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a continuous-time system with uncertain but bounded (by the maximum sam-
pling interval) time-varying delay in the control input. We verify that the LMI
sufficient conditions for stability of [11] are valid also in the case of piecewise-
continuous delay and derive LMIs for the feedback gain. The conditions which
we obtain are robust with respect to different samplings with the only require-
ment that the maximum sampling interval is not greater than h. As a by-product
we show that for h → 0 the conditions coincide with the necessary and suffi-
cient conditions for the continuous-time stabilization. Such convergence in H2

framework and related results were proved in [19], [4], [7], [22], [25] and [21].
For the first time the new approach allows to develop different robust con-

trol methods for the case of sampled-data control. The LMIs are affine in the
system matrices and thus for the systems with polytopic type uncertainty the
quadratic stabilization conditions, where the common Lyapunov functional for
different vertices of the polytope is used, readily follow. We derive a parameter
dependent solution, where different Lypunov functionals are used for different
vertices by modifying results of (Fridman & Shaked, 2003). We also consider the
regional stabilization by sampled-data saturated state-feedback, where we give
an estimate on the domain of attraction. For continuous-time stabilization of
state-delayed systems by saturated-feedback see e.g. [5], [24], [3] and [10].

Notation: Throughout the paper the superscript ‘T ’ stands for matrix trans-
position, Rn denotes the n dimensional Euclidean space with vector norm | · |,
Rn×m is the set of all n×m real matrices, and the notation P >0, for P ∈ Rn×n

means that P is symmetric and positive definite. Given ū = [ū1, ..., ūm]T , 0 <
ūi, i = 1, ..., m, for any u = [u1, ..., um]T we denote by sat(u, ū) the vector with
coordinates sign(ui)min(|ui|, ūi). By stability of the system we understand the
asymptotic stability of it.

2 Sampled-Data Stabilization of Systems with Polytopic

Type Uncertainty

2.1 Problem Formulation

Consider the system
ẋ(t) = Ax(t) + Bu(t), (2)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input.
We are looking for a piecewise-constant control law of the form u(t) =

ud(tk), tk ≤ t < tk+1, where ud is a discrete-time control signal and 0 = t0 < t1 <
· · · < tk < · · · are the sampling instants. Our objective is to find a state-feedback
controller given by

u(t) = Kx(tk), tk ≤ t < tk+1, (3)

which stabilizes the system.
We represent a piecewise-constant control law as a continuous-time con-

trol with a time-varying piecewise-continuous (continuous from the right) delay
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τ(t) = t − tk as given in (1). We will thus look for a state-feedback controller of
the form:

u(t) = Kx(t − τ(t)). (4)

Substituting (4) into (2), we obtain the following closed-loop system:

ẋ(t) = Ax(t) + BKx(t − τ(t)), τ(t) = t − tk, tk ≤ t < tk+1. (5)

We assume that
A1 tk+1 − tk ≤ h ∀k ≥ 0.
From A1 it follows that τ(t) ≤ h since τ(t) ≤ tk+1 − tk. We will further

consider (5) as the system with uncertain and bounded delay.

2.2 Stability of the Closed-Loop System

Similarly to [11], where the continuous delay was considered, we obtain for the
case of piecewise-continuous delay the following result:

Lemma 1. Given a gain matrix K, the system (5) is stable for all the samplings
satisfying A1, if there exist n×n matrices 0<P1, P2, P3, Z1, Z2, Z3 and R > 0
that satisfy the following LMIs:

Ψ1 < 0, and

[

R [0 KT BT ]P
∗ Z

]

≥0, (6)

where

P =

[

P1 0
P2 P3

]

, Z =

[

Z1 Z2

∗ Z3

]

, Ψ1 = Ψ0 + hZ +

[

0 0
0 hR

]

,

Ψ0 = PT

[

0 I
A + BK −I

]

+

[

0 I
A + BK −I

]T

P.

