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1. INTRODUCTION

The delay phenomenon constitutes one of the ma-
jor complexity components of networked control,
since actuators, sensors, computers, field networks
and wireless communications that are involved
in feedback loops unavoidably introduce variable
deadtimes. Despite numerous advances in this
field, delay remains a theoretical and practical
challenge (see, e.g. the survey (Richard, 2003)).
Among these open problems, the online delay
identification has a particular part: On the one
hand, the delay knowledge can benefit many of the
control techniques suited for such systems (pre-
dictors, finite spectrum assignments, observers...).
On the other hand, the existing identification
techniques for time delay systems (TDS) (see (Ren
et al., 2005) for a modified least squares technique
and a survey in (Belkoura L., 2004)) generally
suffer from poor speed performance. The authors
regard this paper as a first step to the TDS-
adaptation of the fast identification techniques
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project.

that were recently proposed in (Fliess M., 2003)
in the framework of nonlinear, finite-dimensional
models. Let us recall that those techniques are
not asymptotic, and do not need any statistical
knowledge of the noises corrupting the data. (See,
e.g., (Fliess and Sira-Ramirez, 2004) for appli-
cations to nonlinear state estimation, (Fliess et
al., 2004), (Fliess et al., 2005) for linear and non-
linear diagnosis, and (Fliess et al., 2003) for signal
processing.

We adopt in this paper a distributional formu-
lation from which the parameters as well as the
input delays can be easily identified. The plant is
assumed to be linear with respect to its parame-
ters, but not necessarily with respect to its inputs
and outputs. The identification procedure mainly
consists in the following three steps: (1) Differenti-
ations, (2) Multiplication with an appropriate C∞

function and (3) Integrations.

We first recall here some standard definitions and
results from distribution theory and fix the no-
tations we shall use in the sequel. Let Ω be an
open subset of R. The space of C∞ functions
having compact support in Ω is denoted by D(Ω),
and D′(Ω) is the space of distributions on Ω, i.e.
the space of continuous linear forms on D(Ω).



The complement of the largest open subset of Ω
in which a distribution T vanishes is called the
support of T and is denoted by suppT . D′

+ (resp.
E ′) is the space of distributions with support con-
tained in [0,∞) (resp. compact support). It is an
algebra with respect to convolution with identity
δ, the Dirac distribution. When concentrated at
a point {τ}, the latter distribution δ(t − τ) is
denoted δτ . A distribution is said to be of order
r if it acts continuously on Cr-functions but not
on Cr−1-functions. Measures and functions are
of order 0. Functions are considered through the
distributions they define and are therefore indefi-
nitely differentiable. If y is a continuous function
except at a point a with a finite jump σa, its
derivative dy/dt writes

dy/dt = ẏ + σa δa (1)

where ẏ is the distribution defined from the usual
derivative of y. Derivation, integration and trans-
lation can be formed from the convolution prod-
ucts

ẏ = δ(1)∗y,

∫

y = H ∗y, y(t−τ) = δτ ∗y (2)

where δ(1) is the derivative of the Dirac distribu-
tion, and H denotes the Heaviside function. With
a slight abuse of notations, we shall write Hky
the iterated integration of y and more generally
T k the iterated convolution product of order k.
For S, T in D′

+, one has:

supp S ∗ T ⊂ supp S + supp T (3)

where the sum in the right hand side is defined by
{x + y ; x ∈ supp S, y ∈ supp T}. Finally, when
there is no danger of confusion, we shall sometimes
denote T (s), s ∈ C, the Laplace transform of T .

The paper is organized as follows. Section 2 gives
the main theoretical tools we shall need for our
identification problem. Section 3 is devoted to
specific cases involving piecewise constants inputs,
and Section 4 considers the general case with
arbitrary inputs.

2. MULTIPLICATION AND CONVOLUTION
PRODUCTS

In the general case, the multiplication of two
distributions (say α and T ) is not always defined.
However, this operation always make sense when
one of the two terms is a smooth function. Several
properties can be derived from such product and
the most important for our developments are
given bellow. The next Theorem is the key result
from which most of the parameters (including
the delays) can be identified from step input
responses.

Theorem 1. (Schwartz, 1966) If T has a compact
support K and is of order m (necessarily finite),

α T = 0 whenever α and its derivatives of order
≤ m vanish on K.

The following examples illustrate this statement
in case α is a polynomial and T a singular dis-
tribution. Note that, in forming the product α T ,
the delay τ involved in the argument T (t−τ) now
appears also as a coefficient.

t δ = 0, (t − τ) δτ = 0,

t2(t − τ) (a δ(1) + b δτ ) = 0.

