
HAL Id: inria-00168621
https://hal.inria.fr/inria-00168621v2

Submitted on 15 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Triplet Markov fields for the classification of complex
structure data

Juliette Blanchet, Florence Forbes

To cite this version:
Juliette Blanchet, Florence Forbes. Triplet Markov fields for the classification of complex structure
data. [Research Report] RR-6356, INRIA. 2007. �inria-00168621v2�

https://hal.inria.fr/inria-00168621v2
https://hal.archives-ouvertes.fr


appor t  
de  r ech er ch e 

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
63

56
--

F
R

+
E

N
G

Thème COG

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Triplet Markov fields for the classification of complex
structure data

Juliette Blanchet and Florence Forbes

N° 6356

Août 2007





Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier (France)

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Triplet Markov fields for the classification of complex structure
data

Juliette Blanchet and Florence Forbes

Thème COG — Systèmes cognitifs
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Abstract: We address the issue of classifying complex data. We focus on three main sources of
complexity, namely the high dimensionality of the observed data, the dependencies between these
observations and the general nature of the noise model underlying their distribution. We investigate
the recent Triplet Markov Fields and propose new models in this class that can model such data and
handle the additional inclusion of a learning step in a consistent way. One advantage of our models
is that their estimation can be carried out using state-of-the-art Bayesian clustering techniques. As
generative models, they can be seen as an alternative, in the supervised case, to discriminative Con-
ditional Random Fields. Identifiability issues and possible phase transition phenomena underlying
the models in the non supervised case, are discussed while the models performance is illustrated on
real data exhibiting the mentioned various sources of complexity.

Key-words: Triplet Markov model, Supervised classification, Conditional independence, High
dimensional data, Mixture of Gaussian, EM algorithm, Mean field approximation, Identifiability,
Phase transition, Texture recognition.



Champs de Markov Triplets pour la classification de données à
structure complexe

Résumé : Nous abordons le problème de la classification de données à structure complexe. Nous
nous intéressons à trois sources de complexité, à savoir la grande dimension des données observées,
les dépendances entre ces observations et la nature générale du modèle de bruit sous-jacent à leurs
distributions. Nous étudions les récents modèles de Markov Triplets et proposons de nouveaux
modèles de cette famille permettant de modéliser de telles données, ainsi que d’inclure une phase
d’apprentissage de manière consistante. Un avantage de nos modèles est que leur estimation peut être
effectuée à l’aide de techniques bayésiennes standards. En temps que modèles génératifs, ils peuvent
être vus comme une alternative, dans le cas supervisé, aux modèles discriminatifs de champs de Mar-
kov conditionnels. Le problème de l’identifiabilité ainsi qu’un phénomène possible de transition de
phase sont discutés. La performance de ces modèles est illustrée sur des données réelles présentant
les différentes sources de complexité mentionnées précédemment.

Mots-clés : Modèle de Markov Triplet, Classification supervisée, Indépendance Conditionnelle ,
Données de grande dimension, Mélange de gaussiennes, Algorithme EM, Approximation en champ
moyen, Identifiabilité, Transition de phase, Reconnaissance de textures.
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1. Introduction
Statistical methods that were once restricted to specialist statisticians, such as multivariate discrim-
ination and classification, are now widely used by individual scientists, engineers, and social scien-
tists, aided by statistical packages. However, these techniques are still restricted by necessary sim-
plifying assumptions, such as precise measurement and independence between observations, and it
long ago became clear that in many areas such assumptions can be both influential and misleading.
There are several generic sources of complexity in data that require methods beyond the commonly-
understood tools in mainstream statistical packages. In this paper, we consider more specifically
classification problems in which observations have to be grouped into a finite number of classes. We
propose a unified Markovian framework for classifying unlabelled observed data into these classes.
We focus on three sources of complexity. We consider data exhibiting (complex) dependence struc-
tures, having to do for example with spatial or temporal association, family relationship, and so on.
Markov models or more generally hidden Markov models are used to handle dependencies. Ob-
servations are associated to sites or items at various locations. These locations can be irregularly
spaced. This goes beyond the regular lattice case traditionally used in image analysis and requires
some adaptation. A second source of complexity is connected with the measurement process, such
as having multiple measuring instruments or computations generating high dimensional data. There
are not so many one dimensional distributions for continuous variables that generalize to multi-
dimensional ones except when considering product of one dimensional independent components.
The multivariate Gaussian distribution is the most commonly used but it suffers from significant
limitations when it comes to modelling real data sets. For very high dimensional data, the gen-
eral covariance matrix model involves the estimation of too many parameters, leading to intractable
computations or singularity issues. Solutions have been proposed based on so-called parsimonious
models [10, 1] but they are not specifically designed for high dimensional data. They do not take into
account the fact that real data points are often confined to a region of the space having lower effective
dimensionality, so that the data actually live on a smaller dimensional manifold embedded within the
high dimensional space. Other approaches consider reducing the dimensionality of the data as a pre-
processing step possibly using Principal Component Analysis or variable selection methods. In a
classification context, this may not be satisfactory as relevant information may be lost that can help
separating the classes. For these reasons, we rather consider a more recent approach developed for
independent Gaussian mixtures [7]. We extend this approach to our Markov random field models
and maintain this way their efficiency and tractability for high dimensional data. Both dependen-
cies between sites and dependencies between components of the multidimensional observations are
modelled while the number of parameters to be estimated remains tractable. Another limitation of
Gaussian distribution is that a single Gaussian distribution is unable to capture non unimodal struc-
tures. Also, we consider as a source of complexity the fact that in real-world applications, data
cannot usually be reduced to classes modelled by unimodal distributions and consequently by single
Gaussian distributions. As regards the measurement process, we propose class and site dependent
mixtures of distributions and more specifically mixtures of Gaussian distributions which provide a
richer class of density models than the single Gaussian distributions. A third major source of com-
plexity is related to the structure of the noise model or the distribution linking the unknown labels
to the observations. A strong assumption of conditional independence of the observed data is gen-
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4 Juliette Blanchet and Florence Forbes

erally used in the hidden Markov field framework for tractability. This assumption combined with
the Markovianity of the hidden field has the advantage to lead to a distribution of the labels given
the observations (the posterior distribution) which is Markovian. This last property is essential in
all Markov model based clustering algorithms. However, conditional independence is too restrictive
for a large number of applications such as textured or non-stationary image segmentation. For this
reason, various Markov models have been proposed in the literature including Gaussian Markov
fields [12] and more recently Pairwise Markov models [28]. The latter are based on the observation
that the conditional independence assumption is sufficient but not necessary for the Markovianity of
the conditional distribution to hold. A further generalization has then been proposed in [2] through
the Triplets Markov models with larger modelling capabilities, allowing more general noise models
and in particular multi-modal class distributions. In practice, the Triplet models illustrated in ap-
plications (see [2] and [3]) satisfy particular assumptions. In this paper, we consider Triplet models
different from those in [2] and [3]. Our models were originally designed for supervised classification
issues in which training sets are available and correspond to data for which data exemplars have been
grouped into classes. Non trivial extensions are required to include a learning step while preserving
the Markovian modelling of the dependencies. In this context, we propose a class of Triplet Markov
models with rich noise models that still allow standard processing as regards classification and pa-
rameter estimation. We illustrate our models using an Expectation Maximization framework and
a mean field like approximation procedure developed in [9] for the standard Hidden Markov field
case. Any other choice (Iterated Condition Expectation, Stochastic gradient, etc.) would have been
possible but it is not the purpose of this paper to provide a comparison of all these techniques. We
extend the approach in [9] to the estimation and use of our Triplet models including a learning and
test stages in the supervised case. We consider the issue of selecting the best model with regards to
the observed data using a criterion based on the Bayesian Information Criterion (BIC). When study-
ing these Triplet Markov models, we also illustrate on a simple example, that the underlying Markov
fields can undergo a phase transition phenomenon with possible consequence on their parameter es-
timation. Although more general, it is important to note that our Triplet models are simpler to deal
with and have greater modelling capabilities in a supervised case. In the non supervised case, general
noise models can lead to non-identifiability issues. Also, it is important to specify the relationship
between the Triplet Models and the Conditional Random Fields (CRF) [21] which have been widely
and successfully used in applications including text processing, bioinformatics and computer vision.
CRF’s are discriminative models in the sense that they are based on and they model directly the pos-
terior or conditional distribution of the labels given the observations. This has the advantage not to
require the modelling of the distribution of the observed data alone and the conditional independence
assumption. Explicit models of the joint distribution of the labels and observations or of the noise
distribution are not required. In classification issues, the posterior distribution is the one needed and
it can appear as a waste of time and computational ressources to deal with the joint distribution or
with complex noise models. As summarize in the following sentence from [32] p.158: “One should
solve the [classification] problem directly and never solve a more general problem as an intermedi-
ate step [such as the modelling of the joint distribution]”. All the more so as the class conditional
distributions describing the noise model may contain a lot of structure but with little effect on the
posterior distribution (see for instance Figure 1.27 in [5]). However, even in classification contexts,
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Triplet Markov fields for the classification of complex structure data 5

