
HAL Id: inria-00177516
https://hal.inria.fr/inria-00177516v2

Submitted on 26 Dec 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decoupling the CGAL 3D Triangulations from the
Underlying Space

Manuel Caroli, Nico Kruithof, Monique Teillaud

To cite this version:
Manuel Caroli, Nico Kruithof, Monique Teillaud. Decoupling the CGAL 3D Triangulations from the
Underlying Space. [Research Report] RR-6318, INRIA. 2007, pp.12. �inria-00177516v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50337159?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00177516v2
https://hal.archives-ouvertes.fr

appor t
de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
63

18
--

FR
+E

N
G

Thème SYM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Decoupling the CGAL 3D Triangulations
from the Underlying Space

Manuel Caroli — Nico Kruithof — Monique Teillaud

N° 6318

Octobre 2007

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Decoupling the Cgal 3D Triangulations

from the Underlying Space

Manuel Caroli ∗ , Nico Kruithof † , Monique Teillaud∗

Thème SYM � Systèmes symboliques
Projets Géométrica

Rapport de recherche n° 6318 � Octobre 2007 � 12 pages

Abstract: The Computational Geometry Algorithms Library Cgal currently provides packages
to compute triangulations in R2 and R3. In this paper we describe a new design for the 3D
triangulation package that permits to easily add functionality to compute triangulations in other
spaces. These design changes have been implemented, and validated on the case of the periodic
space T3. We give a detailed description of the realized changes together with their motivation.
Finally, we show benchmarks to prove that the new design does not a�ect the e�ciency.

Key-words: Triangulation, Tetrahedrization, Torus, Periodic space

∗ INRIA Sophia-Antipolis (Firstname.Lastname@sophia.inria.fr).
† Nico Kruithof worked on this during his stay at INRIA Sophia-Antipolis (Kruithof@jive.nl).

Découplage des triangulations 3D de CGAL

de l'espace sous-jacent

Résumé : La bibliothèque Cgal (Computational Geometry Algorithms Library) fournit actuel-
lement des modules de calcul de triangulations dans R2 et R3. Nous décrivons ici une nouvelle
architecture pour le module de triangulations 3D, qui permet d'ajouter facilement les fonctionna-
lités nécessaires au calcul de triangulations dans d'autres espaces. Ces changements d'architecture
ont été implantés, et validés sur le cas de l'espace périodique T3. Nous donnons une description
détaillée des changements réalisés ainsi que de leur motivation. Finalement, nous présentons des
mesures expérimentales prouvant que la nouvelle architecture n'a�ecte pas l'e�cacité du code.

Mots-clés : Triangulation, Tore, Espace périodique

Decoupling Triangulations from Space 3

1 Introduction

Computing Delaunay triangulations and the more general regular triangulations is a well-studied
subject in Computational Geometry. There are many algorithms available [dBvKOS00, ES96] as
well as several implementations [cga, She96, Hel01, qhu]. The algorithms work in general for the
d-dimensional Euclidean space Rd, and the implementations are usually restricted to R2 or R3.
However, there are also applications for triangulations in spaces other than Rd. For instance, in
simulation, one is typically interested in having no boundary conditions. This can be achieved by
computing a triangulation in the periodic space denoted by Td. Currently, the Cgal triangulation
package is generic with respect to the implementation of the basic arithmetic operations and
geometric tests and the triangulation data structure (Section 3) but the embedding space is bound
to be R3. The goal of this work is to extend the triangulation package such that it is possible
to easily add functionality to compute in other spaces. For the implementation, we will restrict
ourselves to the case of three-dimensional triangulations, also referred to as tetrahedrizations.

The Cgal 3D triangulation package implements two types of triangulations: Delaunay tri-
angulations and regular triangulations [PT07b]. We shortly introduce both triangulations in the
following section. The original triangulation package has been designed for computing in R3 only;
we show how to add one more layer of genericity, which implies considerable modi�cations in the
package design. However, we require the package to remain backward compatible and not to lose
performance. The package modi�cations will be discussed in detail in the third section. The de-
scribed changes enable us to add functionality for computing triangulations in the periodic space
T3. In Section 4, we give more details about the properties of T3 and the implementation. Finally,
we present some benchmarking results of the current design and the new design1 and for di�erent
spaces in Section 5.

2 Delaunay Triangulation and Regular Triangulation

Given a set S of points, a triangulation partitions the space into cells (tetrahedra in 3D) whose
vertices are the given points. The Delaunay triangulation has the property that the circumsphere
of each cell does not contain any other point of S [BY98, dBvKOS00].

The regular triangulation generalizes the Delaunay triangulation by associating a weight with
every point. Let S(w) be a set of weighted points p(w) = (p, wp) ∈ R3 × R. The weighted point
p(w) can also be seen as a sphere of center p and radius

√
wp. To de�ne the regular triangulation

of S(w), we �rst need to introduce the notion of power product and power sphere.