The usual derivation rule (α T )′ = α′ T +α T ′ also
applies. Thanks to the previous Theorem and the
Leibniz’s formula, the statement for the product
t δ can be generalized to tl δ(n) = 0 for l > n, and

tl δ(n) = (−1)l (n!/(n − l)!) δ(n−l), l ≤ n. (4)

We shall make use of another property involving
both multiplication with tn and the convolution
product, in case one of the two distributions (S or
T ) has a compact support.

tn (S ∗ T ) =

n
∑

k=0

Ck
n (tk S) ∗ (tn−k T ). (5)

The combination of the rules (4) and (5) with
S = δ(p) and T = y allows us to transform terms
of the form tn y(p) into linear combinations of
derivatives of products tk y. Denoting zi = ti y,
one has for example,

t3 y(2) = t3 (δ(2) ∗ y) = −6 z1 + 6 z
(1)
2 − z

(2)
3 . (6)

Note that integrating twice this expression by
considering H2t3 y(2) results in nothing but the
integration by parts formula with available data
zi. When facing delayed terms, relation (5) also
applies and leads to expressions involving the
delay not only as an argument, but also as a
unknown coefficient to be identified. For example,
one easily gets

t2 ẏ(t − τ) = t2 (δ(1)
τ ∗ y)

= δτ ∗ [τ2 z
(1)
0 − 2τ (z0 − z

(1)
1 ) − 2z1 + z

(1)
2 ](7)

Here again, integration with H yields a causal
relation with available data zi.

3. IDENTIFICATION FROM STEP INPUT
RESPONSES

Using simple examples, this section shows hows
Theorem 1 can be used for both parameters and
delays identification in case of piecewise constant
inputs.



3.1 First order system with a single input delay

Let us consider a first order system with a delayed
input governed by:

ẏ + a y = y(0) δ + γ0 H + b u(t − τ), (8)

where γ0 is a constant perturbation, a, b, and τ
are constant parameters, and the coefficient a is
assumed to be known (for the moment). Consider
also a step input u = u0H. A first order derivation
yields

ÿ + aẏ = y(0) δ(1) + γ0 δ + b u0 δτ . (9)

By virtue of Theorem 1, the right hand side
of equation (9) can be canceled by means of a
multiplication with a function α such that

α(0) = α′(0) = 0, α(τ) = 0, (10)

and the choice of the polynomial α(t) = t3 − τ t2

results in

t3 (ÿ + aẏ) = τ t2 (ÿ + aẏ). (11)

As an equality of singular distributions, this re-
lation doesn’t make sense for any t (otherwise
we would have τ = t). However, k ≥ 1 suc-
cessive integrations (or a convolution with Hk)
result in functions equality from which the de-
lay τ becomes available. More precisely, since
suppHkδτ ⊂ (τ,∞), we can easily show that all
the obtained functions will vanish on (0, τ) and
the delay is consequently not identifiable on this
interval. Conversely, being nonzero for all t > τ ,
the delay is everywhere identifiable on (τ,∞). We
therefore get from (11):

τ =
Hk(t3y(2) + a t3y(1))

Hk(t2y(2) + a t2y(1))
, t > τ, (12)

where, by virtue of (5) and recalling the notation
zi = ti y of the previous section,

t3 y(2) = −6 z1 + 6 z
(1)
2 − z

(2)
3 ,

t2 y(2) = −2 z0 + 4 z
(1)
1 − z

(2)
2 ,

t2 y(1) = 2 z1 − z
(1)
2 ,

t3 y(1) = 3 z2 − z
(1)
3 .

These coefficients show that k ≥ 2 integrations
can avoid any derivation in the delay identification
algorithm, and the next figure show a partial
realization scheme (limited to Hkt3y(2)) of the
terms involved in (12).

Note that the algorithm given in (12) only requires
the values of a and the output y. In case the
coefficient a is also unknown, the same approach
can be used for a simultaneous identification. The
following relation is easily derived from (11)

τ(t2y(2)) + a τ(t2y(1)) − a (t3y(1)) = t3y(2) (13)

+
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Fig. 1. Realization scheme of Hkt3y(2)

and a linear system with unknown parameters
(τ, a τ, a) is obtained by using different integration
orders





H2w1 H2w2 H2w3

H3w1 H3w2 H3w3

H4w1 H4w2 H4w3









τ
aτ
−a



 =





H2w0

H3w0

H4w0



 (14)

where we have denoted w0 = t3y(2), w1 = t2y(2),
w2 = t2y(1), and w3 = t3y(1). A simulation
result from equation (14) is given in Figure 2 for
k = 2, 3, 4 integrations and the parameters

y(0) = 0.3, a = 2, τ = 0.6, γ0 = 2, b = 1, u0 = 1.