approaches that model the joint distribution of the labels and observations are considered. They are
known as generative models. Triplet Markov models belong to this class. Such generative models
are certainly more demanding in term of modelling but they have the advantage to provide a model
of the observed data (the likelihood) allowing this way better access to theoretical properties of the
estimators usually based on a maximum likelihood principle. This can also be useful for detecting
outliers or data points that have low probability under the model and for which the predictions may
be of low accuracy. Even when the main interest is classification, such outliers if not detected can
severely biased the parameter estimates and affect the classification results. There has been growing
interest in exploring the relative merits of generative and discriminative approaches and in finding
ways to combine them. In more and more modern applications, learning data is not enough and the
use of external information including a priori or expert knowledge is necessary. Such expertise is
usually embedded in the data structure which can be taken into account by using generative models.

In this work, we show that Triplet Markov models can then be seen as an alternative to Condi-
tional Random Fields with good modelling capabilities. As generative models they better model the
structure of the data. They can be used with standard Bayesian techniques and probabilistic clus-
tering tools requiring no more algorithmic effort than CRF’s. They allow theoretically well-based
studies and in particular model selection to guide the user to specific modelling choices consistent
with the observed data.

To outline the structure of the paper, the hidden Markov model approach is recalled in the follow-
ing section which presents basic tools and points out some limitations when dealing with complex
data. Section 3 introduces our Triplet Markov Field model in the context of supervised segmen-
tation. A general scheme and procedure based on EM like algorithms for parameter estimation is
proposed in Section 4. The automatic selection of Triplet Markov models is addressed in Section
5. As an illustration, simulations of a simple Triplet model are shown in Section 6 and a phase
transition phenomenon for the underlying Markov field is pointed out. In Section 7, we consider a
texture recognition task which involves real complex data. Section 8 ends the paper with elements
for discussion and further work.

2 Hidden Markov Model based clustering

Hidden structure models and more specifically Gaussian mixture models are among the most statis-
tically mature methods for clustering. The success of hidden structure models lies partly in the fact
that clustering can be seen as a labelling problem and therefore corresponds to many problems in
practice. A labelling problem is specified in terms of a set of sites S and a set of labels L. A site
often represents an item, a point or a region in the Euclidean space such as an image pixel or an
image feature such as a corner, a line segment or a surface patch. A set of sites may be categorized
in terms of their regularity. Sites on a lattice are considered as spatially regular (eg. the pixels of a
2D image). Sites which do not present spatial regularity are considered as irregular. This is the usual
case when sites represent geographic locations or features extracted from images at a more abstract
level, such as the detected corners and lines and more generally interest points (see Section 7). It can
also be that the sites correspond to items (eg. genes) that are related to each other through a distance
or dissimilarity measure [33] or simply to a collection of independent items. A label is an event
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6 Juliette Blanchet and Florence Forbes

that may happen to a site. We will consider only discrete label sets. In this case, a label assumes a
discrete value in a set of L labels. In edge detection, for example, the label set is the two component
set {edge, non−edge} [16]. In the following developments, it is convenient to consider L as the set
of L-dimensional indicator vectors L = {e1, . . . , eL} where each el has all its components being 0
except the lth which is 1. The labelling problem is to assign a label from a label set L to each of the
sites. If there are n sites, the set y = {y1, . . . , yn} with yi ∈ L for all i ∈ S, is called a labelling of
the sites in S in terms of the labels in L. When each site is assigned a unique label, a labelling can
be regarded as a function with domain S and image L. In mathematical programming a labelling is
also called a coloring, in the terminology of random fields it is called a configuration. In vision, it
can corresponds to an edge map, an interpretation of image features in terms of object features, or a
pose transformation and so on.

Our approach of the labelling problem aims at modeling dependencies or taking into account con-
textual information. It is based on hidden Markov models. We consider cases where the data natu-
rally divide into observed data x = {x1, . . . , xn} and unobserved or missing data y = {y1, . . . , yn}.
The missing data yi represents the memberships to one of a set of L alternative categories, ie. the
labels. They are considered as random variables denoted by Y = {Y1, . . . , Yn}. When the Yi’s are
independent, the model reduce to a standard mixture model. When the Yi’s are not independent,
the inter-relationship between sites can be maintained by a so-called neighborhood system usually
defined through a graph. Two neigboring sites correspond to two nodes of the graph linked by an
edge. The dependencies between neighboring Yi are then modelled by further assuming that the
joint distribution of Y1, . . . , Yn is a discrete Markov Random Field (MRF) on this specific graph
defined by

P (y) = W−1 exp(−H(y)) (1)

where W is a normalizing constant and H is a function assumed to be of the following form (we
restrict to pair-wise interactions), H(y) =

∑
i∼j

Vij(yi, yj), where the Vij ’s are functions referred

to as pair potentials. We write i ∼ j when sites i and j are neighbors on the graph, so that the
sum above is only over neighboring sites. We consider pair potentials Vij that depend on yi and
yj but also possibly on i and j. Since the yi’s can only take a finite number of values, for each i
and j, we can define a L × L matrix

�
ij = (

�
ij(k, l))1≤k,l≤L and write without lost of generality

Vij(yi, yj) = −
�

ij(k, l) if yi = ek and yj = el. Using the indicator vector notation and denoting
yt

i the transpose of vector yi, it is equivalent to write Vij(yi, yj) = −yt
i

�
ijyj . This latter notation

has the advantage to still make sense when the vectors are arbitrary and not necessarily indicators.
This will be useful when describing the algorithms of Section 8.1. If for all i and j,

�
ij = β × IL

where β is a scalar and IL is the L×L identity matrix, the model parameters reduce to a single scalar
interaction parameter β and we get the Potts model traditionally used for image segmentation [4].
Note that this model is most of the time appropriate for classification since, for positive β, it tends to
favor neighbors that are in the same class. However, cases where the

�
ij’s are far from β×IL could

be useful in situations where neighboring sites are likely to be in different classes. In practice these
parameters can be tuned according to expert or a priori knowledge or they can be estimated from the
data. In the latter case, the part to be estimated is usually assumed independent of the indices i and
j, so that in what follows the Markov model parameters will reduce to a single matrix

�
. Note that
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Triplet Markov fields for the classification of complex structure data 7

formulated as such the model is not identifiable in the sense that different values of the parameters,
namely

�
and

�
+ α � (where � denotes the L × L matrix with all its components being 1) lead to

the same probability distribution. This issue is generally easily handled by imposing some additional
constraint such as

