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MULTISCALE MODELLING OF THE RESPIRATORY TRACK:

A THEORETICAL FRAMEWORK ∗

C. Grandmont1, B. Maury2 and A. Soualah3

Abstract. We propose here a decomposition of the respiratory tree into three stages which correspond
to different mechanical models. The resulting system is described by the Navier-Stokes equation coupled
with an ODE (a simple spring model) representing the motion of the diaphragm muscl. We prove that
this problem has at least one solution locally in time for any data and, in the special case where the
external forces are equal to zero and if the initial conditions are small enough, that the solution exists
globally in time. Note moreover that, in the case where the spring stiffness is equal to zero, we obtain an
existence result globally in time provided, once again, that the data are small enough. The behaviour
of the global model is illustrated by two-dimensional simulations.

Résumé. Afin de décrire l’écoulement de l’air dans les voies aériennes supérieures et proximales,
nous proposons un modéle multiéchelles basé sur la décomposition en trois régions de l’arbre trachéo-
bronchique. Dans chacune de ces régions les comportements mécaniques sont différents. Les équations
de Navier-Stokes décrivent l’écoulement de l’air dans la partie supérieure et elles sont couplées à une
équation différentielle ordinaire modélisant le mouvement du diaphragme et du parenchyme pulmonaire.
Pour ce systeme couplé nous démontrons l’existence de solutions faibles en temps petit pour données
quelconques, ainsi que l’existence globale en temps dans le cas, très particulier, où la donnée initiale
est suffisamment petite et où aucune force extérieure n’est appliquée au système. De plus, si la raideur
du ressort modélisant l’élasticité du poumon est nulle, nous obtenons un résultat d’existence globale
pour des données petites (conditions initiales et forces appliquées. Nous illustrons le comportement du
modèle par des simulations numériques bi-dimensionnelles.

Introduction, modelling aspects

Breathing involves gas transport through the respiratory track with its visible ends, nose and mouth. Air
then streams from the pharynx down to the trachea. The trachea extends from the neck into the thorax,
where it divides into right and left main bronchi, which enter the corresponding lungs. The inhaled air is then
convected in the bronchus tree which ends in the alveoli embedded in a viscoelastic tissue, made in particular of
blood capillaries, and where gaseous exchange occurs. Each lung is enclosed in a space bounded below by the
diaphragm and laterally by the chest wall. The air movement is achieved by the displacement of the diaphragm
and parenchyma tissue. But the lung may fail to maintain an adequate supply of air. Accidental inhalation of
liquid or solid, asthma crisis, pathologies changing the elastic behaviour of the parenchyma (like emphysema or
fibrosis), obstructed nose, cancer may occur. The lung is then a place where many exchanges and interactions
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take place, and a numerical lung would certainly be very helpful in the understanding of some of the deseases
and a way to guide the intuition for curative gestures. At the time being, the complex fractal geometry of
the airway tree makes the air flow simulation on the whole tree unreachable. Note, moreover, that the distal
airways from generation 7 cannot be visualised by common medical imaging techniques. Consequently, it is
necessary to find new efficient strategies, including simple but realistic models. One possible choice is to try
to describe the evolution of the air flux by a simple ODE as it is done in [11]. But even if the model can give
valuable hints to understand the respiration mechanisms it can not provide precise informations on the full 3D
flow. Our aim is to obtain a model that describes accurately the air flow in the proximal part. To achieve this,
one can not forget that this flow is dependent of the distal part and driven by the motion of the diaphragm and
parenchyma. One solution will be to find physiological boundary conditions. Yet no such “in vivo” pressure or
velocity measurement is available. Thus our aim is to obtain a simplified description of the distal part and what
we propose is a decomposition of the respiratory tree into three stages where different models will be exploited
and in which the mechanical behaviour is quite different:

• the upper part (up to the 6th generation), where the Navier-Stokes equations hold to describe the fluid
flow,

• the distal part (from the 7th to the 17th generation), where one can assume that the Poiseuille law is
satisfied in each bronchiole,

• the acini, where the oxygen diffusion takes place and which are embedded in an elastic medium, the
parenchyma.

We will assume that the pressure is uniform in the acini part and that they are embedded in a box representing
the parenchyma. The motion of the diaphragm and the parenchyma is described by a simple spring model. The
decomposition can be schematized by the following figure:

Ω
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Ω
i

~

Figure 1. Multiscale model

The“outlet” Γi, 1 ≤ i ≤ N of the upper part are coupled with Poiseuille flows themselves coupled with the
spring motion. We will assume that the velocity profile on the “outlets” Γi, 1 ≤ i ≤ N is given and, for instance,
is a parabolic profile. The assumption is reasonnable since we assume that the Poiseuille law holds true from
the 7th to the 17th generation of the bronchial tree. Note that the same type of multiscale modelling has been
investigated for different applications such as blood flow simulations ( [15], [18]) or air flow simulation ( [8]).

The paper is organized as follows: in a first part we present the coupled system and its variational formulation
then we derive, at least formally, a priori error estimates. The main difficulty is to estimate the nonlinear terms
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that is to say the flux at the artificial boundaries Γi of system kinetic energy. In a second part we prove, thanks
to a Galerkin approach, that there exists at least one solution, locally in time. The proof is based on standard
arguments: energy estimates, obtention of additional bounds in order to pass to the limit in the nonlinear
convection terms. Finally we give 2D numerical evidence that this model can reproduce some aspects of normal
or pathological breathing.

1. Problem setting

In the upper part, denoted by Ω we assume that the Navier-Stokes equations hold:







































































ρ
∂u

∂t
+ ρ(u · ∇)u − µ△u + ∇p = 0, in Ω ,

∇ · u = 0, in Ω ,

u = 0, on Γl ,

u = λiUi on Γi , i = 0, . . . , N ,
∫

Γ0

(µ∇u · n − pn) · U0 = −P0

∫

Γ0

U0 · n on Γ0 ,

∫

Γi

(µ∇u · n− pn) ·Ui = −Πi

∫

Γi

Ui · n on Γi i = 1, . . . , N,

(1)

where u and p are respectivelly the fluid velocity and the fluid pressure. On the lateral trachea boundary Γl

we impose non-slip boundary conditions on the velocity, whereas on the artificial boundary Γi, 0 ≤ i ≤ N we
consider two types of boundary conditions. First we assume that, on each outlet, the trace of the fluid velocity
is proportional to a given velocity profile Ui. The proportionality coefficient λi mesures the velocity flux at the
interface and is an unknown of the problem. The second type of boundary condition corresponds to a pressure
force exerted on the boundary. The pressure P0 is given whereas the pressures Πi are unknown that depend
on the dowstream parts. Each of the Ω̃i should be a dyadic tree in which we assume that the flow is laminar.
Thus, proceeding as in [12] and [9] and by analogy with an electric network, we can consider that the flow is
caracterized by a unique equivalent resistance that depends on each resistance of the local branches. Thus, each
of the Ω̃i is considered as a cylindrical domain, where the flow satisfies a Poiseuille law:

Πi − Pi = Ri

∫

Γi

u · n, Ri ≥ 0, (2)

where Ri denotes the equivalent resistance of the distal tree and Pi is an alveola pressure. Note that Ri depends
on the geometric properties (length and diameter) of all the branches of the i-th subtree. Moreover, we assume
that all the alveola pressures are equal: Pi = P . Finally, we suppose that these alveoli are embedded in a box
filled with an incompressible medium that represents the parenchyma. One part of the box is connected to a
spring that governs the diaphragm and parenechyma motion. The equation satisfied by the position x of the
diaphragm writes:

mẍ = −kx + fext + fP , (3)

where m is the total mass of the lung, k is the stiffness of the spring (that characterises the elastic behavior of
the lung) and fext is the force developped by the diaphragm during inspiration and forced expiration. In order
to couple this simple ODE to the upper part of the model, we have to define fP that stands for the pressure
force applied by the flow on the elastic medium. If we denote by S the surface of the moving boundary box
(diaphragm surface), we have

fP = PS. (4)
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Moreover, since the flow is incompressible and since we assume that the parenchyma is made of an incompressible
medium, the flow volume variation is equal to the volume variation of the parenchyma box, thus we have

Sẋ =

N
∑

i=1

∫

Γi

u · n = −

∫

Γ0

u · n = −λ0

∫

Γ0

U0 · n. (5)

Thus the coupled problem can be written as follows:



























































































ρ
∂u

∂t
+ ρ(u · ∇)u − µ△u + ∇p = 0 , in (0, T )× Ω ,

∇ · u = 0 , in (0, T )× Ω ,
u = 0 , on (0, T ) × Γl ,
u = λiUi , on (0, T ) × Γi ,

i = 0 , . . . , N ,
∫

Γ0

(µ∇u · n − pn) · U0 = −P0

∫

Γ0

U0 · n , on (0, T ) × Γ0 ,
∫

Γi

(µ∇u · n− pn) · Ui = −P

∫

Γi

Ui · n− Ri

(
∫

Γi

Ui · n

)

, on (0, T ) × Γi ,

i = 1 , . . . , N ,
mẍ + kx = fext + SP ,

Sẋ = −λ0

∫

Γ0

U0 · n.

(6)

This system of equations have to be completed by initial conditions

(u, x, ẋ)|t=0 = (u0, x0, x1), with Sx1 = −

∫

Γ0

u0 · n. (7)

One particularity of this system is that all the outlets Γi, 1 ≤ i ≤ N are coupled. This is not the case, for
instance, in [15] or [18] where the same type of multiscale modelling is performed but for blood flow simulations.
Note that the elastic behavior of the lung is described by only one degree of freedom. Moreover, in the whole
coupled model we have only few parameters to fit: m, k, S, fext and the resistances Ri. In particular by
modifying k and Ri one could obtain pathological behaviors such as asthma (increase of the resistances) or
emphysema (decrease of k). Nevertheless the considered spring model is a very simple one and some aspects
of the respiratory cycle can not be reproduced by such a simple model. We refer to [11] for a more complete
spring model.

1.1. A priori estimates

We start to derive, at least formally, a priori estimates for the coupled system. We multiply the Navier-Stokes
equation by u and integrate over Ω, by taking into account the profile constraint u = λiUi on Γi:

ρ

2

d

dt

∫

Ω

|u|2 + ρ

∫

Ω

(u · ∇u)u + µ

∫

Ω

|∇u|2 +

N
∑

i=1

Ri(λi)
2

(
∫

Γi

Ui · n

)2

+ P0λ0

(
∫

Γ0

U0 · n

)

+P

(

N
∑

i=1

λi

∫

Γi

Ui · n

)

= 0,
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which can be written, by using the fluid incompressibility

ρ

2

d

dt

∫

Ω

|u|2 + ρ

∫

Ω

(u · ∇u)u + µ

∫

Ω

|∇u|2 +

N
∑

i=1

Ri(λi)
2

(
∫

Γi

Ui · n

)2

+ P0λ0

(
∫

Γ0

U0 · n

)

−Pλ0

(
∫

Γ0

U0 · n

)

= 0.

Moreover we can write the convective terms, thanks to an integration by parts, as a flux of kinetic energy at
the inlet and at the outlets:

ρ

2

d

dt

∫

Ω

|u|2 +
ρ

2

N
∑

i=0

∫

Γi

|u|2(u · n) + µ

∫

Ω

|∇u|2 +
N
∑

i=1

Ri(λi)
2

(
∫

Γi

Ui · n

)2

+ P0λ0

(
∫

Γ0

U0 · n

)

−Pλ0

(
∫

Γ0

U0 · n

)

= 0.

(8)

Then we multiply the spring equation by ẋ

m

2

d

dt
|ẋ|2 +

k

2

d

dt
|x|2 = fextẋ + PSẋ. (9)

Now using the fact that Sẋ = −λ0

(
∫

Γ0

U0 · n

)

and adding (8), (9) we obtain

ρ

2

d

dt

∫

Ω

|u|2 +
ρ

2

N
∑

i=0

∫

Γi

|u|2(u · n) + µ

∫

Ω

|∇u|2 +
N
∑

i=1

Ri(λi)
2

(
∫

Γi

Ui · n

)2

+
m

2

d

dt
|ẋ|2 +

k

2

d

dt
|x|2 = P0Sẋ + fextẋ.

(10)

Identity (10) represents the energy balance of the coupled system. In particular, the energy is dissipated:
as for the standard Navier-Stokes equations the fact that the flow is viscous contribute to the dissipation of
the energy but here there is a second contribution to the dissipation that comes from the resistive part of the
bronchial tree, namely

N
∑

i=1

Ri(λi)
2

(
∫

Γi

Ui · n

)2

=

N
∑

i=1

Ri

(
∫

Γi

u · n

)2

.

