by
the following rules.

(λ◦x. t) u → t[x:=u] (Linear β-reduction)

(λx. t) u → t[x:=u] (β-reduction)

[l1 = t1; . . . ; ln = tn].li → ti (Record selection)

{(c1 x1) → t1 | . . . | (cn xn) → tn} (ci u) → ti[xi:=u] (Case analysis)

This reduction relation satisfies the properties of confluence, subject reduc-
tion, and strong normalization. Hence, the corresponding equivalence relation is



decidable. Nevertheless, it amounts to a rather weak form of equality. In order
to obtain a stronger notion of equality, one should also consider η-like conversion
rules and permutative conversion rules. We will not discuss these in the present
paper.

Other theoretical questions concern the decidability and the tractability of
parsing. It is not difficult to show that ACGs based on this extended typing
system have an undecidable membership problem. This follows from the fact
that the Edinburgh logical framework [6] appear to be a subsystem of the present
typing system.6 This raises the problem of isolating interesting fragments that
have a decidable membership problem.

5 A small example

In order to illustrate the expressive power of the extensions we have introduced,
we provide a toy example related to gender agreement in French. This example
implements the rule saying that, in the plural, the masculine is used by default
when referring to a group of mixed genders.

We first give an abstract signature:

gender = {m | f} : type
number = {s |p} : type

m feat = [g : gender ; n :number ] : type
N ,NP : (m feat)type

S : type
pierre, jean : NP [g = m; n = s]
marie, alice : NP [g = f; n = s]

etre : (Πx :m feat)
((Πy :m feat)(N y) −◦ NP x −◦ S )

et : (Πxy :m feat)
(NP x −◦ NP y −◦ NP [g = C xy; n = p])

mathematicien : (Πx :m feat)N x

where

C xy = {m → m | f → {m → m | f → f} (y.g)} (x.g)

is the term specifying that the gender of a conjunction is feminine if and only if
both conjuncts are of feminine gender.

6 Actually, the notion of dependent type we use is slightly weaker. This, however, does
not affect the undecidability result



We then consider the following object signature:

gender = {m | f} : type
number = {s |p} : type

m feat = [g : gender ; n :number ] : type
s : type

/Pierre/, /Jean/, /Marie/, /Alice/, /est/, /sont/, /et/,
/mathématicien/, /mathématicienne/,

/mathématiciens/, /mathématiciennes/ : s −◦ s

Finally, we define the following lexicon:7

gender := gender

number := number

m feat := m feat

N ,NP := λx. s −◦ s

S := s −◦ s

pierre := /Pierre/
jean := /Jean/

marie := /Marie/
alice := /Alice/
etre := λm. λ◦xy. y + ({ s → /est/ | p → /sont/ }m.n) + xm

et := λm1m2. λ
◦xy. x + /et/ + y

mathematicien := λm. { m → { s → /mathématicien/
| p → /mathématiciens/ }m.n

| f → { s → /mathématicienne/
| p → /mathématiciennes/ }m.n }m.g

Let us write [ms], [mp], [fs], and [fp] as abbreviations for [g = m; n = s], [g =
m; n = p], [g = f; n = s], [g = f; n = p], respectively. We then have that the
following terms are well-typed λ-terms belonging to the abstract language of the
grammar:

etre [ms]mathematicien pierre

etre [fp]mathematicien (et [fs] [fs]mariealice)

etre [mp]mathematicien (et [fs] [ms]marie pierre)

Their images by the lexicon yield respectively the following object terms:

/Pierre/ + /est/ + /mathématicien/

/Marie/ + /et/ + /Alice/ + /sont/ + /mathématiciennes/

/Marie/ + /et/ + /Pierre/ + /sont/ + /mathématiciens/

7 As usual, strings are identified with λ-terms of type s −◦ s. Then, in case t and u are
strings, t + u stands for λx. t (u x).
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