�
(k, l) = 0 for one of the components (k, l). A standard example is that of the

Potts model for which
�

(k, l) = 0 for all k 6= l.
Hidden Markov Fields (HMF) have been widely used for a number of classification tasks. Most

applications are related to image analysis [26] but other examples include population genetics [15],
bioinformatics [33], etc.. Standard models are based on the following usual assumptions. Let
X = (Xi)i∈S and Y = (Yi)i∈S be two random fields, each Xi taking its values in IRd and each Yi

taking its values in L = {e1, . . . , eL}. Y is not observed and considered as hidden. In most existing
approaches, the hidden field Y is assumed to be Markovian (equation (1)) with respect to a neighbor-
ing system. This is not strictly necessary (see for instance [2]). In a segmentation or classification
context, it has the advantage to provide some insight and control on the segmentation regularity
through a meaningful and easy to understand parametric model but it also somewhat reduces the
modeling capabilities of the approach. In the following developments, we will consider more gen-
eral cases. The goal is to estimate Y from the observed X = x. Most approaches then fall into two
categories. The first ones focus on finding the best y using a Bayesian decision principle such as
Maximum A Posteriori (MAP) or Maximum Posterior Mode (MPM) rules. This explicitly involves
the use of P (y|x) and uses the fact that the conditional field denoted by Y|X = x is a Markov field.
This includes methods such as ICM [4] and Simulated Annealing [16] which differ in the way they
deal with the intractable P (y|x) and use its Markovianity. A second type of approaches is related to
a missing data point of view. Originally, the focus is on estimating parameters when some of the data
are missing (the yi’s here). The reference algorithm in such cases is the Expectation-Maximization
(EM) algorithm [13]. In addition to providing estimates of the parameters, the EM algorithm pro-
vides also a classification y by offering the possibility to restore the missing data. However, when
applied to hidden Markov fields, the algorithm is not tractable and requires approximations. This ap-
proach includes among others the Gibbsian EM of [11], the MCEM algorithm and a generalization
of it [29], the PPL-EM algorithm of [29] and various Mean Field like approximations of EM [9].
Such approximations are also all based on the Markovianity of Y|X = x. This property appears as
a critical requirement for any further developments. To our knowledge, there are no approaches to
Markov model based clustering that can be carried out without this assumption.

When Y is Markovian, a simple way to guarantee the Markovianity of Y|X = x is to further
assume that

P (x|y) =
∏

i∈S

P (xi|yi) . (2)

Indeed, equations (1) and (2) imply that (X,Y) is a Markov Random Field which implies that
Y|X = x is a MRF too. This standard and widely used case is referred to, in [2], as the HMF-IN
model for Hidden Markov Field with Independent Noise. Equation (2) is a conditional independence
and non correlated noise condition. In addition, in such a setting, the class dependent distribution
P (.|yi) is usually a standard distribution, typically a Gaussian distribution N (.|θyi

), where the yi

subscript in θyi
indicates that the distribution parameters depends on the specific value of yi. More

generally, HMF-IN parameters are denoted by Ψ = (Θ,
�

) with Θ = {θ1, . . . , θL}. In the one
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8 Juliette Blanchet and Florence Forbes

dimensional Gaussian case, θyi
= (µyi

, σ2
yi

) the mean and variance parameters. This corresponds
to the following equation:

P (X = x|Y = y) ∝ exp(−1/2
∑

i∈S

σ−2
yi

(xi − µyi
)2). (3)

However, the Gaussian assumption is not satisfactory whenever the goal is to partition data into
non-homogeneous class for which the distribution of individuals in the class is very unlikely to be
Gaussian and more generally unimodal. As an example, this is typically a problem, when trying
to segment images into different textures. The last two assumptions (2) and (3) are too simple to
allow one to take texture into account. In particular for complex classes, it may be critical to capture
spatial noise correlations that potentially contain some useful information. For texture modeling, an
alternative hypothesis is that textures are realizations of a Gaussian Markov random field [12]. For
illustration, in the one dimensional case, it corresponds to:

P (x|y) ∝ exp(−
∑

i∼j

αyiyj
xixj −

∑

i∈S

(αyiyi
x2

i + γyi
xi)). (4)

Note the additional double terms αyiyj
xixj when comparing to equation (3). If the cardinality of S is

n, the later corresponds to a multidimensional Gaussian distribution with a n-dimensional diagonal
covariance matrix while (4) corresponds to a more general covariance matrix. When defined by (4)
the Xi’s are not conditionally independent given Y but the trouble with (4) is that except in particular
cases, neither Y|X = x nor (X,Y) is Markovian. Note that if (X,Y) is a MRF then Y|X = x

is a MRF too but the reverse is not necessarily true. Different strategies can then arise. It appears
that a lot of theoretical and computational tools have been developed for a Bayesian treatment (MAP
or MPM), so that there are significant advantages both theoretically and practically in adapting new
models to this framework. The Triplet Markov Field (TMF) of [2] were designed for this purpose.
In what follows, we build new models that are appropriate for Bayesian supervised segmentation
of complex data. They can be seen as particular TMF. In particular, complex dependencies in the
observed data as well as in the labels can be modeled in a principled manner. The generaly used
strong assumption of conditional independence of the observed data can be relaxed. We consider a
generative framework but some aspects of this work are similar to the Conditional Random Fields
(CRF) approach which considers a discriminative framework and models the conditional distribution
P (y|x) directly [21]. Such CRF s are related to the Pairwise Markov random fields (PMF) of [28].
PMF s consist in modelling the joint distibution P (x,y) as a MRF, which implies that P (y|x) is a
MRF too without modelling explicitly the likelihood P (x|y) or assuming that P (y) is Markovian.
The TMF approach is based on the introduction of a third field Z so that (X,Y,Z) is Markovian and
therefore P (z,y|x) is a MRF as a consequence while P (y|x) is not necessarily one, generalizing
this way the Conditional random field approach. More details are given in the following section. We
then show in Section 4, show how we can use algorithms developed for HMF-IN for inference in
these more general models.

INRIA



Triplet Markov fields for the classification of complex structure data 9

3 Designing Triplet Markov Fields (TMF) for supervised seg-
mentation of complex data

3.1 Supervised segmentation

We first focus on data that exhibit some complexity due to the non unimodality or non Gaussianity
of their class dependent distributions. Doing so, we will also propose models that handle high
dimensional data as specified in Section 3.3.

When starting from the standard HMF-IN models (Section 2) to cluster data, a natural idea
to extend the modeling capabilities of this approach is to decomposed each class, given by the
yi’s, into subclasses allowing this way more general class dependent distributions. However in-
troducing such subclasses in a mathematically consistent way is not straightforward. Let us first
assume that each of the L classes is decomposed into K sub-classes so that we can introduce ad-
ditional variables {Z1, . . . , Zn} indicating the sub-classes and then consider class and sub-class
dependent distributions P (.|yi, zi) that depend on some parameters θyizi

. The θyizi
’s belong to a

set Θ = {θlk, l = 1 . . . L, k = 1 . . .K}. When considering standard independent mixture models,
for instance, introducing an extra subclass variable leads to mixtures of mixtures and then raises
some identifiability issues. A mixture of mixtures is simply a larger mixture but a mixture of (eg.
Gaussian) mixtures is not in general identifiable [18]. Intuitively, at the θlk’s level, there is some
ambiguity when trying to assign each component (subclass) to its class. This lack of identifia-
bility corresponds to a problem known as the label switching problem in a Bayesian framework
[8]. It is due to the fact that mixtures of components belonging to the same parametric family are
invariant under permutation of the component labels. However, when the component parameters
Θ = {θlk, l = 1 . . . L, k = 1 . . .K} are known this identifiability issue disappears. This case occurs
in a supervised framework where learning data are used to first estimate the θlk’s. However how
to include a learning step when dealing with Markovian dependent data is not straightforward. In
a learning stage typically, observations x are given together with their ground truth y. This means
that both x and y are known and that the model parameters Ψ = (Θ,

�
) has to be estimated by

maximizing the joint distribution, P (x,y|Ψ) over Ψ. It is easy to see that estimating parameters
Θ is done independently of the assumptions made on P (y). In particular if (2) holds, whatever the
condition on P (y) (Markovianity, etc.), the parameters will be estimated as if the sites i were inde-
pendent. Relaxing assumption (2) is therefore essential when considering a supervised framework
since assuming (2) does not allow to take site dependencies into account. For textures, this has been
used in [23] but the approach based on independent Gaussian mixtures and used for texture recog-
nition, cannot be extended in a consistent way. If the class dependent distributions are assumed to
be standard mixture of Gaussians, the model used in learning each class is an independent mixture
model and does not account for dependencies between the sites. We could deal with learning data as
independent mixtures but this will mean dealing with two different models, one for the images in the
learning set and one for the images in the test set. As an alternative, in the following, we consider
less straightforward but consistent extensions of HMF-IN.