In order to obtain energy estimates we have to estimate this flux of kinetic energy at the interface, that writes,
taking into account the profile constraint at the interface (u = λiUi on Γi)

N
∑

i=0

∫

Γi

|u|2(u · n) =

N
∑

i=0

(λi)
3

∫

Γi

|Ui|
2(Ui · n).

First of all we introduce the following functional spaces:

H = {v ∈ L2(Ω) , ∇ · v = 0,v · n = 0 on Γl},

V = {v ∈ H1(Ω) , ∇ · v = 0,v = 0 on Γl},

W = {v ∈ V , ∃Λ̃ = (λ̃i)0≤i≤N s. t. v = λ̃iUi on Γi , i = 0, . . . , N}.

To bound the nonlinear convection term we will use the following lemma:
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Lemma 1.1. If Ui · n 6= 0 and if Ui ∈ (H
1

2

00(Γi))
′ there exists a constant Ci > 0 such that, for all v ∈ W , we

have
|λ̃i| ≤ Ci‖v‖L2(Ω), i = 0 , . . . , N.

Proof. It is an easy task to verify, using standard arguments (see for instance [7]) that

‖v · n‖
(H

1/2

00
(Γi))′

≤ C
(

‖v‖L2(Ω) + ‖∇ · v‖L2(Ω)

)

, ∀v ∈ Hdiv(Ω) = {v ∈ L2(Ω); ∇ · v ∈ L2(Ω)}.

Here the space H
1/2
00 (Γi) denotes the space of trace function that, if extended by zero over ∂Ω, belongs to

H1/2(∂Ω). But for all v ∈ W we have

|λ̃i| =
‖v · n‖

(H
1/2

00
(Γi))′

‖Ui · n‖(H
1/2

00
(Γi))′

.

Then taking into account the fact that ∇ · v = 0, we have

|λ̃i| ≤ Ci‖v‖L2(Ω) where Ci =
C

‖Ui · n‖(H
1/2

00
(Γi))′

. �

Lemma 1.1 enables us to estimate the nonlinear convective term

∣

∣

∣

∣

∣

N
∑

i=0

∫

Γi

|u|2(u · n)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

N
∑

i=0

(λi)
3

∫

Γi

|Ui|
2(Ui · n)

∣

∣

∣

∣

∣

≤ ΓC1‖u‖
3
L2(Ω), (11)

with Γ =

N
∑

i=0

∫

Γi

|Ui|
2|Ui · n and C1 = max1≤i≤N |Ci|. Note that this estimate relies on the fact that the trace

of the fluid velocity on each Γi is supposed to be described by one parameter. This estimate is, of course, not
true in the general case. We will assume, to simplify, that the velocity profils Ui and the resistances Ri do

not depend on time. Nevertheless the energy estimates derived below hold also if Ui ∈ L∞(0, T ; H
1

2

00(Γi))) and
Ri ∈ L∞(0, T ).

Using the last estimate and the energy balance (10) yields

ρ

2

d

dt

∫

Ω

|u|2 +
m

2

d

dt
|ẋ|2 +

k

2

d

dt
|x|2

+µ

∫

Ω

|∇u|2 +

N
∑

i=1

Ri(λi)
2

(
∫

Γi

Ui · n

)2

≤ (|SP0| + |fext|)|ẋ| +
ρ

2
ΓC1‖u‖

3
L2(Ω)

≤ C(|ẋ|2 + ‖u‖3
L2(Ω) + |SP0|

2 + |fext|
2).

(12)

Thus if P0 ∈ L2(0, T ) and fext ∈ L2(0, T ), we easily verify that there exist a time τ0, 0 < τ0 < T sufficiently
small depending on the data and a constant C > 0 also depending on the data such that for any regular solution
(u, x):

ρ

2
‖u‖2

L2(Ω)(t) +
m

2
|ẋ|2(t) +

k

2
|x|2(t)

+µ

∫ t

0

∫

Ω

|∇u|2 +

N
∑

i=1

Ri

∫ t

0

(λi)
2

(
∫

Γi

Ui · n

)2

≤ C, t ≤ τ0.
(13)
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Thus any regular solution u is bounded by the data in L∞(0, τ0; L
2(Ω)) ∩ L2(0, τ0; H

1(Ω)) that implies in
particular that the velocity fluxes and ẋ are bounded in L∞(0, τ0).

Note that, due to the bound obtained on the nonlinear convective term, this a priori estimate only holds on
a small time interval and will lead to an existence result for large data locally in time.

Nevertheless, if the initial data are small enough and in the special case where no external forces are applied
we can prove that the velocity remains in a given ball for any time. Indeed, using Poincaré inequality,

‖u‖L2(Ω) ≤ C2‖∇u‖L2(Ω), (14)

the nonlinear terms can be bounded, as follows:

∣

∣

∣

∣

∣

N
∑

i=0

∫

Γi

|u|2(u · n)

∣

∣

∣

∣

∣

≤ ΓC1C
2
2‖u‖L2(Ω)‖∇u‖2

L2(Ω). (15)

In what follows we set K = ΓC1C
2
2 . and consequently

ρ

2

d

dt
‖u‖2

L2(Ω) +
m

2

d

dt
|ẋ|2 +

k

2

d

dt
|x|2

+

(

µ

2
−

Kρ

2
‖u‖L2(Ω)

)

‖∇u‖2
L2(Ω) +

N
∑

i=1

Ri(λi)
2

(
∫

Γi

Ui · n

)2

≤ 0
(16)

Thus, assuming that ‖u0‖L2(Ω) <
µ

Kρ
, we obtain that on any time interval during which

µ

2
−

Kρ

2
‖u‖L2(Ω) > 0

ρ

2

d

dt
‖u‖2

L2(Ω) +
m

2

d

dt
|ẋ|2 +

k

2

d

dt
|x|2 ≤ 0.

Moreover, if
ρ

2
‖u0‖

2
L2(Ω) +

m

2
|x1|

2 +
k

2
|x0|

2 ≤
µ2

8ρK2
,

the solution verifies
ρ

2
‖u‖2

L2(Ω) +
m

2
|ẋ|2 +

k

2
|x|2 ≤

µ2

8ρK2
for all time.