De�nition 1

� The power product of two weighted points p(w) = (p, wp) and q(w) = (q, wq) is de�ned as
Π(p(w), q(w)) := ‖p− q‖2 − wp − wq.

� The power test checks the sign of the power product of two weighted points.
The power product is zero if the two spheres corresponding to p(w) and q(w) intersect orthog-
onally; in this case, the two weighted points are said to be orthogonal.

� Four weighted points have a unique common orthogonal weighted point called the power
sphere.

A sphere s(w) is said to be regular if the inequality Π(p(w), s(w)) ≥ 0 holds for all p(w) ∈ S(w).
A triangulation of S(w) is regular if the power sphere of each cell of the triangulation is regular.

A cell and a point p(w) are said to be in con�ict if Π(p(w), s) < 0, where s is the power sphere
of the tetrahedron. See Figure 1 for an illustration in 2D.

It is easy to see that if all points have equal weights, a sphere is regular if it does not contain
any other point, and a sphere is in con�ict with a point if it contains it; in this case, the regular

1We will use the term current to refer to the implementation available in the public release 3.3 of Cgal, and
the term new to refer to the implementation we present in this paper, which is available only in internal releases for
the moment.

RR n° 6318

4 Caroli & Kruithof & Teillaud

p

p

Figure 1: A cell and a point in con�ict in Delaunay triangulation (top) and regular triangulation
(bottom)

triangulation is the Delaunay triangulation of the set of non weighted points. The regular triangu-
lation is also referred to as weighted Delaunay triangulation or power triangulation. To know more
about regular triangulations, see for example [ES96, Aur87].

2.1 Algorithm.

The current implementation of the Cgal triangulation package uses an incremental approach to
compute the triangulation. This means the points are added one by one. The algorithm for
inserting a single point works as follows:

� locate: Locate the cell containing the point. Also report degeneracies, e.g. point on a facet
or edge.

� find_conflicts: Mark all the cells that are in con�ict with the newly added point.

� insert: Call find_conflicts, delete all cells in con�ict, which creates a �hole" in the
triangulation, then create new cells to �ll the hole.

Additionally, there are many auxiliary functions providing access to the triangulation. Most
of these functions slightly modify already computed and internally stored properties [PT07b].
Therefore, they are not considered in the further discussion.

2.2 Particularities of R3.

In the current Cgal triangulation package, several aspects are specialized to R3:
A triangulation in R3 partitions the convex hull2 of the point set. To handle the unbounded

cell outside the convex hull, an in�nite vertex is added to the triangulation, and all the facets of
the convex hull are connected with this in�nite vertex. In this way, all cells have four vertices and
four adjacent cells. The underlying combinatorial graph of the triangulation of R3 can be seen as
a triangulation of the topological sphere S3 in R4.

Furthermore, we have to deal with degenerate dimensions when computing triangulations in
R3. For instance, if all the points lie in a plane, a two-dimensional triangulation must be computed
and stored. This requires additional implementation e�ort for some functions.

We want to allow implementations of triangulations in di�erent spaces in the new triangulation
package. One of them is homeomorphic to the hypersurface T3 of a torus in 4D (see Section 4 for
more details). The previously mentioned properties of R3, currently hard-coded, do not hold in
T3.

3 Design

In this section, we �rst describe the design of the current triangulation package. Then we introduce
the changes that have to be done in order to enable triangulations in di�erent spaces.

2The convex hull of a set of points is the smallest convex set containing the points.

INRIA

Decoupling Triangulations from Space 5

Like the overall Cgal library, the triangulation package follows the Generic Programming
paradigm [BKSV00, FT06]. The policy of Cgal is to provide code that is generic, �exible, and
easily adaptable to speci�c needs of the user. The main class Triangulation_3 is built as a layer
on top of the triangulation data structure that stores the combinatorial structure of the computed
triangulation. This allows a separation between the geometry and the combinatorics, which is
re�ected by the fact that the triangulation class takes two template parameters:

� the geometric traits class, which de�nes basic geometric objects (e.g. points, segments,
triangles, tetrahedra) and predicates (e.g. orientation test, in_sphere test for Delaunay tri-
angulation and power test for regular triangulation). A default traits class is provided in the
package, but it can also be substituted by user provided traits.

� the triangulation data structure class, which stores the combinatorial structure and takes
care of its validity [PT07a]. It is described in more detail in the following section.

3.1 The Triangulation Data Structure.

To explain a data structure for storing triangulations, we need a more precise de�nition of a
triangulation. The notion of simplicial complex must be recalled �rst. More details can be found
in [Zom05, RV06].