Proof is based on the following descriptor representation of (5) [8]:

ẋ(t) = y(t), 0 = −y(t)+(A+BK)x(t) − BK
∫ t

t−τ(t)
y(s)ds, (7)

which is valid in the case of piecewise-continuous delay τ(t) for t ≥ 0. Given a
matrix K and initial condition x(t) = φ(t)(t ∈ [−h, 0]), where φ is a piecewise
continuous function, x(t) satisfies (5) for t ≥ 0 iff it satisfies (7). Note that the
descriptor system (7) has no impulsive solutions since in (7) y(t) is multiplied
by the nonsingular matrix I [9].

We apply the Lyapunov-Krasovskii functional of the form:

V (t) = V1 + V2, (8)

where

x̄(t) = col{x(t), y(t)}, E =

[

In 0
0 0

]

, P =

[

P1 0
P2 P3

]

, P1 = PT
1 > 0,

(9a-d)
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and

V1 = x̄T (t)EPx̄(t), V2 =

∫ 0

−h

∫ t

t+θ

yT (s)Ry(s)dsdθ, (9e-f)

which satisfies the following inequalities

a|x(t)|2 ≤ V (t) ≤ b sup
s∈[−h,0]

|x̄(t + s)|2, a > 0, b > 0. (10)

Differentiating V (t) along the trajectories of (7) for t ≥ h we find (see [11]) that

V̇ (t) < ¯x(t)
T
Ψ1

¯x(t) < −c|x(t)|2, c > 0, (11)

Provided that (6a,b) hold. Integrating (11) we have

V (t) − V (h) ≤ −c

∫ t

−h

|x(s)|ds (12)

and, hence, (10) yields |x(t)|2 ≤ V (t)/a ≤ V (h)/a < b/a sups∈[−h,0] |x̄(h +

s)|2. Since sups∈[−h,0] |x̄(h + s)| ≤ c1 sups∈[−h,0] |φ(s)|,c1 > 0 (cf. Hale &
Lunel, 1993, p168) and thus ẋ, defined by the right-hand side of (5), satisfy

sups∈[−h,0] |
˙x(h + s)| ≤ c2 sups∈[−h,0] |φ(s)|, c2 > 0, we obtain that

|x(t)|2 ≤ c3 sup
s∈[−h,0]

|φ(s)|2, c3 > 0. (13)

Hence (5) is stable (i.e. x(t) is bounded and small for small φ). To prove
asymptotic stability we note that x(t) is uniformly continuous on [0, ∞) (since
ẋ(t) defined by the right-hand side of (5 is uniformly bounded). Moreover, (12)
yields that |x(t)|2 is integrable on [0, ∞). Then, by Barbalat’s lemma, x(t) → 0
for t → ∞ 
�

Consider now the continuous state-feedback

u(t) = Kx(t) (14)

and the closed-loop system (2), (14)

ẋ(t) = (A+BK)x(t). (15)

It is clear that the stability of the latter system is equivalent to the stability of
its equivalent descriptor form

ẋ(t) = y(t), 0 = −y(t)+(A+BK)x(t), (16)

which coincides with (7) for h = 0. It is well-known ([23]) that the stability of
the latter system is equivalent to the condition Ψ0 < 0.

If there exists P of the form (9c,d) which satisfies Ψ0 < 0, then for small
enough h > 0 LMIs of Lemma 2.1 are feasible (take e.g. Z = I2n and R =
[0 KT BT ]PT P [0 KT BT ]T ). We, therefore, obtain the following result:
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Corollary 1. If the continuous-time state-feedback (14) stabilizes the linear sys-
tem (2), then the sampled-data state-feedback (3) with the same gain K stabilizes
(2) for all small enough h.

In the case where the matrices of the system are not exactly known, we denote
Ω =

[

A B
]

and assume that Ω ∈ Co{Ωj, j = 1, ...N}, namely,

Ω =

N
∑

j=1

fjΩj for some 0 ≤ fj ≤ 1,

N
∑

j=1

fj = 1, (17)

where the N vertices of the polytope are described by

Ωj =
[

A(j) B(j)
]

.