Remark 1.2. In the special case P0 = 0, fext = 0 and under the hypothesis ‖u0‖L2(Ω) ≤ µ/ρK, the energy
of the coupled system is decreasing. Note that this property cannot be expected in general, because an initial
velocity with a large L3 norm on the inlet is likely to induce, at least transitorily, an increase of global energy
by kinetic energy entering the domain. In a similar manner, if the profiles are not prescribed, a highly singular
initial velocity on the inlet may produce a similar increase of energy, as small at it may be in L2 volumic norm.

One can also obtain estimate globally in time in the special case where k = 0. Indeed, in this case we have

ρ

2

d

dt
‖u‖2

L2(Ω) +
m

2

d

dt
|ẋ|2

+µ‖∇u‖2
L2(Ω) +

N
∑

i=1

Ri(λi)
2

(
∫

Γi

Ui · n

)2

≤ (|SP0| + |fext|)|ẋ| +
ρ

2
ΓC1‖u‖

3
L2(Ω).

Using Poincaré inequality and since

|ẋ| =

∣

∣

∣

∣

∣

λ0

∫

Γ0

u0 · n

S

∣

∣

∣

∣

∣

≤ C|λ0| ≤ C3‖u‖L2(Ω) ≤ C3C2‖∇u‖L2(Ω),
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we obtain

ρ

2

d

dt
‖u‖2

L2(Ω) +
m

2

d

dt
|ẋ|2 +

(

µ

2
−

Kρ

2
‖u‖L2(Ω)

)

‖∇u‖2
L2(Ω)

+

N
∑

i=1

Ri(λi)
2

(
∫

Γi

Ui · n

)2

≤
C2

2C2
3

2µ
(|SP0|

2 + |fext|
2),

and using, once again, Poincaré inequality

ρ

2

d

dt
‖u‖2

L2(Ω) +
m

2

d

dt
|ẋ|2 +

1

C2
2

(

µ

2
−

Kρ

2
‖u‖L2(Ω)

)

‖u‖2
L2(Ω)

+

N
∑

i=1

Ri(λi)
2

(
∫

Γi

Ui · n

)2

≤
C2

2C2
3

2µ
(|SP0|

2 + |fext|
2).

Moreover, since |ẋ|2 ≤ C‖u‖2
L2(Ω) it is easy to obtain an inequality of the type

d

dt
φ + A(

µ

2
− B

√

φ)φ ≤
C

2µ
(|SP0|

2 + |fext|
2),

with φ = |ẋ|2 + ‖u‖2
L2(Ω). Consequently, assuming that

√

φ(0) ≤
µ

4B
and that |SP0|

2 + |fext|
2 ≤

Aµ4

32B2C
, it is

easy to verify that
√

φ(t) ≤
µ

4B
for all t.

Remark 1.3. Note that the case k 6= 0 can not be treated in the same way because of the diaphragm
displacement that can not be bounded easily in L∞. Observe, however that from the physical point of view
this displacement is bounded (the volume of the chest is given) and one could impose it by considering a more
general spring model (see [11]).

Remark 1.4. The previous assumptions on the data involve µ. Note however that one can obtain conditions
involving also the resistances Ri (provided that the Ri are strictly positive and the flux of the velocity profil
∫

Γi

Ui · n are not equal to zero) by estimating the nonlinear convection term as follows:

∣

∣

∣

∣

∣

N
∑

i=0

∫

Γi

|u|2(u · n)

∣

∣

∣

∣

∣

≤ C3‖u‖L2(Ω)

N
∑

i=0

|λi|
2,

and by writting λ0 (or ẋ) as a linear combinaison of the (λi)1≤i≤N . Yet the resulting conditions are of the same
type than the one we just obtained, since the resistances Ri are proportional to µ.

1.2. Variational formulation

In this subsection we give the variational formulation of the coupled system. But, first we precise the
assumptions made on the data

(u0, x0, x1) in H × R
2 with Sx1 = −

∫

Γ0

u0 · n,

P0 ∈ L2(0, T ), fext ∈ L2(0, T ),

Ri ≥ 0 , i = 1 , . . . , N,

Ui ∈ H
1

2

00(Γi) , i = 0 , . . . , N.

(17)
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Let us consider v ∈ {w ∈ H1(Ω) , w = 0 on Γl and ∃(βi)0≤i≤N s. t. w|Γi = βiUi} and φ ∈ D([0, t)). In
order to obtain a weak formulation of the coupled system we multiply the Navier-Stokes equations by vφ and

integrate over Ω × (0, T ). The spring equation is multiplied by −
1

S

(
∫

Γ0

v · n

)

φ and added to the previous

contribution. By integrating by parts (in space and in time) the Navier-Stokes equations and by taking into

account the constrain Sẋ = −

∫

Γ0

u · n we obtain a first weak formulation of the coupled system (6):























































































ρ

∫

Ω

u(t) · vφ(t) − ρ

∫ t

0

∫

Ω

u · v φ + ρ

∫ t

0

∫

Ω

(u · ∇u) · v φ + µ

∫ t

0

∫

Ω

∇u : ∇v φ

+
N
∑

i=1

Ri

∫ t

0

(
∫

Γi

u · n

)(
∫

Γi

v · n

)

φ −

∫ t

0

(
∫

Ω

p∇ · u

)

φ −

∫ t

0

P

(
∫

∂Ω

v · n

)

φ

−
m

S2

∫ t

0

(
∫

Γ0

u · n

)(
∫

Γ0

v · n

)

φ +
k

S2

∫ t

0

(
∫ s

0

∫

Γ0

u · n

)(
∫

Γ0

v · n

)

φ

= −

∫ t

0

P0

(
∫

Γ0

v · n

)

φ −

∫ t

0

fext

S

(
∫

Γ0

v · n

)

φ −
k

S
x0

(
∫

Γ0

v · n

)
∫ t

0

φ

−ρ

(
∫

Ω

u0 · v

)

φ(0) −
m

S
x1

(
∫

Γ0

v · n

)

φ(0),

∀v ∈ H1(Ω) , ∇ · v = 0 , v = 0 on Γl and ∃(λ̃i)0≤i≤N s. t. v|Γi = λ̃iUi.