We propose to define the distribution P (x|y) in a more general way. Equation (3) defines the
distribution of X|Y = y as a n-dimensional Gaussian distribution with diagonal covariance matrix
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due to the conditional independence assumption. We generalize (3) by introducing an additional
field Z = (Zi)i∈S with Zi ∈ K = {e′1, . . . , e

′
K} where the e′k are K-dimensional indicator vectors.

For all y ∈ Ln, we can write

P (x|y) =
∑

z∈Kn

P (z|y)P (x|y, z) =
∑

z∈Kn

Πyz fθyz
(x). (5)

The distribution of X|Y = y can be seen as a mixture of Kn distributions where the mixing pro-
portions, denoted by Πyz, are the P (z|y)’s and the mixed distributions are denoted by fθyz

(x) =

P (x|y, z). More specifically, we will consider Gaussian P (x|y, z) with independence between the
components, ie.

fθyz
(x) = P (x|y, z) =

∏

i∈S

fθyizi
(xi) =

∏

i∈S

P (xi|yi, zi), (6)

where {fθlk
, l ∈ {1, . . . , L}, k ∈ {1, . . . , K}} are d-dimensional Gaussian distributions with pa-

rameters θlk = (µlk , Σlk). In particular it follows that for all i ∈ S,

P (xi|yi) =
∑

zi∈K

P (zi|yi)fθyizi
(xi) ,

which is a mixture of K Gaussians depending on yi and whose mixture coefficients P (zi|yi) also
depend on the site i. Equation (9) below shows that this latter dependency is one of the key and main
differences with standard independent mixtures of Gaussians.

As we do not assume a specific Markovian form for Y, in order to consistently define the full
model, ie. the joint distribution of (X,Y,Z), we need to define P (z,y). We choose a Markovian
distribution:

P (z,y) ∝ exp(
∑

i∼j

Vij(zi, yi, zj , yj), (7)

where the Vij(zi, yi, zj , yj) are pair potentials. These potentials could be written in terms of a
KL× KL matrix

�
as specified in Section 2 but we rather write it as

Vij(zi, yi, zj , yj) = zt
i

�
yiyj

zj + yt
i

�
yj (8)

where {
�

ll′ , l, l′∈{1, . . . , L}} are symmetric matrices of size K×K so that
�

ll′ =
�

l′l (there is
thus L(L + 1)/2 different matrices) and

�
is an additional symmetric matrix of size L×L that does

not depend on the zi’s. This is simply looking at KL× KL matrix
�

as a L× L matrix of K ×K
bloc matrices. The reason for such a parameterization is made clearer below.

It follows from (6) and (7) that the variables (X,Y,Z) are Markovian and consist then in a
Triplet Markov Field (TMF) as defined in [2]. From (6) and (7) it comes clearly that as U = (Y,Z)
is Markovian, the pair (X,U) is a Gaussian HMF-IN with KL hidden classes. EM like algorithms
(eg. [9]) can then be applied in particular to provide estimates of the Θlk’s. However defined as such,
the model still suffers from some identifiability issue due to the possibility of label switching. In our
case, the aim is to estimate y from the observed x using the posterior probability P (y|x). When
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Triplet Markov fields for the classification of complex structure data 11

considering the Triplet (X,Y,Z) defined above, this probability is not directly available but only
through the marginalization (sum over the z’s) of P (y, z|x). In practice, to compute P (y|x) then
requires to sum over the right terms ie. to know the permutation of the estimates of the {θlk, l =
1 . . . L, k = 1 . . .K}. This interchanging of labels is generally handled by the imposition of an
appropriate constraint on the parameters but none of the usual ones would be general enough and
make sense in our context. Other proposals can be found in [25] in a clustering context. They
are based on the intuition that components in the same cluster ought to be relatively close to each
other which is not true in general (eg. texture model). Possibly relabelling techniques using a
likelihood or Loss function criterion, as proposed in [31], could be considered but this would required
to enumerate to the order of (KL)! permutations at each iteration and will be time consuming even
for not so large values of K and L.

The TMF defined above are then not adapted to an unsupervised framework, at least when con-
sidering components fθlk

’s from the same parametric family which is often the case when no addi-
tional a priori knowledge is available. In a supervised framework this issue disappears, as soon as the
{θlk}’s can be learned in a way that allows to group them according to values of k, {θlk, l = 1 . . . L}.
The TMF above are appropriate for learning. It follows from (7) that P (z|y) is Markovian too

Πyz = P (z|y) =
1

W (y)
exp(

∑

i∼j

zt
i

�
yiyj

zj), (9)

where W (y) is a normalizing constant that depends on y. Note that matrix
�

disappears in (9). This
will result in some variations between the learning and classification steps of Section 4.

Equation (6) means that the Xi’s are conditionally independent given the Yi’s and the Zi’s. In
the whole model definition it acts in a similar way as equation (2). The keypoint in introducing Z

this way is that given (6) and (9), X,Z|Y = y is an HMF-IN. This property will be useful in the
learning stage while the fact that the pair (X,U) with U = (Y,Z) is an HMF-IN will be useful in
the classification stage. More specifically, combining (6) and (9), it comes

P (x, z|y) = P (x|y, z)P (z|y) =
1

W (y)
exp(

∑

i∼j

zt
i

�
yiyj

zj +
∑

i∈S

log fθyizi
(xi)), (10)

which shows that P (x, z|y) does not generally factorize and results then in a different model than
the TMF’s that [2] (sect 2.5 p.483) and [3] suggest to use in practical applications. The estimation
procedures suggested in [2] cannot then be applied straightforwardly but we will propose one in
Section 8.1.

3.2 Varying number of sub-classes

As mentioned before, the triplet model is described above for Zi ∈ K, meaning implicitly that the
number of sub-classes is K for each of the L classes. In practice, it is important to handle the fact that
the class distributions may be of various form and in particular the number of sub-classes required
to described them may not be the same. To handle this case requires to specify some modifications
but does not fundamentally change the procedure.
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12 Juliette Blanchet and Florence Forbes

Let K1, . . . , KL denote the respective desired numbers of sub-classes for classes e1 to eL. Let ξ
be the set ξ = {(e′k, el), l = 1 . . . L, k = 1 . . .Kl}. The set ξ is included in set L×{1, . . . , max

l
Kl}.

Keeping the same definition (8) for the potentials, it is enough to replace equation (7) by defining
P (z,y) as follows:

P (z,y) ∝ exp(
∑

i∼j

Vij(zi, yi, zj , yj), if (z,y) ∈ ξ (11)

= 0 otherwise (12)

The factorization property remains and then the various useful Markov properties follow (see eg.
[22]).