In order to guarantee the stability of (2) over the entire polytope one can use
the result of Lemma 2.1 by applying the same matrices P2 and P3 for all the
points in the polytope and solving (6a,b) for the N vertices only. A quadratic
stability type criterion is then obtained:

Corollary 2. Given a gain matrix K, the system (5) is stable, over the entire

polytope Ω, if there exist n×n matrices 0 < P
(j)
1 , P2, P3, Z

(j)
1 , Z

(j)
2 , Z

(j)
3 and

R(j) > 0 that satisfy the following LMIs:

Ψ
(j)
1 < 0, and

[

R(j) [0 KT B(j)T ]P (j)

∗ Z(j)

]

≥0, j = 1, ..., N, (18)

where

P (j) =

[

P
(j)
1 0
P2 P3

]

, Z(j) =

[

Z
(j)
1 Z

(j)
2

∗ Z
(j)
3

]

, Ψ
(j)
1 = Ψ

(j)
0 + hZ(j) +

[

0 0

0 hR(j)

]

,

Ψ
(j)
0 = P (j)T

[

0 I
A(j) + B(j)K −I

]

+

[

0 I
A(j) + B(j)K −I

]T

P (j).

2.3 Quadratic Stabilization

LMIs of Lemma 2.1 are bilinear in P and K. In order to obtain LMIs we use
P−1. It is obvious from the requirement of 0 < P1, and the fact that in (6)
−(P3 + PT

3 ) must be negative definite, that P is nonsingular. Define

P−1 = Q =

[

Q1 0
Q2 Q3

]

and ∆ = diag{Q, I} (19)

Applying Schur formula to the term hR in (6a), we multiply (6a,b) by ∆T and
∆, on the left and on the right, respectively. Denoting R̄ = R−1 and Z̄ = QT ZQ
we obtain, similarly to [11], the following
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Theorem 1. The control law of (3) stabilizes (2) for all the samplings with the
maximum sampling interval not greater than h and for all the system parameters

that reside in the uncertainty polytope Ω, if there exist: Q1 > 0, Q
(j)
2 , Q

(j)
3 , R̄,

Z̄
(j)
1 , Z̄

(j)
2 , Z̄

(j)
3 ∈ Rn×n, Ȳ ∈ Rq×n that satisfy the following LMIs:







Q
(j)
2 +Q

(j)T
2 + hZ̄

(j)
1 Ξ̂(j) hQ

(j)T
2

∗ −Q
(j)
3 −Q

(j)T
3 + hZ̄

(j)
3 hQ

(j)T
3

∗ ∗ −hR̄






<0,

and nonlinear matrix inequalities







Q1R̄
−1Q1 0 Ȳ T B(j)T

∗ Z̄
(j)
1 Z̄

(j)
2

∗ ∗ Z̄
(j)
3






≥0, (20)

where

Ξ̂(j) = Q
(j)
3 −Q

(j)T
2 +Q1A

(j)T + hZ̄
(j)
2 +Ȳ T B(j)T , j = 1, 2, ..., N. (21)

The state-feedback gain is then given by

K = Ȳ Q−1
1 . (22)

For solving (20) there exist two methods. The first uses the assumption

R̄ = εQ1, ε > 0, (23)

and thus leads to 2N LMIs with tuning parameter ε:







Q
(j)
2 +Q

(j)T
2 + hZ̄

(j)
1 Ξ̂(j) hQ

(j)T
2

∗ −Q
(j)
3 −Q

(j)T
3 + hZ̄

(j)
3 hQ

(j)T
3

∗ ∗ −εhQ1






<0, (24)







εQ1 0 εȲ T B(j)T

∗ Z̄
(j)
1 Z̄

(j)
2

∗ ∗ Z̄
(j)
3






≥0, (25)

where Ξ̂(j) and j are given by (21).
Similarly to Corollary 2.2 we can show that if the system (2) is quadratically

stabilizable by a continuous-time state-feedback (14), then for all small enough h
the latter LMIs are feasible and the sampled-data state-feedback with the same
gain stabilizes the system.

The second method for solving the matrix inequalities of Lemma 2.4 is based
on the iterative algorithm developed recently by Gao and Wang (2003). This
method is preferable in the cases of comparatively large h, since it leads to less
conservative results. However it may take more computer time due to iterative
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process. In the sequel we shall adopt the first method for solving the matrix
inequalities of Lemma 2.4.