(18)

Next considering test functions that are divergence free, we obtain a second weak formulation of the coupled
problem, and we shall say that u is a weak solution of (6) on [0, T ) if

- u ∈ L2(0, T ; V ) ∩ L∞(0, T ; H),
- ∃λi ∈ L∞(0, T ) such that ui|Γi = λiUi, for a. e. t,

- ∀v ∈ H1(Ω) , ∇ · v = 0 , v = 0 on Γl and ∃(λ̃i)0≤i≤N s. t. v|Γi = λ̃iUi, ∀φ ∈ D([0, T ))















































































ρ

∫

Ω

u(t) · vφ(t) − ρ

∫ t

0

∫

Ω

u · v φ̇ + ρ

∫ t

0

∫

Ω

(u · ∇u) · v φ + µ

∫ t

0

∫

Ω

∇u : ∇v φ

+

N
∑

i=1

Ri

∫ t

0

(
∫

Γi

u · n

)(
∫

Γi

v · n

)

φ +
m

S2

(
∫

Γ0

u(t) · n

)(
∫

Γ0

v · n

)

φ(t)

−
m

S2

∫ t

0

(
∫

Γ0

u · n

)(
∫

Γ0

v · n

)

φ̇ +
k

S2

∫ t

0

(
∫ s

0

∫

Γ0

u · n

)(
∫

Γ0

v · n

)

φ

= −

∫ t

0

P0

(
∫

Γ0

v · n

)

φ −

∫ t

0

fext

S

(
∫

Γ0

v · n

)

φ −
k

S
x0

(
∫

Γ0

v · n

)
∫ t

0

φ

−ρ

(
∫

Ω

u0 · v

)

φ(0) −
m

S
x1

(
∫

Γ0

v · n

)

φ(0).

(19)

Note that here we have expressed all the quantities with the help of the fluid velocity. The velocity of the spring

can be simply recovered thanks to the equality Sẋ = −

∫

Γ0

u · n = −λ0

∫

Γ0

U0 · n.

1.3. Main Results

One aim of the paper is to prove the existence of weak solutions as defined in the previous section. We have
two types of existence results: one locally in time for large data, and one globally in time for small enough
initial data in the special case where no external forces are applied to the coupled system. Note moreover that
in the case where the stifness of the spring is equal to zero, one could easily derive an existence result, globally
in time, provided that the data (initial data and applied forces) are small enough. More precisely
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Theorem 1.5. Under the assumptions (17) there exist a time τ0, 0 < τ0 < T sufficiently small and a weak
solution u of (19) on [0, τ0]. Moreover, there exists C such that the solution satisfies the following estimate:

ρ‖u‖2
L∞(0,τ0;L2(Ω)) +

m

S2

∥

∥

∥

∥

∫

Γ0

u · n

∥

∥

∥

∥

2

L∞(0,τ0)

+
k

S2

∥

∥

∥

∥

∫ t

0

∫

Γ0

u · n

∥

∥

∥

∥

2

L∞(0,τ0)

+µ‖u‖2
L2(0,τ0;H1(Ω)) +

N
∑

i=1

Ri

∫ τ0

0

(
∫

Γi

u · n

)2

≤ C.
(20)

Furthermore, in the special case where the external forces are equal to zero and if we assume that

ρ

2
‖u0‖

2
L2(Ω) +

m

2
|x1|

2 +
k

2
|x0|

2 ≤
µ2

8ρK2
, (21)

where K has been defined in Section 1.1 then there exists at least one weak solution of (6) on [0,∞). Furthermore
this solution satisfies:

ρ

2
‖u‖2

L∞(0,∞;L2(Ω) +
m

2S2

∥

∥

∥

∥

∫

Γ0

u · n

∥

∥

∥

∥

2

L∞(0,∞)

+
k

2

∥

∥

∥

∥

x0 +
1

S

∫ t

0

∫

Γ0

u · n

∥

∥

∥

∥

2

L∞(0,∞)

≤
µ2

8ρK2
, (22)

and for any T

ρ‖u‖2
L∞(0,T ;L2(Ω)) +

m

S2

∥

∥

∥

∥

∫

Γ0

u · n

∥

∥

∥

∥

2

L∞(0,T )

+
k

S2

∥

∥

∥

∥

∫ t

0

∫

Γ0

u · n

∥

∥

∥

∥

2

L∞(0,T )

+µ‖u‖2
L2(0,T ;H1(Ω)) +

N
∑

i=1

Ri

∫ T

0

(
∫

Γi

u · n

)2

≤ CT .

(23)

Remark 1.6. Note that in the special case where k = 0 and if the data are small enough one an obtain an
existence result globally in time.

2. Proof of Theorem

The proof of the existence results is standard. In a first step we build a sequence of approximated solutions
thanks to a Galerkin method. Then, since the energy bounds are not sufficient to pass to the limit in the weak
formulations, we derive additional bounds. Applying a compactness result we then are able to pass to the limit
in the system satisfied by the approximated solution leading to the existence of at least one weak solution.

2.1. Galerkin Method

The first step is to build a Galerkin basis of the space

W = {v ∈ V , ∃Λ̃ = (λ̃i)0≤i≤N s. t. v = λ̃iUi on Γi , i = 0, . . . , N}.

Let w belong to W . We remark first that, taking into account the incompressibility constrain, it implies that
N
∑

i=0

αi

∫

Γi

Ui · n = 0 with w|Γi = αiUi. Consequently if

∫

Γi

Ui · n = 0 for all 0 ≤ i ≤ N , the (αi) belong to a

vector space of dimension N + 1 and if there exists i0 such that

∫

Γi0

Ui0 · n 6= 0 the (αi) belong to a vectorial

space of dimension N . Then, w = z +
∑

i∈J αiwi, where

z ∈ {v ∈ H1
0 (Ω),∇ · v = 0},
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and where J and the wi ∈ V are defined as follows:

- If

∫

Γi

Ui · n = 0 for all 0 ≤ i ≤ N , then J = {i, 0 ≤ i ≤ N} and























−µ△wi + ∇pi = 0 in Ω
∇ · wi = 0 in Ω

wi = 0 on Γl

wi = 0 on Γj j 6= i
wi = Ui onΓi

Note that this case is improbable in the context of respiration.

- If there exists i0 such that

∫

Γi0

Ui0 · n 6= 0, then J = {i, 0 ≤ i ≤ N, i 6= i0} and we define the functions

wi, i 6= i0 as follows:
- for i 6= i0































−µ△wi + ∇pi = 0 in Ω
∇ · wi = 0 in Ω

wi = 0 on Γl

wi = 0 on Γj j 6= i, i0
wi = βiUi0 onΓi0

wi = Ui on Γi,

where βi = −

∫

Γi
Ui · n

∫

Γi0
Ui0 · n

.