3.3 High dimensional data

Using Gaussian distributions for the fθlk
’s in equation (6) has the advantage to admit a straight-

forward formulation of the model for high dimensional data. However, estimating full covariances
matrices is not always possible and advisable beyond small dimensions. A common solution is to
consider diagonal covariance matrices but this is assuming independence between the observations
components and is usually not satisfying. As an alternative, we propose to use specific parameter-
izations described in [7]. The authors propose new Gaussian models of high dimensional data for
clustering purposes based on the idea that high dimensional data live around subspaces with a di-
mension lower than the one of the original subspace. Low dimensional class-specific subspaces are
introduced in order to limit the number of parameters. The covariance matrix Σlk of each class is
re-parameterized in its eigenspaces. Denoting by Qlk the orthogonal matrix with the eigenvectors of
Σlk as columns, the class conditional covariance matrix Dlk is therefore defined in the eigenspace
of Σlk by Dlk = Qt

lkΣlkQlk. The matrix Dlk is a diagonal matrix which contains the eigenvalues
of Σlk. It is further assumed that the diagonal of Dlk is made of dlk first values, a1

lk, . . . , adlk

lk , and
d − dlk other values all fixed to some value blk with, for all j = 1, . . . , dlk, aj

lk > blk. Notation
d denotes the dimension of the original space and dlk ∈ {1, . . . , p − 1} is unknown. See [7] for
additional details and further interpretation of such decompositions. In the present work, we recast
this approach into the EM based procedure described in Section 8.1. When dealing with high di-
mensional data, this reduces the number of parameters to be estimated significantly and tends to
avoid numerical problems with singular matrices while allowing to go beyond the standard diagonal
covariance matrices and the usual independence assumptions between dimensions.

4 The supervised classification of complex data scheme

More than an algorithm, we describe a general scheme to deal with complex data as specified. As
regards parameter estimation, we consider a soft clustering approach and use an algorithm based
on EM and mean field-like approximations [9]. The algorithm is decribed in Appendix. We im-
plemented it to illustrate the performance of the models we propose but other algorithms could
be considered and would fit the scheme. Its actual use in our supervised classification framework
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requires two stages which are described in Sections 4.1 and 4.2. The algorithm was originally devel-
oped for standard hidden Markov fields referred to as HMF-IN (Section 2). The missing variables
correspond to a Markov field on a discrete state space and the conditional independence assumption
(2) is satisfied. We show below how algorithms developped for this HMF-IN case can be used to
deal with more general models such as those in Section 3.

4.1 Learning step

We consider a supervised framework in which part of the information is available through learning
data. It is assumed that for a number of individuals, we both observe xi and its corresponding class
yi. Using the triplet model defined in Section 3, it remains that the zi are missing. It follows that by
considering variables X and Z|Y = y, we can apply the algorithm described in Section 8.1 to the
HMF-IN (X,Z|Y = y) (see equation (10)) to provide estimates of the model parameters which are
the {

�
ll′ , l, l

′ ∈ {1, . . . , L}} and the {θlk, l = 1, . . . L, k = 1, . . . , K}. As mentioned in Section
3, estimating the later parameters is especially important to solve identifiability issues when dealing
with our triplets Markov fields in the classification step. To estimate the θlk’s it is necessary that
all L classes are sufficiently represented in the learning data. In practice the learning data are often
divided in a number of separate data sets (eg. Section 7) so that the learning procedure actually
consists of a number of separate runs of the estimation algorithm. As regards the

�
ll′ ’s estimated

in the learning stage, we do not necessarily need to keep them for the classification step. However,
for complex data, it may be that learning also the

�
ll′ ’s or at least part of them is a better choice

in terms of modeling capabilities. We illustrate and explain such cases in more details in Section
7. This Section also presents a case where among the

�
ll′ ’s, only the

�
ll can be learned due to the

specificity of the learning data. Typically, if the underlying neighborhood structure is such that there
exists no neighbors in classes l and l′, then

�
ll′ cannot be estimated since terms involving

�
ll′ will

not appear in the model formulas. More generally if the number of pairs in states l and l′ is too
small, the estimation of

�
ll′ is likely not to be good and in this case we should consider ignoring it.

When choosing to use in the subsequent classification step, all or part of the
�

ll′ ’s learned,
considering separate runs for the estimation of the

�
ll′ ’s may raise identifiability issues. The model

(9) used in each run is identifiable only up to a constant which may then vary from one run to another.
The issue appears when grouping all estimations in a single model for the classification stage since
various equivalent inferences under model (9) could lead to non equivalent inference under model
(8). However, the explicit introduction of matrix

�
in (8) and the fact that its estimation is postponed

to the classification step prevents this issue. Also, constraints on the form of
�

can be easily imposed
(eg. Potts like constraint) to make the estimated parameters unique in the classification stage.

4.2 Classification step

At this stage, Y and Z are missing and only the observations X are available. Considering X and
U = (Y,Z), (X,U) is an HMF-IN (equations (7) and (6)) and we can apply again the algorithm
of Section 8.1. The parameters are the K × K dimensional matrices {

�
ll′ , l, l′∈ {1, . . . , L}} and

the {θlk, l = 1 . . . L, k = 1 . . .K} as before with in addition the L × L dimensional matrix
�

, ie.
parameters {

�
ll′ , l, l′∈ {1, . . . , L}}.
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14 Juliette Blanchet and Florence Forbes

The θlk’s are considered as fixed to the values computed in the learning stage. For the
�

ll′ ’s,
different strategies arise depending on the available learning data and the goal in mind, in particular
the type of interactions we want to account for. In practice, we propose to use specified or learned
values for all

�
ll′ ’s. See Section 7 for an example. In most cases then, regarding parameters, the

classification step consists of estimating
�

. One possibility is to specify
�

to be of the Potts form ie.
to consider diagonal

�
, denoted by

�
= [βl] when the diagonal terms are arbitrary, or

�
= [β] when

they are all equal to some value β. More complex knowledge on the classes could be incorporated
through other definitions of

�
but this simple case appears satisfying in a number of applications.

Although Y is not Markovian, this acts as a regularizing term favoring homogeneous regions of the
same class. This is an important feature of our classification step.

5 Selecting Triplet Markov Models

Choosing the probabilistic model that best accounts for the observed data is an important first step
for the quality of the subsequent estimation and classification stages. In statistical problems, a com-
monly used selection criterion is the Bayesian Information Criterion (BIC) of [30]. The BIC is
computed given the data x and a model M with parameters Ψ. It is defined by:

BIC(M) = 2 log P (x | Ψml) − δ log n ,

where Ψml is the maximum likelihood estimate of Ψ, Ψml = arg max
Ψ

P (x | Ψ,M) , δ is the

number of free parameters in model M and n is the number of observations. BIC can be seen has
an approximation of the probability of the model given the observations. The selected model is the
one with the maximum BIC. BIC allows comparison of models with differing parameterizations.
Many other approaches can be found in the literature on model selection (see for instance the list of
references in [20]) but BIC has become quite popular due to its simplicity and its good results.

In this study, we consider the number of sub-classes (cardinality of the Zi’s state space, possibly
varying as indicated in Section 3.2) as fixed to focus more specifically on the Markov model and on
the Gaussian models. For the Markov model as defined in equations (7) and (8), model selection
is done in two steps. We first select the best models for matrices

�
ll′ ’s . This can be done in the

learning stage while finding the best model for matrix
�

can only be done in the test stage. We will
in general only consider specific forms for

�
(Potts like). As regards matrices

�
ll′ ’s, omitting the

subscripts, we will consider the decomposition of each of the K × K matrix into
�

= ∆ + Γ,

where similarly to Section 4, ∆ is a diagonal matrix denoted by ∆ = [β] if all diagonal terms are
equal to a single value β and ∆ = [βk] if the diagonal terms are arbitrary. Conversely, for the second
matrix Γ, all diagonal terms are 0. We then compare 4 possible models, namely,

�
= [β] (standard

Potts model),
�

= [βk] (generalized Potts model with class-dependent interaction parameters),
�

= [β] + Γ and
�

= [βk] + Γ (unconstrained or full model).
For multivariate Gaussian sub-class specific distributions, there exists a number of different

choices for the Σlk’s. See [1] and [10] for a description of examples of such forms and their mean-
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ing. The simplest models are those for which the Σlk’s are diagonal matrices. We then compare this
choice to the parameterizations described in Section 3.3 for high dimensional data.