Example 1. We consider (2) with the following matrices:

A=

[

1 0.5
0 −1

]

, B =

[

1
−1

]

.

It is verified by using Theorem 2.4 that the system is stabilizable by a sampled-
data state-feedback with the maximum sampling interval h ≤ 0.69. Thus, for
h = 0.69 the resulting K = [−1.048 0.2511] (with ε = 0.34). Simulation results
(for uniform samplings with the sampling interval less than 0.7) show that the
closed-loop system is stable.

2.4 Parameter Dependent Stabilization

The requirement for the quadratic stabilization imposes a serious constraint on
the solution, where the same matrices Q1 should satisfy the matrix inequalities in
all the vertices of the polytope. To alleviate this difficulty a parameter dependent

solution with different matrices Q
(j)
1 was derived in [12] for the case of state

delay. We modify the results of Corollary 4 of [12] for the case of input delay by
assuming that R̄ = εG1 and obtain

Theorem 2. Consider the system (2) and assume that its parameters lie in the
polytope Ω̄. The system is stabilized, over the entire polytope Ω, by the controller
of (3), for all the samplings with the maximum sampling interval not greater
than h, if for some tuning positive scalar parameters ε and α there exist 2n×2n
matrices: Qj, Gj and Hj, of the form

Qj =

[

Q
(j)
1 0

Q
(j)
2 Q

(j)
3

]

, Gj =

[

G1 0

G
(j)
2 G

(j)
3

]

, Hj =

[

αG1 0

H
(j)
2 H

(j)
3

]

.

and Z̄j, j = 1, ..., N̄ , a m×n matrix Ȳ and n×n matrix R̄ that satisfy the
following LMIs.











Mj

[

Q
(j)T
2

Q
(j)T
3

]

QT
j −GT

j +Ā(j)Hj +

[

0

αB(j)

]

[

Ȳ 0
]

∗ −εh−1G1 0
∗ ∗ −HT

j −Hj











<0 (26a)

[

εG1 [0 εȲ T B(j)T ]
∗ Z̄j

]

>0, j = 1, ..., N̄ . (26b)

where

Mj =GT
j Ā(j)T +Ā(j)Gj +

[

Ȳ T

0

]

[

0B(j)T
]

+

[

0

B(j)

]

[

Ȳ 0
]

+hZ̄j, Ā(j) =

[

0 I

A(j) −I

]

.

The state-feedback gain that stabilizes the system over Ω is then given by K =
Ȳ G−1

1 .
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Example 2. We consider (2) with the following matrices taken from [10], where
h = 0:

A=

[

0 1
−1 + g1 −.5

]

, B =

[

−1 + g2

1

]

and where |g1| ≤ 0.53 and |g2| ≤ 1.7. It was shown in [12] that the system is
not quadratically stabilizable by continuous state-feedback (i.e. for h = 0). It is
verified by using Theorem 2.5 that the system is stabilizable by a sampled-
data state-feedback with the maximum sampling interval h ≤ 0.299. Thus,
for h = 0.299 the resulting K = [0.0821 − 0.1487] (with ε = 3.56 and
α = 1.1). Simulation results (see e.g. Fig.1 for the case of g1 = g1(t) = 0.53 sin t,
g2 = g2(t) = 1.7 cos t, tk+1 − tk = 0.299 ∀k ≥ 0 and the initial condition
x(0) = [5 − 5]T ) show that the resulting closed-loop solutions converge to
origin.

3 Regional Stabilization by Sampled-Data Controller

with Saturation

3.1 Problem Formulation

Consider the system (2) with the sampled-data control law (3) which is subject
to the following amplitude constraints

|ui(t)| ≤ ūi, 0 < ūi, i = 1, ..., m (27)

Denote by x(t, x(0)) the state trajectory of (2) with the initial condition x(0) ∈
Rn. Then the domain of attraction of the origin of the closed-loop system (2),
(3) is the set

−4 −3 −2 −1 0 1 2 3 4 5
−6

−5

−4

−3

−2

−1

0

1

2

X1

X
2

0rigine
h=0.25

Fig. 1. State trajectories of the closed-loop system for h = 0.299, g1 = 0.53 sin t,

g2 = 1.7 cos t and x(0) = [5 − 5]T
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A = {x(0) ∈ Rn : lim
t→∞

x(t, x(0)) = 0}.