Let (zn)n∈N be a Galerkin basis of {v ∈ H1
0 (Ω),∇·v = 0}. A Galerkin basis of W is then (zn)n∈N ∪ (wi)0≤i≤N .

For all m ∈ N, we define um(t) ∈ Wm = span(zn)1≤n≤m ⊕ span(wi)1≤i≤N solution of the discrete problem
(Pm)







































































ρ

∫

Ω

∂um

∂t
· v + ρ

∫

Ω

(um · ∇um) · v + µ

∫

Ω

∇um : ∇v

+

N
∑

i=1

Ri

(
∫

Γi

um · n

)(
∫

Γi

v · n

)

+
m

S2

d

dt

(
∫

Γ0

um · n

)(
∫

Γ0

v · n

)

+
k

S2

∫ t

0

(
∫

Γ0

um · n

)(
∫

Γ0

v · n

)

= −P0

(
∫

Γ0

v · n

)

−
fext

S

∫

Γ0

v · n−
k

S2
x0

∫

Γ0

v · n, ∀v ∈ Wm,

um(0) = u0m,

(24)

where u0m ∈ Wm and is such that u0m converges to u0 strongly in H as m goes to infinity.

Lemma 2.1. The discrete problem (Pm) has a unique solution um ∈ W 1,∞(0, T ; Wm).
Moreover the following energy estimates are satisfied:

∃τ0 independent of m, s. t. ‖um‖L∞(0,τ0;L2(Ω)) + ‖um‖L2(0,τ0;H1(Ω)) ≤ C,

where C is a constant that does depends on m.
Furthermore, if the initial data satisfy (21), and if P0 = 0 and fext = 0 then

ρ

2
‖um‖2

L∞(0,∞;L2(Ω)) +
m

2S2

∥

∥

∥

∥

∫

Γ0

um · n

∥

∥

∥

∥

2

L∞(0,∞)

+
k

2

∥

∥

∥

∥

x0 +
1

S

∫ t

0

∫

Γ0

um · n

∥

∥

∥

∥

2

L∞(0,∞)

≤
µ2

8ρK2
,
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and for any T

ρ‖um‖2
L∞(0,T ;L2(Ω)) +

m

S2

∥

∥

∥

∥

∫

Γ0

um · n

∥

∥

∥

∥

2

L∞(0,T )

+
k

S2

∥

∥

∥

∥

∫ t

0

∫

Γ0

um · n

∥

∥

∥

∥

2

L∞(0,T )

+µ‖um‖2
L2(0,T ;H1(Ω)) +

N
∑

i=1

Ri

∫ T

0

(
∫

Γi

um · n

)2

≤ CT .

Proof. It is clear that there exists a time τm such that the discrete problem (Pm) has a unique solution

um ∈ W 1,∞(0, τm; Wm).

In particular the mass matrix defined by

Mij = ρ

∫

Ω

φi · φj +
m

S2

(
∫

Γ0

φi · n

)(
∫

Γ0

φj · n

)

with φi , φj ∈ Wm,

is invertible. Moreover this solution satisfies the estimates (13) derived at Section 1.1 and consequently τm = τ0.
Finally, by applying the same argument as the one we used at Section 1.1 we obtain the other desired bounds. �

At least for a subsequence of um (still denoted by um), these estimates yield the following weak convergences,
as m goes to ∞:







um ⇀ u weakly in L2(0, T ; V )

um ⇀ u weakly ⋆ in L∞(0, T ; H),
(25)

where T = τ0 in the general case and T can be any time in the case of small enough data. Moreover the limit u

satisfies the same energy estimate as um thus inequality (20) is satisfied as well as (22), (23) in the case where
no external forces are applied and (21) is verified. Nevertheless the previous convergences are not sufficient to
pass to the limit in the weak formulation (Pm) and in particular in the convection term. Consequently we need
to derive additional bounds in order to obtain compactness of the sequence of approximated solution (um)m.

2.2. Additional bounds

We will follow exactly the same lines as in [7, 10]. First we define

Hγ(R; B0, B1) = {v, v ∈ L2(R, B0), Dγ
t v ∈ L2(R, B1)},

with Dγ
t v is the fractionnal derivative of order γ in time of v, defined as the inverse Fourier transform of

(2iπτ)γ û(τ). The space Hγ(R; B0, B1) is endowed with the norm

‖u‖Hγ(R;B0,B1) = (‖u‖2
L2(R;B0) + ‖|τ |γ û‖2

L2(R;B1)
)

1

2 .

We define also Hγ(0, T ; B0, B1), as the space of function obtained by restriction to [0, T ] of functions of
Hγ(R; B0, B1).
We will apply the following lemma that can be found also in [10]:

Lemma 2.2. Let B0, B, andB1 be three Hilbert spaces such that B0 ⊂ B ⊂ B1 and such that B0 is compactly
embedded in B. Then for all γ > 0, the injection Hγ(0, T ; B0, B1) → L2(0, T ; B) is compact.
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We are going to apply this lemma with

B0 = V, B1 = H, γ =
1

4
− ε and B = H

Indeed the additional estimate holds true:

Lemma 2.3. The sequence um is bounded in Hγ(0, T ; V, H) for 0 ≤ γ ≤
1

4
− ε.

Proof. We denote by ūm the extention of um by zero 0 for t < 0 and t > T , and ûm the Fourier transform in
time of ūm. Since we already know that um is uniformly bounded in L2(0, T, V ), it remains to prove that

∫ +∞

−∞

|τ |2γ‖ûm‖2
L2(Ω) ≤ C.