However, for HMF’s and for TMF’s as well, the exact computation of BIC is not tractable due
to the dependence structure induced by the Markov modeling. When focusing on the Gaussian
parameters, a possibility is to compute BIC for independent mixture models, forgetting any spatial
information but this would not make sense when choosing among various

�
models. We then

propose to use a mean field like approximations of BIC proposed by [14] which is based on principles
similar to that presented in Section 8.1. In what follows this approximated BIC will be denoted
by BICMF . Examples of model selection results are shown in Section 7. Before that, as part
of our experiments on simulated data, we mention and illustrate in the next section, a problem of
phase transition, that can occur for the underlying Markov field (8), for its possible consequences on
parameter estimation.

6 Simulated Triplet Markov fields and Phase transition phenom-
ena

An important property associated with a Markov random field model is its ability to experience phase
transition. This is a common physical phenomenon that occurs when a small change in physical pa-
rameters produces an abrupt and large-scale change in system properties. When Markov models are
employed as a priori models for regularizing an inverse problem, such as image segmentation for
example, then the performance of an algorithm that attempts to recover lost information from given
data may strongly depend on the particular value of the parameters. The main reason for this is that
most inverse algorithm attempt to recover information in a local and iterative fashion. This means
that, at each iteration, the algorithm is only able to recover small-scale information. Large-scale in-
formation is recovered only after many iterations and as a consequence of the collective contribution
of small-scale recoveries. It is therefore likely that depending on the location of the parameter in
the parameter space, the inverse algorithm may suffer from critical slowing down. Determining the
regions corresponding to phase transition and knowing the location of the parameters may then be
important issues. In this section, we only illustrate such a phase transition using simulated data in a
simple particular case of (8). A theoretical study on more general models is much more complex.

More specifically, phase transition corresponds to parameter values at which the partition func-
tion seizes of being analytic when the number of sites n grows to infinity [17].
Let us consider the Markov field (Y,Z) with pair potentials parameterized by b, c ∈ � :

Vij(zi, yi, zj , yj) = bzt
izj yt

iyj + cyt
iyj , (13)

which is equation (8) with
�

ll′ = 0L (the L×L zero matrix) if l 6= l′,
�

ll = bIK (where IK denotes
the K × K identity matrix) and

�
= cIL.

Figure 1 shows realizations of (Y,Z) for varying values of the two parameters and Figure 2 the
corresponding realizations of Y. Note that each of the 4 possible values of (yi, zi) is associated to
a grey-level. Figure 3 shows simulated data X using a Triplet Markov models when the Gaussian
distributions in 6 are one dimensional with standard deviation equal to 0.3. For comparison, Figure
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16 Juliette Blanchet and Florence Forbes

4 shows realizations of the Gaussian HMF-IN models obtained using the images in Figure 2 and
adding some Gaussian noise with 0 mean and standard deviation equal to 0.3. As can be suspected
from Figure 1, such a simple case can illustrate a non trivial phase transition phenomenon. Let
W (b, c) be the partition function of P (y, z). Second derivatives of W are given by:

∂2 log W (b, c)

∂b2
= V ar(N(Y,Z))

∂2 log W (b, c)

∂c2
= V ar(N(Y))

∂2 log W (b, c)

∂b∂c
= Cov(N(Y,Z), N(Y))

where N(y, z) denotes the number of neighbors i and j such that yi = yj and zi = zj , N(y) the
number of neighbors i and j such that yi = yj , V ar the variance and Cov the covariance operator.
Figure 5 is a superposition of the values of these derivatives for b and c varying between −2 and 2.
These values were obtained by simulating different realizations of the Markov field (13). Different
values of N(Y,Z) and N(Y) were then computed and the empirical variances and covariance of
these quantities provided approximations of the derivatives. In Figure 5, a main “Y” shape curve,
as well as 2 secondary curves indicate discontinuities in the partition function typical of critical
parameter values. As an additional illustration, Figure 1 gives some realizations of the Markov field
(Y,Z) defined by equation (13) for L = 2 and K = 2.

7 Application to texture recognition with local invariant regions
and their geometric relationships

The issue under consideration is a supervised clustering issue involving complex data. The data set
is made of 140 single texture images and 63 multiple texture images. Images have been gathered
over a wide range of viewpoints and scale changes. The data set contains L = 7 different textures
illustrated in Figure 6. For each of the 7 textures, we have 20 single texture images from which 10 are
kept for the learning set. The data set is then divided into a learning set containing 70 single texture
images and a test set containing 70 other single texture images and 63 multiple texture images.

As mentioned before, traditional Gaussian MRFs modelling one dimensional grey-level intensity
images cannot easily handle such viewpoint and scale varying images. More and more high-level
image analysis, such as feature-based object recognition or object tracking, go beyond the tradi-
tional regular grids of pixels and one-dimensional grey-level intensities. Our images are then rather
described by local affine-invariant descriptors and their spatial relationships. A graph is associated to
an image with the nodes representing feature vectors describing image regions and the edges joining
spatially related regions. Local photometric descriptors computed for invariant interest regions have
proved to be very successful in applications such as object recognition, texture classification and
texture recognition (see [6] and the references therein for preliminary work on such data). For the
feature extraction stage, we follow the texture representation method described in [23] for its advan-
tages over methods proposed in the recent literature. It is based on an interest point detector (Laplace
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b = 2

b = 1

b = 0

b = −1

b = −2

c = −2 c = −1 c = 0 c = 1 c = 2

Figure 1: Realizations of (Y,Z) defined by (13) for various b and c, when K = 2 and L = 2.
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b = 2

b = 1

b = 0

b = −1

b = −2

c = −2 c = −1 c = 0 c = 1 c = 2

Figure 2: Realizations of Y for various b and c, when K = 2 and L = 2.
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b = 2

b = 1

b = 0

b = −1

b = −2

c = −2 c = −1 c = 0 c = 1 c = 2

Figure 3: Realizations of X for various b and c, when K = 2 and L = 2.
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b = 2

b = 1

b = 0

b = −1

b = −2

c = −2 c = −1 c = 0 c = 1 c = 2

Figure 4: Realizations of a HMF-IN for various b and c, when K = 2 and L = 2.
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Figure 5: Phase transition for a simple 2 parameter model. A main “Y” shape curve, as well as 2
secondary curves, obtained by simulation, indicate where the discontinuities of the partition function
are located and provide approximate values of the critical parameters.

T1 (Brick) T2 (Carpet) T3 (Chair) T4 (Floor 1) T5 (Floor 2) T6 (Marble) T7 (Wood)

Figure 6: Samples of the texture classes used in the experiments.

detector) that leads to a sparse representation selecting the most perceptually salient regions in an
image and on a shape selection process that provides affine invariance. Each detected region is then
described by a feature vector (descriptor). The descriptors we use are 128-dimensional SIFT de-
scriptors [27]. A graph is then built from the detected interest points by considering their Delaunay
graph. Other choices, as regards graph construction and descriptors are possible [6]. In particular
using graphs based on detected regions as in [23] is an issue when regions of very different sizes are
detected. Delaunay graphs tend to provide more regular graphs where nodes all have a reasonable
number of neighbors, with the possibility to put a threshold on too long edges. An illustration is
given in Figure 7 that shows a multi texture image and the corresponding Delaunay graph. Beyond
the actual choice of the interest point detector, feature vectors, etc. the specificities of this data set
is the high dimensionality of the observed feature vectors, the irregularity of the sites at which they
are observed and the non-unimodal nature of the class dependent distributions.