We seek conditions for the existence of a gain matrix K which leads to a stable
closed-loop. Having met these conditions, a simple procedure for finding the gain
K should be presented. Moreover, we obtain an estimate Xβ ⊂ A on the domain
of attraction, where

Xβ = {x(0) ∈ Rn : xT (0)P1x(0) ≤ β−1}, (28)

and where β > 0 is a scalar and P1 > 0 is an n × n matrix.
We represent the state-feedback in the delayed form

u(t) = sat(Kx(t − τ(t)), ū). (29)

Reducing the original problem to the problem with input delay, we solve it by
modifying derivations of [10], where the case of state delay was considered.

3.2 A Linear System Representation with Polytopic Type

Uncertainty

Applying the control law of (29) the closed-loop system obtained is

ẋ(t)=Ax(t)+Bsat(Kx(t − τ(t)), ū), τ(t) = t − tk, tk ≤ t < tk+1. (30)

Though the closed-loop system has a delay, we keep in mind that in the case of
sampled-data control the initial condition is defined in the point t = 0 and not on
the segment [−h, 0]. That is why for the estimation of the domain of attraction
we can restrict ourself to the following initial functions φ(s), s ∈ [−h, 0]:

φ(0) = x(0), φ(s) = 0, s ∈ [−h, 0). (31)

Denoting the i-th row by ki, we define the polyhedron

L(K, ū) = {x ∈ Rn : |kix| ≤ ūi, i = 1, ..., m}.

If the control and the disturbance are such that x ∈ L(K, ū) then the system (30)
admits the linear representation. Following [3], we denote the set of all diagonal
matrices in Rm×m with diagonal elements that are either 1 or 0 by Υ , then there

are 2m elements Di in Υ , and for every i = 1, ..., 2m D−

i

∆
= Im − Di is also an

element in Υ .

Lemma 2. [3] Given K and H in Rm×n. Then

sat(Kx(t), ū) ∈ Co{DiKx + D−

i Hx, i = 1, ..., 2m}

for all x ∈ Rn that satisfy |hix| ≤ ūi, i = 1, ..., 2m.

The following is obtained from Lemma 3.1.
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Lemma 3. Given β > 0, assume that there exists H in Rm×n such that |hix| ≤
ūi for all x(t) ∈ Xβ. Then for x(t) ∈ Xβ the system (30) admits the following
representation.

ẋ(t) = Ax(t) +
∑2m

j=1 λj(t)Ajx(t − τ(t)) (32)

where

Aj = B(DjK + D−

j H) j = 1, ..., 2m,
∑2m

j=1 λj(t) = 1, 0 ≤ λj(t), ∀ 0 < t,

(33)

We denote

Ωα =

2m

∑

j=1

λjΩj for all 0 ≤ λj ≤ 1,

2m

∑

j=1

λj = 1 (34)

where the vertices of the polytope are described by Ωj =
[

Aj

]

, j = 1, ..., 2m.
The problem becomes one of finding Xβ and a corresponding H such that |hix| ≤
ūi, i = 1, ...2m for all x ∈ Xβ and that the state of the system

ẋ(t) = Ax(t) + Ajx(t−τ(t)), τ(t) = t − tk, tk ≤ t < tk+1, (35)

remains in Xβ .