Then applying Lemma 2.2 we have that um is compact in L2(0, T ; H).
We have that ūm satisties

ρ

∫

Ω

∂ūm

∂t
· v + ρ

∫

Ω

(ūm · ∇ūm) · v + µ

∫

Ω

∇ūm : ∇v +
N
∑

i=1

Ri

(
∫

Γi

ūm · n

)(
∫

Γi

v · n

)

+
m

S2

d

dt

(
∫

Γ0

ūm · n

)(
∫

Γ0

v · n

)

−
k

S
x̄m

(
∫

Γ0

v · n

)

= −P̄0

(
∫

Γ0

v · n

)

−
f̄ext

S

∫

Γ0

v · n− ρ

∫

Ω

ūm(T ) · vδT + ρ

∫

Ω

ūm(0) · vδ0

−
m

S2

(
∫

Γ0

um(T ) · n

)(
∫

Γ0

v · n

)

δT +
m

S2

(
∫

Γ0

um0 · n

)(
∫

Γ0

v · n

)

δ0 ∀v ∈ Wm,

where xm = x0 −
1

S

∫ t

0

∫

Γ0

um · n. We now apply the Fourier transform to the previous equation and take ûm

as a test function, it yields

ρ2iπτ

∫

Ω

|ûm(τ)|2 + ρ

∫

Ω

Ĝ(τ)ûm(τ) + µ

∫

Ω

∇ûm(τ) : ∇ûm(τ) +

N
∑

i=1

Ri

(
∫

Γi

ûm(τ) · n

)2

+
m

S2
2iπτ

(
∫

Γ0

ûm(τ) · n

)2

+ k2iπτ(x̂m(τ))2 = −

(

P̂0(τ) +
f̂ext

S
(τ)

)

∫

Γ0

ûm(τ) · n

−ρ

∫

Ω

ūm(T ) · ûm(τ)e−2iπτT + ρ

∫

Ω

ūm(0) · ûm(τ)

+
m

S2

(
∫

Γ0

ûm(τ) · n

)(
∫

Γ0

ūm(T ) · n

)

e−2iπτT −
m

S2

(
∫

Γ0

ûm(τ) · n

)(
∫

Γ0

ūm(0) · n

)

where Ĝ is the Fourier transform with respect to the time of the nonlinear convection term ūm · ∇ūm.

Taking the imaginary part of the previous equality and using the inequality

∣

∣

∣

∣

∫

Γ0

v · n

∣

∣

∣

∣

≤ C‖v‖L2(Ω), for every

v ∈ W (see Lemma 1.1), we have

|τ |‖ûm(τ)‖2
L2(Ω) ≤ C‖Ĝm(τ)‖V ′‖ûm(τ)‖V + C

(

‖ūm(T )‖L2(Ω) + ‖ūm(0)‖L2(Ω)

)

‖ûm(τ)‖L2(Ω)

+C

∣

∣

∣

∣

∣

P̂0(τ) +
f̂ext(τ)

S

∣

∣

∣

∣

∣

‖ûm(τ)‖L2(Ω) + C

(
∫

Γ0

|ūm(T ) · n| +

∫

Γ0

|ūm(0) · n|

)

‖ûm(τ)‖L2(Ω).



14 ESAIM: PROCEEDINGS

Moreover we have

‖Gm‖V ′ ≤ ‖um‖2
H1(Ω),

and then, thanks to the energy estimates satisfied by um,

∫ +∞

−∞

‖Gm‖V ′dt ≤ C

∫ T

0

‖um(t)‖2
H1(Ω)dt ≤ C,

from which we deduce

‖Ĝm(τ)‖V ′ ≤ C.

Futhermore, thanks to the energy estimates satisfied by um (see Lemma 2.1), we have that ‖um(T )‖L2(Ω) ≤ C
and since ‖um(0)‖L2(Ω) ≤ C, we obtain

|τ |‖ûm(τ)‖2
L2(Ω) ≤ C

(

‖ûm(τ)‖H1(Ω) + ‖ûm(τ)‖L2(Ω)

)

C‖ûm(τ)‖H1(Ω).

But, for 0 < γ < 1
4 , we see that

|τ |2γ ≤ C(γ)
1 + |τ |

1 + |τ |1−2γ
, ∀τ ∈ R,

then

∫ +∞

−∞

|τ |2γ‖ûm(τ)‖2
L2(Ω) ≤ C(γ)

∫ +∞

−∞

‖ûm(τ)‖H1(Ω)

1 + |τ |1−2γ
+ C(γ)

∫ +∞

−∞

|τ‖|ûm(τ)‖H1(Ω)

1 + |τ |1−2γ
.

The first integral of right hand side can be estimated

∫ +∞

−∞

‖ûm(τ)‖2
H1(Ω)

1 + |τ |1−2γ
≤

(

∫ +∞

−∞

1
(

1 + |τ |1−2γ
)2

)
1

2 (∫ +∞

−∞

‖ûm(τ)‖2
H1(Ω)

)

1

2

The first integral is convergent for any 0 < γ < 1
4 . On the other hand, from Parseval egality

∫ +∞

−∞

‖ûm(τ)‖2
H1(Ω) dτ =

∫ T

0

‖um(t)‖2
H1(Ω) dt ≤ C.

With the same kind of arguments the second integral is convergent. �

2.3. Passage to the limit

The previous compactness result imply the following strong convergence (at least for a subsequence of um

still denoted um)

um → u strongly in L2(0, T ; L2(Ω)).
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This convergence result together with (25) enable us to pass to the limit in the following weak formulation
(obtained from (Pm) by multiplication by φ ∈ D([0, T )) and integration by parts in time)











































































ρ

∫

Ω

um(t) · vφ(t) − ρ

∫ t

0

∫

Ω

um · v φ̇ + ρ

∫ t

0

∫

Ω

(um · ∇um) · v φ + µ

∫ t

0

∫

Ω

∇um : ∇v φ

+

N
∑

i=1

Ri

∫ t

0

(
∫

Γi

um · n

)(
∫

Γi

v · n

)

φ +
m

S2

(
∫

Γ0

um(t) · n

)(
∫

Γ0

v · n

)

φ(t)

−
m

S2

∫ t

0

(
∫

Γ0

um · n

)(
∫

Γ0

v · n

)

φ̇ +
k

S2

∫ t

0

(
∫ s

0

∫

Γ0

um · n

)(
∫

Γ0

v · n

)

φ

= −

∫ t

0

P0

(
∫

Γ0

v · n

)

φ −

∫ t

0

fext

S

(
∫

Γ0

v · n

)

φ −
k

S
x0

(
∫

Γ0

v · n

)
∫ t

0

φ

−ρ

(
∫

Ω

um0 · v

)

φ(0) −
m

S
xm

1

(
∫

Γ0

v · n

)

φ(0), ∀v ∈ Wm,

where xm
1 is equal to −

1

S

∫

Γ0

u0m·n and converges towards x1 = −
1

S

∫

Γ0

u0·n as m goes to infinity. Consequently

we obtain the existence of at least one weak solution locally in time in the general case or globally in time for
small enough data.