Our model assumes that descriptors are random variables with a specific probability distribution
in each texture class. The number of sub-classes to described such distributions is set to K = 10
for each texture. Selecting K using BIC is also possible but we did not observe significantly better
recognition results. For the 128-dimensional sub-class dependent Gaussian distributions, we con-
sider two possibilities: diagonal covariance matrices or specific parameterization of the covariance
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Figure 7: Multi texture image (left) and its associated Delaunay graph (right) built from the detected
interest points.

matrices as described in Section 3.3. When dealing with high dimensional data, this reduces the
number of parameters to be estimated significantly and tends to avoid numerical problems with sin-
gular matrices. As regards the Markov model, we consider that matrix

�
is fixed to a Potts form,

ie. to a diagonal [β] or [βl]. Results are reported for the latter choice but the first one gives similar
results. For matrices

�
ll′ , the nature of the learning data set, including only single texture images,

does not allow to estimate the
�

ll′ ’s for l 6= l′. We therefore set them to 0, which is consistent
with the fact that we aim at recovering homogeneous regions of the same texture. An alternative
is to postpone their estimation in the classification step but in practice test images do not generally
include samples of all textures so that most of the

�
ll′ could not be estimated due to lack of relevant

information. For the
�

ll’s we consider the possibilities described in Section 5 and use a mean field
approximation of BIC to select the best model for each texture l with l = 1, . . . , L. Again, the
estimation of the

�
ll’s could be postponed to the classification step but this would mean estimating

simultaneously on each test images, L matrices of size K × K (the bloc diagonal of a KL × KL
dimensional matrix). Considering the number of detected points in each image (from few hundreds
to few thousands), the estimation could be reasonably carried out only for very simple models such
as diagonal models and would then greatly reduces the model flexibility. As an alternative, learning
each texture separately involves less parameters and more data points allowing more complex mod-
els to be estimated accurately. Tables 1 and 2 report BICMF values for various models of

�
ll in

two cases corresponding to diagonal Σlk’s (Table 1) and the more general Σlk’s described in Section
3.3, referred to as High Dim Σlk’s. It appears that models with High Dim Σlk’s are always better, in
terms of BICMF , whatever the

�
ll model. For such Σlk’s (Table 2), the selected

�
ll model depends

on the texture class. It appears that for the wood texture, the simplest model is selected, while the
more general model is selected only for the Floor 2 and Marble textures.

To illustrate and compare the various models performance, Table 3 shows recognition results for
individual regions that is the fraction of all individual regions in the test images that were correctly
classified. These results are obtained using only the single texture images. The “Mixture” columns
refer to the method that assumes an independent Gaussian mixture for each image in the learning and
classification steps. The two possible choices for the covariance matrices are considered. The EM
algorithm is used for estimation and classification. The “TMF” columns refer to our method when
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Diagonal Σlk’s � ll Model Brick Carpet Chair Floor 1 Floor 2 Marble Wood
[β] 1739730 2403890 3141300 2556280 3147610 2967630 2092090

BICMF [βk] 1739840 2403970 3141440 2556410 3147900 2967770 2092030
[β]+Γ 1740010 2404450 3141930 2556630 3145570 2968290 1946380
[βk]+Γ 1740080 2404600 3142170 2556730 3145600 2968280 2092760

Table 1:
�

ll model selection for each texture class when covariance matrices are assumed to be
diagonal: the bold numbers indicate the model selected according to our BICMF criterion.

High Dim Σlk’s � ll Model Brick Carpet Chair Floor 1 Floor 2 Marble Wood
[β] 1902700 2515860 3516630 2696700 3290280 3172210 2263160

BICMF [βk] 1882040 2524590 3529860 2697180 3286890 3172450 2260870
[β]+Γ 1905800 2518320 3521420 2692730 3292960 3177140 2260650
[βk]+Γ 1876510 2518430 3495890 2691310 3293230 3178150 2262300

Table 2:
�

ll model selection for each texture class when covariance matrices are parameterized to
account for high dimensional data: the bold numbers indicate the model selected according to our
BICMF criterion.

Dependencie Model Covariance Model Brick Carpet Chair Floor 1 Floor 2 Marble Wood
Mixture Diagonal Σlk 77.58 31.60 58.26 28.26 58.79 33.87 58.56
Mixture High Dim Σlk 81.18 56.94 62.48 35.64 67.43 37.05 65.02

TMF Diagonal Σlk 96.59 80.70 83.60 82.69 83.90 46.05 95.18
TMF High Dim Σlk 99.33 98.61 99.28 97.36 99.57 56.24 99.28

TMF-BIC 99.37 98.71 99.30 98.16 99.62 56.77 99.52

Table 3: Percentage of individual regions correctly classified for the single texture images of the test
set. Rows correspond to different models. The bold numbers indicate the higher percentages.

the more general model ([βk]+Γ]) is used for all
�

ll’s with the two possible cases for the covariance
matrices. The “TMF-BIC” column then refers to the case where the form of the covariance matrices
and the

�
ll models are selected according to BIC (Tables 1 and 2). The results in Table 3 show

that the rates improve significantly on the independent Mixture rates (19% at the minimum) when
our TMF model, with the High Dim parameterization of the Σkl’s, is used. For this latter case, the
rates are all very good (98 % and above) except for the Marble texture. For this texture, the images
available for learning are very heterogeneous in terms of lightning. On the same Marble image, some
parts can be very badly lit and appear as very dark while others appear as very light. This prevent a
good learning mainly due to the descriptor quality which cannot properly handle such variations.

For multiple texture images, significant improvement is also observed on all images. The rates
increase about 53% in average between the Mixture and diagonal Σlk’s case and the TMF-BIC case.
An illustration is given in Figure 8 with more details regarding the various possible models.
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Brick Carpet Chair Floor 1 Floor 2 Marble Wood Rate

True classification

Mixture Diagonal Σlk 41.52%

Mixture High Dim Σlk 43.39%

TMF Diagonal Σlk 79.91%

TMF High Dim Σlk 94.29%

TMF-BIC 95.47%

Figure 8: 3 texture (Carpet, Chair and Floor 2) image shown at the top-left corner: the first row
shows the true classification while each following row corresponds to a different models. Columns
show the interest points classified in each of the 7 texture classes. The last column reports the
classification rate.

Rates for our TMF-BIC approach are all above 90 %. It happens in very few images that using
TMF with the most complex

�
ll models, instead of selecting them with BICMF , gives slightly

better results (from 1 or 2%). Figure 10 illustrates such a case while Figure 9 illustrates the more
general case where model selection leads to a significant gain.

As mentioned before (Table 3), the Marble texture suffers from lower recognition rates due to the
nature of the learning data set. The high variability of the Marble images in this set makes learning a
model for this texture very difficult. Figure 11 shows a typical example of a 3 texture image contain-
ing Marble to illustrate the behavior of our method in this case. Global recognition rates are still over
90 % but the errors mainly come from points in the Marble texture being misclassified. As regards
the other methods, whose rates are not reported here, we observe similar results. Classification rates
are greatly improved with our TMF-BIC method.

8 Discussion

We considered particular cases of Triplet Markov fields by designing them to include a learning
stage and to adapt to general class dependent distributions or equivalently to general noise models.
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Brick Carpet Chair Floor 1 Floor 2 Marble Wood Rate

True classification

Mixture Diagonal Σlk 36.60%

TMF High Dim Σlk 88.74%

TMF-BIC 94.86%

Figure 9: 2 texture (Chair and Brick) image shown at the top-left corner: the first row shows the true
classification while the following rows correspond respectively to the independent mixture model
with diagonal Σlk’s, the TMF model with High Dim Σlk’s and unconstrained

�
ll models, the TMF

model with selected
�

ll models. Columns show the interest points classified in each of the 7 texture
classes. The last column reports the classification rate.