3.3 Regional Stabilization

Applying the descriptor model transformation and the Lyapunov-Krasovskii
functional of (8) by using the first method for solving the stabilization matrix
inequalities (with tuning parameter ε) , we obtain the following result:

Theorem 3. Consider the system (2) with the sampled-data control law (3)
which is subject to the constraints (27). The system is stable with Xβ inside the
domain of attraction for all the samplings with the maximum sampling interval

not greater than h, if there exist 0 < Q1, Q
(j)
2 , Q

(j)
3 , Z

(j)
1 , Z

(j)
2 , Z

(j)
3 ∈ Rn×n,

Y, G ∈ Rm×n and β > 0 that satisfy the following set of inequalities:






Q
(j)
2 +Q

T (j)
2 +hZ

(j)
1 Σj hQ

(j)
2

∗ −Q
(j)
3 −Q

T (j)
3 +hZ

(j)
3 hQ

(j)
3

∗ ∗ −εhQ1






<0, j = 1, ..., 2m (36a)







εQ1 0 ε(Y T Dj + GT D−

j )BT

∗ Z
(j)
1 Z

(j)
2

∗ ∗ Z
(j)
3






≥ 0 (36b)

[

β gi

∗ ū2
i Q1

]

≥ 0, i = 1, ..., m, (37)

where
Σj = Q

(j)
3 − Q

T (j)
2 + Q1A

T +(Y T Dj +GT D−

j )BT +hZ
(j)
2 . (38)

The feedback gain matrix which stabilizes the system is given by K = Y Q−1
1 .



Robust Sampled-Data Control: An Input Delay Approach 325

Proof: For V given by (8) conditions are sought to ensure that V̇ < 0 for any
x(t) ∈ Xβ . As in [10], the inequalities (37) guarantee that |hix| ≤ ūi, ∀x ∈

Xβ , i = 1, ..., m, where gi
∆
= hiQ1, i = 1, ..., m and Q1

∆
= P−1

1 , and the polytopic
system representation of (35) is thus valid. Moreover, (36a,b) guarantee that
V̇ < 0.

From V̇ < 0 it follows that V (t) < V (0) and therefore for the initial conditions
of the form (31)

xT (t)P1x(t) ≤ V (t) < V (0) = xT (0)P1x(0) ≤ β−1. (39)

Then for all initial values x(0) ∈ Xβ , the trajectories of x(t) remain within Xβ ,
and the polytopic system representation (35) is valid. Hence x(t) is a trajectory
of the linear system (35) and V̇ < 0 along the trajectories of the latter system
which implies that limt→∞ x(t) = 0.

Example 3. We consider (2) with the following matrices (taken from [3], where
h = 0):

A=

[

1.1 −0.6
.5 −1

]

, B1 =

[

1
1

]

and where ū = 5. Applying Theorem 3.3 a stabilizing gain was obtained for all
samplings with the maximum sampling interval h ≤ 0.75. In order to ’enlarge’ the
volume of the ellipse we minimized the value of β (to improve the result we also
added the inequality Q1 > αI and chose such α > 0 that enlarged the resulting
ellipse). The ellipse volume increases when h decreases (see Figure 2). For, say,
h = 0.75 we obtain K = [−1.6964 0.5231] (with ε = 0.325, β = 0.1261, P1 =
[

0.9132 −0.2816
−0.2816 0.0868

]

, α = 1) and we show (see Figure 3) that a trajectory starting on

Fig. 2. Ellipsoidal bounds on the domain of attraction: line corresponds to h = 0.1;
slash line to h = 0.75; point line to h =
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Fig. 3. Stabilization result for h = 0.75

the periphery of the ellipse (for the case of the uniform sampling with the sampling
period tk+1 −tk = 0.75) never leaves this ellipse and converges to the origin, while
a trajectory starting not far from the ellipse remains outside the ellipse.

4 Conclusions

A new method for robust sampled-data stabilization of linear continuous-time
systems is introduced. This method is based on the continuous-time model with
time-varying input delay. Under assumption that the maximum sampling inter-
val is not greater then h > 0, the h-dependent sufficient LMIs conditions for
stabilization of systems with polytopic type uncertainty and for regional stabi-
lization of systems with sampled-data saturated state-feedback are derived via
descriptor system approach to time-delay systems.

The new approach solves the problems for comparatively small h and leads to
sufficient conditions only, however these conditions are simple. The method may
be applied to a wide spectrum of robust sampled-data control problems (e.g. to
guaranteed cost or to H∞control).
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