3. Numerical illustrations

In this section we present 2D numerical results performed with Freefem++ (see [6]). Our main purpose is
to illustrate how this approach makes it possible to investigate the effect of a modification of some resistances
in the condensed (distal) part onto the overall flow in the upper (proximal) part of the tree. The numerical
approach shall be described and justified in a forthcoming paper. We simply present in the next section the
principles it lies on.

3.1. Numerical scheme

We propose a time discretization of (6) based on the method of caracteristics for the convection part. Let
t0 = 0 < t1 < t2 < · · · < tN = T , with tn+1 − tn = δt = T/N , denote the time steps. We denote by (un , pn)
approximations of the velocity and pressure at time tn, built recursively according to the following scheme :

ρ
1

δt
un+1 − µ∆un+1 + ∇pn+1 = ρ

1

δt
un ◦ Xn in Ω

∇ · un+1 = 0 in Ω
un+1 = 0 in Γl

un+1 = λn+1Ui sur Γi, i = 0...N

µ∇un+1 · n− pn+1n = −P0n on Γ0

µ∇un+1 − pn+1n = −Pn+1n− Ri

(
∫

Γi

un+1 · n

)

n sur Γi, i = 1...N

Pn+1 =
1

S

(

m
xn+1 − 2xn + xn−1

δt2
+ kxn+1 − Fn+1

ext

)

xn+1 − xn

δt
= −

Qn+1
0

S
,
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where Qn+1
0 =

∫

Γ0

un+1 · n, and Xn(x) stands for Y n(x, tn), backward characteristic defined as







∂Y

∂t
(x , t) = un(Y )

Y (x , tn+1) = x.

Figure 2. Mesh near the first bifurcation

We may now write the variational formulation for one time step: suppose that xn, un are known, the couple
(un+1, pn+1) ∈ {v ∈ H1(Ω) , v = 0 on Γl , ∃Λ̃ = (λ̃i)0≤i≤N s. t. v = λ̃iUi on Γi , i = 0 , . . . , N} × L2(Ω) is
computed as the solution to

a(un+1,v) + b(v, pn+1) = ln+1(v) ∀v ∈ H1(Ω) , v = 0 on Γl ,

∃Λ̃ = (λ̃i)0≤i≤N s. t. v = λ̃iUi on Γi , i = 0 , . . . , N

b(un+1, q) = 0 ∀q ∈ L2(Ω)
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Figure 3. Pressure field in situation II

where

a(un+1,v) =
ρ

δt

∫

Ω

un+1 · v + µ

∫

Ω

∇un+1 : ∇v

+

N
∑

i=1

Ri

(
∫

Γi

un+1 · n

)(
∫

Γi

v · n

)

+
1

S2

(m

δt
+ kδt

)

(

N
∑

i=1

∫

Γi

un+1 · n

)(

N
∑

i=1

∫

Γi

v · n

)

,

ln+1(v) =
ρ

δt

∫

Ω

(un ◦ Xn) · v − P0

∫

Γ0

v · n −

(

m

δtS2
Qn

0 +
k

S
xn −

fn+1
ext

S

)

(

N
∑

i=1

∫

Γi

v · n

)

,

and

b(un+1 , q) = −

∫

Ω

∇ · un+1q.

Once un+1 is known, xn+1 is updated as

xn+1 = xn −
δt

S
Qn+1

0 with Qn+1
0 =

∫

Γ0

un+1 · n.
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1

2

3

4

5

6

7

8

Figure 4. Resistance perturbation

3.2. Numerical tests

Three dimensional computations shall be presented in a forthcoming paper. We simply present here some
tests where Navier-Stokes simulations are performed on a 2D domain. From a modelling point of view, the
suitability of this approach is highly questionable, as our 2D upper tree cannot be expected to reproduce all
features of the real, three-dimensional one. Yet, we tried here to as respectful as possible of the mechanical
properties of the human respiratory tree.

The main idea is to construct a two-dimensional tree equivalent to the three-dimensional one such that two
conditions are fulfilled: the two trees have the same global resistance and the two-dimensional tree reproduces
the resistance repartition of the three-dimensional tree. Consider the situation of geometrical trees, both 2D and
3D, and introduce the ratios of homothety h2D and h3D respectively. Knowing that the 2D and 3D resistances
are proportional to 1

h2

2D
and 1

h3

3D
respectively, we choose h2D such that

h2D = h
3

2

3D.

For the generation zero, the trachea, we keep the real dimensions for the diameter and the length (width
= 2.10−2, lenght = 12.10−2). As we know the global 3D resistance, we fix the fluid viscosity value such that
both 2d and 3d global resistances are equal. Finally, the density is tuned according to the Reynolds number
one wants to obtain (about 500 in the present case).

We consider the following set of data:

m = 0.4 , S = 0.011 , k = 2 , µ = 4 10−3 , ρ = 50.

All computations presented here are based on a non structured mesh, a part of which is represented in Fig 2.
Initial conditions are x = ẋ = 0, and the forcing term fext is taken periodic (period of 5s), piecewise constant,
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with a 2 second active, inpiratory phase (fext = 0.1), followed by a passive, expiratory phase (fext = 0.0). Two
situations are considered: in the first one (I), the 8 subtrees are identical, and each of them is symmetric (all
resistances are the same in each generation). The second one is obtained as a perturbation of the first one:
one of the resistances of subtree 5 (see the arrow on Fig. 4) is multiplied by 104 (the corresponding is almost
obstructed). Fig. 5 represents the corresponding t 7→ x(t) curves. As expected, the increase in resistance leads
to a smaller ventilation amplitude. We plotted in Figure 6 the air fluxes through the 8 exits, at some time
during the inspiration phase. The horizontal straight line corresponds to situation I: all fluxes are the same.
The step function corresponds to situation II: one can check that the global flux is slightly reduced in the
perturbed situation, but all fluxes are increased but through outlet 5, where it is reduced drastically. Note that
the perturbation affects significantly outlet 6, and much less outlet 4. It is due to the fact that 5 and 6 are
quite closed as ends of the tree, wheras 5 and 4 are not.

 0

 0 .0 0 5

 0 .0 1

 0 .0 1 5

 0 .0 2

 0 .0 2 5

 0 .0 3

 0 .0 3 5

 0 .0 4

 0 .0 4 5

 0  2  4  6  8  1 0  1 2  1 4  1 6

                 Case I

                 Case II

f
ext

 

Figure 5. Simulation of three respiratory cycles, cases I and II
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