Brick Carpet Chair Floor 1 Floor 2 Marble Wood Rate

True classification

Mixture Diagonal Σlk 44.43%

TMF High Dim Σlk 96.47%

TMF-BIC 95.94%

Figure 10: 2 texture (Chair and Wood) image shown at the top-left corner: the first row shows
the true classification while the following rows correspond respectively to the independent mixture
model with diagonal Σlk’s, the TMF model with High Dim Σlk’s and unconstrained

�
ll models, the

TMF model with selected
�

ll models. Columns show the interest points classified in each of the 7
texture classes. The last column reports the classification rate.
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Brick Carpet Chair Floor 1 Floor 2 Marble Wood Rate

True classification

TMF-BIC 91.11%

Figure 11: 3 texture image containing Marble shown at the top-left corner: the first row show the true
classification and the second the classification obtained with our TMF-BIC method. Columns show
the interest points classified in each of the 7 texture classes. The last column reports the classification
rate.

Starting from a traditional hidden data model for which various estimation procedures exist, a sub-
class variable Z is introduced in addition to the usual observed and missing variables X and Y. The
supervised problem is recasted as an unsupervised problem which allows traditional treatment. In
particular our approach allows to model Markovian dependencies on the pixels and their effect on
the noise parameter estimation. In a way similar to [2], introducing an extra Z allows to keep the
same computational properties while increasing modelling capabilities.

The supervised framework was dictated by the type of applications in mind (it eg. texture recog-
nition). The TMF model has shown its relevance in unsupervised frameworks too [2, 3] but our
particular TMF’s differ from the ones investigated in these papers in that some factorization prop-
erties do not hold. What limits our present study is the identifiability issue inherent to our model
and the way we solve it by making full benefit of learning data. Alternative ways to deal with the
identifiability issue in order to consider our TMF models in unsupervised cases would be interesting
to investigate. This includes ideas related to the relabelling algorithm described in [19]. Our model
is not limited to regular graphs. An interesting question that was not addressed in this paper involves
the choice of the neighborhood structure. This choice may depend on the application. Indeed, for
irregular lattices, the points relative displacements do not follow a predictable pattern and their link-
age are not always obvious from their geometry so that a lot of possible spatial structures can be
generated. As regards Markov models, the automatic neighborhood selection has not been really
addressed in the literature except very recently by [24]. In our experiments, it appears that graphs
with similar numbers of neighbors for each sites give more satisfying results. Directions of research
for neighborhood selection can be found in [24].
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Appendix

8.1 Parameter estimation procedure

In this section we describe the main features of the algorithm used for estimation in the two stages de-
scribed in Sections 4.1 and 4.2. The algorithm was originally developed for standard hidden Markov
fields referred to as HMF-IN (Section 2). To distinguish this particular case from the more general
TMF cases considered above, we will denote by O = {O1, . . . , On} the observed variables and by
M = {M1, . . . , Mn} the missing variables such that (O,M) is an HMF-IN, ie. M is Markovian
on a discrete state space with G members {e1, . . . , eG} and the conditional independence assump-
tion (2) is satisfied. As mentioned earlier, the learning stage (Section 4.1) is somewhat recasted
as an unsupervised case so that the estimation procedures we consider are originally developed for
unsupervised segmentation. We focus on soft clustering approaches and more specifically on EM
based approaches. We consider recent procedures combining an EM approach with mean field-like
approximations [9]. Such procedures were shown to be more efficient in many ways than standard
Gibbs samplers or Markov Chain Monte Carlo (MCMC) techniques traditionally used in computer
vision. The EM classification framework have many interesting features. As a probabilistic model,
it leads to various possible statistical criteria to select automatically the number of clusters and it
provides confidence measures such as posterior probabilities that an object (eg. a pixel) is assigned
to a class. It is flexible in that various pairwise relationship information and features on individual
data can be easily incorporated possibly with different weights. Its generalization to include missing
data, that often occurs when dealing with real data, is straightforward and its extension to overlap-
ping clustering methods, to deal with more realistic situations where objects can belong to many
groups at the same time, can also be considered.

Briefly, these algorithms can be presented as follow (see [9]). They are based on the EM al-
gorithm which is an iterative algorithm aiming at maximizing the log-likelihood (for the observed
variables o) of the model under consideration by maximizing at each iteration the expectation of the
complete log-likelihood (for the observed and hidden variables O and M) knowing the data and a
current estimate of the model parameters. When the model is an Hidden Markov Model with param-
eters Ψ, there are two difficulties in evaluating this expectation. Both the normalizing constant W in
(1) and the conditional probabilities P (mi | o,Ψ) and P (mi, mj | o,Ψ) for j in the neighborhood
N(i) of i, cannot be computed exactly. Informally, the mean field approach consists in approxi-
mating the intractable probabilities by neglecting fluctuations from the mean in the neighborhood of
each site i. More generally, we talk about mean field-like approximations when the value for site
i does not depend on the value for other sites which are all set to constants (not necessarily to the
means) independently of the value for site i. These constant values denoted by m̃1, . . . , m̃n are not
arbitrary but satisfy some appropriate consistency conditions (see [9]). Let mN(i) denote the set of
variables {mj , j ∈ N(i)} associated to the set N(i) of neighbors of i. It follows that P (mi | o,Ψ)
is approximated by

P (mi | o, m̃N(i),Ψ) ∝ f(oi|m
t
iΘ)P (mi|m̃N(i))

∝ f(oi|m
t
iΘ) exp(mt

i(
� ∑

j∈N(i)

m̃j))
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where Θ is considered as a vector of parameters. The normalizing constant is not specified but its
computation is not an issue. Then, for all j ∈ N(i), P (mi, mj | o,Ψ) is approximated by
P (mi | o, m̃N(i),Ψ) P (mj | o, m̃N(j),Ψ). Both approximations are easy to compute. Using such
approximations leads to algorithms which in their general form consist in repeating two steps. At
iteration q,

(1) Create from the data o and some current parameter estimates Ψ(q−1), a configuration m̃
(q)
1 , . . . m̃

(q)
n .

Replace the Markov distribution P (m) defined as in (1) by the factorized distribution
n∏

i=1

P (mi|m̃
(q)
N(i)).

It follows that the joint distribution P (o,m|Ψ) can also be approximated by a factorized distribu-
tion:

n∏

i=1

f(oi|m
t
iΘ)P (mi|m̃

(q)
N(i))

and the two problems encountered when considering the EM algorithm with the exact joint distribu-
tion disappear. The second step is therefore, (2) Apply the EM algorithm for this factorized model
with starting values Ψ(q−1), to get updated estimates Ψ(q) of the parameters.

In particular the mean field and simulated field algorithms consist in two different ways of
performing step (1). The mean field algorithm consists in updating the m̃i

(q)’s by setting, for all
i = 1, . . . , n, m̃i

(q) to the mean of distribution P (mi | o, m̃
(q)
N(i),Ψ

(q−1)). Note that as Mi is an

indicator vector, the mean value m̃i
(q) is a vector made of the respective probabilities to be in each of

the G classes. In the simulated field algorithm, m̃i
(q) is simulated from P (mi | o, m̃

(q)
N(i),Ψ

(q−1)).
Note also that to save additional notation, the updating described above is synchronous while we
actually implemented a sequential updating of the m̃i

(q)’s: each node i is updated in turn using the
new values of the other nodes as soon as they become available rather than waiting until all nodes
have been updated. Then, in practice, at step (2), performing one EM iteration is usually enough.
The HMRF estimation provides us with estimations for the means and covariance matrices of the G
Gaussian distributions, namely µg and Σg for g = 1, . . .G, but also for the hidden field parameters,
matrix

�
. It follows easily approximations of the P (Mi = eg|o,Ψ)’s required to classify each sites

using the MPM or MAP principles.
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