For the previous identifiability reason, the ob-
tained linear system may be not consistent for
t < τ . Moreover, and unlike the single delay
case, a local loss of identifiability may occur for
t > τ as suggested in Figure 2 for t ≈ 1.5s.
For a complete identifiability study, the reader
may refer to (Fliess M., 2003) for nonlinear and
free delay cases, and (Belkoura, 2005) for linear
convolutional systems.
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Fig. 2. Simultaneous identification from (14)

Note that this simultaneous identification of a
and τ can also be formulated as a generalized
eigenvalue problem as

[

(

H2w3 H2w0

H3w3 H3w0

)

− τ

(

H2w2 H2w1

H3w2 H3w1

)

]

(

a
1

)

= 0

(15)

Finally, others combinations of parameters can
be obtained and identified by means of a multi-
plication of (9) with different C∞ functions. For



instance, considering α(t) = t(t − τ) and using
the same previous technique results in

Hkt(ÿ + aẏ) τ + Hk τy(0) = Hkt2(ÿ + aẏ) (16)

from which both delay and initial condition can
be identified. The only coefficient for which the
explicit value of τ is required is its associated
parameter b. Due to the fast convergence of the
algorithms, we may also consider a separate pro-
cedure in which the undelayed terms are firstly
identified and reused for the delay identification.

3.2 Second order system with multiple input delays

The previous technique can be extended to multi-
ple input delays by means of one of the three dif-
ferent following approaches: (a) A multiplication
with the C∞ function t2(t−τ1) · · · (t−τK) (if K is
finite). This may however lead to a large size linear
system for which all the delays are not identifiable
until t > τK , (b) A recursive identification whose
main drawback comes from propagation errors,
and (c) A local (in time) identification if one
assumes an incompressible delay such that

τk+1 − τk > ∆. (17)

We shall focus in this section on delays identifi-
cation based on the third case and consider the
example of a second order system governed by

ÿ+a1 ẏ+a0 y = ϕ0 +γ0 H +
4

∑

k=0

bk u(t−τk) (18)

where τ0 = 0, γ0 is a constant perturbation, and
ϕ0 (of order 1 and support {0}) contains the initial
condition terms. A first order derivation, a mul-
tiplication by t3(t − λ), and a ”local integration”
using H(s) = (1−e−∆s/3)/s (instead of 1/s) result
in

0 = H3t3(t − λ)(y(3) + a1y
(2) + a0y

(1))

= N1 − λN0. (19)

Terms of the form H3tpy(q) (and hence N0 and
N1) are formed as in the previous section, while
from the right hand side of (18) we also have,

Ni = H3
4

∑

k=1

bk τ3+i
k δτk

, i = 0, 1. (20)

Since suppH3 ∈ (0,∆), and by virtue of (3), we
get that N0 = N1 = 0 on R\(τk, τk + ∆) while
on the remaining subsets, the delays are obtained
from

λ = τk = N1/N0 on (τk, τk + ∆). (21)

A simulation result is shown in Figure 3 for
the parameters a0 = 2, a1 = 1, y(0) = 1.3,
ẏ(0) = −2.3, γ0 = 0.5, ∆ = 0.25, (b0, · · · , b4) =
(0.5, 1,−5, 2, 1), (τ1, · · · , τ4) = (2, 4, 6, 9).
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Fig. 3. Multiple delays identification

Due to the non identifiability of the delays on
R\(τk, τk + ∆), the value of λ in (21) is set to
zero until N0 reaches a significant nonzero value.

3.3 A particular case with state delay

For some particular cases, a local state delay
identification based on step input response is
possible as well. The following example illustrates
the proposed approach.

ẏ(t) + a y(t − τ) = b u(t), (22)

y(θ) = 0 θ ∈ (−τ, 0).

Denoting Hτ = H(t − τ), the left hand side
member writes (δ + aHτ ) ∗ ẏ in which δ + aHτ

admits the convolution inverse (Hirsh and La-
combes, 1999),

(δ + aHτ )∗−1 =

δ − aHτ + · · · + (−1)n−1an−1 Hn−1
τ + · · · .(23)

Since, by virtue of (3), suppHk
τ ⊂ (k τ,∞), a

second order derivation of (22) combined with
(23) results in

y(3) = b δ(1) − a b δτ + ζ (24)

where supp ζ ⊂ (2 τ,∞).

Following the line of the previous sections, a
cancellation of the singularities using the smooth
function t2(t − τ) yields

t2(t − τ)(y(3) − ζ) = 0. (25)

Therefore, when restricted to the interval (τ, 2 τ)
the state delay is obtained from

τ = (Hk t3 y(3))/(Hk t2 y(3)), t ∈ (τ, 2 τ). (26)

The next simulation shows the realization of (26)
with a = 2 and τ = 0.6.

As expected, the delay is identified only on the
interval (τ, 2τ) while due to the nonzero term
ζ in (25), relation (26) doesn’t hold for t >
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2τ . Note also that unlike the input delay case,
a simultaneous identification including the state
coefficient a can not be considered in this case.

4. IDENTIFICATION WITH ARBITRARY
INPUTS

For systems with input/state delays and general
inputs, there are mainly two limitations of dif-
ferent nature. The first one concerns the online
aspects while the second one is more fundamental.
More precisely, the delays can be generally iden-
tified by means of convolution products and this
may constitute a drawback if online results are
expected. However, this constraint can be relaxed
if there is no state delay and if the input is not
prescribed. On the other hand, for a state delay
case and unless particular situations, the initial
condition (involving a function) is by definition
unknown and depends, via its support within
(−τ, 0), on the delay to be identified.

These observations as well as the identification
procedure are illustrated in the following first
order example

ẏ+a0 y+a1 y(t−τ) = ϕ0+b0 u+b1 u(t−τ), (27)

in which the initial condition ϕ0 writes

ϕ0 = y(0) δ − a1 ϕ, suppϕ ∈ (0, τ),

for some function ϕ. For simplicity reasons and
although a simultaneous identification of both the
parameters and the delay can be considered, we
shall restrict our study to the delay identification.
For notational convenience, let us define from (27)
the delayed and undelayed terms as

η , ẏ + a0 y − b0 u, β , b1 u − a1 y. (28)

Using the developments given in Section 2-eq.(7),
a first order derivation of (27) followed by a
multiplication by t and t2 results in

t(η − ϕ0) = t(δτ ∗ β) = δτ ∗ (τ β + tβ), (29)

t2(η − ϕ0) = t2(δτ ∗ β) = δτ ∗ (τ2 + 2τ tβ + t2β).

Now, a cross convolution product of these two
relation yields the following convolution equation

involving τ , τ2, and in which the shift operator
(δτ∗) has been removed.

τ2(tβ ∗ tη) + τ(2tβ ∗ tη − β ∗ t2η) =

(t2β ∗ tη − tβ ∗ t2η) (30)

+(t2β + 2τtβ − τ2tβ) ∗ tϕ0 + (τβ − tβ) ∗ t2ϕ0.

It remains to consider the initial condition term
ϕ0 = y(0) δ − a1 ϕ that appears in this equation.
If ϕ ≡ 0 (the plant is initially at rest) or a1 = 0
(there is no state delay), then tϕ0 = t2ϕ0 = 0 and
successive integrations lead to the linear system

(

Hw1 Hw2

H2w1 H2w2

)(

τ2

τ

)

=

(

Hw0

H2w0

)

, (31)

where we have denoted

w1 = tβ ∗ tη, w2 = 2tβ ∗ tη − β ∗ t2η,
w0 = t2β ∗ tη − tβ ∗ t2η.

(32)

Note that by means of successive derivations, the
same technique can be used in case of constant
or piecewise polynomial function ϕ. On the other
hand, in the free state delay case (a1 = 0 ⇒
β = b1 u), and if the input is free, the above
convolution products can be easily realized online
by considering simple expressions for u(s). For
instance, with u(t) = He−at, and recalling that
du/ds is the Laplace transform of tu, the coeffi-
cient w1 in (32) also writes

w1(s) =
b1 (tη)(s)

(s + a)2
. (33)

Figure 5 shows a simulation result with τ = 2,
a1 = 0, a0 = 2, y(0) = 0 b0 = b1 = 1, and
the discontinuous input u = H(t) − 3H(t − 4) +
cos(t)(0.2+sin(2t)). This correspond to a single in-
put delay which does not require a multiplication
by t2. Note that a singularity occurred at t ≈ 8.5s.
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Fig. 5. Input delay identification

In Figure 6, the input/state delay is considered
with a1 = 0.4, a0 = 2, b0 = b1 = 1, τ = 2, and
the input u = cos(t)(0.2 + sin(2t)). The initial
condition ϕ is set to zero although y(0) = 0.5 6=
0. Here again, the small deviations observed for



t ≈ 4.5s may result from a local ill-conditioned
linear system.
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5. CONCLUSION

This note has presented a simple method for both
parameter and delay identification of dynamical
systems. As in (Fliess M., 2003), the high speed
convergence of the proposed algorithms allows us
to consider the problem of on line identification
and control of time delay systems. Robustness
issues including the noise effects and a deeper
study of the possible singularities, multivariable
systems with partial state measurements as well as
the extension to discrete time processes are under
active investigation.
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