De�nition 2

� A k-simplex is the convex hull of a set of k + 1 a�nely independent points. A 0-simplex is
called a vertex.

� If σ is a simplex de�ned by a �nite point set S, then any simplex τ de�ned by T ⊂ S is called
a face of σ.

� A simplicial complex K is a �nite collection of non-empty simplices such that the following
two conditions hold:

1. if σ ∈ K and τ is a face of σ, then τ ∈ K,

2. if σ1, σ2 ∈ K, then their intersection σ1 ∩ σ2 is either empty or a face of both σ1 and
σ2.

Now we can de�ne a triangulation as follows:

De�nition 3 Let S be a �nite point set in some space X. A simplicial complex K is a triangulation
of S, if

1. each point in S is a vertex of K,

2.
⋃

σ∈K σ is homeomorphic to X.

The triangulation data structure stores a purely combinatoric graph without any geometric
information. It consists of a container of cells (3-faces) and a container of vertices (0-faces).

vextex 0 vertex 1

vertex 2

vertex 3

facet 0

neighbor 0

edge (1, 3)

Figure 2: Representation.

Each cell stores pointers to its four vertices and its four adjacent cells. Each vertex stores one
of its incident cells (Figure 2).

In order to achieve a high �exibility of design, the classes that store the cells and vertices can
be specialized or even completely replaced by the user.

RR n° 6318

6 Caroli & Kruithof & Teillaud

3.2 The Triangulation Class and its Specializations.

The main class Triangulation_3 is specialized to Delaunay_triangulation_3 and Regular_triangulation_3
as shown in the derivation diagram in Figure 3.

Delaunay_triangulation_3 Regular_triangulation_3

Triangulation_hierarchy_3

Triangulation_3

Triangulation_utils_3

Figure 3: The current design.

These three classes provide high-level geometric functionality as member functions, such as
location of a point in the triangulation [DPT02], point insertion, and vertex removal [DT03, DT06],
and are responsible for the geometric validity. As mentioned before, they are parameterized by the
geometric traits and by the triangulation data structure. This diagram shows two other classes:
- Triangulation_utils_3 provides a set of tools operating on the indices of vertices in cells,
- Triangulation_hierarchy_3 implements a hierarchy of triangulations suitable for speeding up
point location [Dev02].

The geometric functions in the triangulation class then trigger the combinatorial functions in
Triangulation_data_structure_3. For instance, insert �rst performs the point location and
then computes the con�ict region (Section 2.1). These tasks involve only geometric predicates
and do not change the combinatorial triangulation. Once the con�ict region is known, its cells
are deleted and replaced by new cells, which is a purely combinatorial operation performed by
Triangulation_data_structure_3.

3.3 The New Design.

The goal of the new design is to make it possible to easily extend the current implementation by
several di�erent spaces with the least possible redundancy in code. The basic idea of the new

Tr space torus 3Tr space euclidean 3

Triangulation 3

Delaunay triangulation 3 Regular triangulation 3

General base

The embedding space

Triangulation class

Specialized triangulations

or

Triangulation utils 3

Triangulation hierarchy 3

former Triangulation 3

Triangulation base 3

or or . . .?

Figure 4: The new design.

INRIA

Decoupling Triangulations from Space 7

Triangulation_3

+locate(...)

+insert(...)

+find_conflicts(...)

Gt:
Tds:

Delaunay_triangulation_3

+insert(...)

+find_conflicts(...)

+remove(...)

Gt:
Tds:

Regular_triangulation_3

+insert(...)

+find_conflicts(...)

+remove(...)

Gt:
Tds:

Triangulation_data_structure_3

Cell_base:
Vertex_base:

Figure 5: Distribution of functions in the current package (simpli�ed).

design is to split the current class Triangulation_3 into three classes related by inheritance (cf.
Figure 4). The embedding space class provides all functionality that depends on the space. It is
now a template parameter of the triangulation, together with the triangulation data structure and
the geometric traits.

More details are given in Section 3.4. Let us now list the a�ected classes in more detail and
emphasize on the changes to the current design:

Triangulation data structure: The triangulation data structure does not change in the new
design, since the invariant of storing a simplicial complex does not depend on the space.

Geometric traits: The geometric traits class can be substituted by an appropriate traits class if
needed by the embedding space, in the same way as it can be modi�ed by the user in the current
design.

Triangulation embedding space: This class is new in the design and is used to handle every-
thing that depends on the embedding space of the triangulation.
There is functionality that depends on both space and triangulation type. In these cases we use
visitors that modify the functionality relevant to the triangulation type in the space class. This
design pattern is described in more detail in Section 3.5.

Triangulation: The Triangulation class provides the same interface as in the current design, inde-
pendent of the embedding space. It provides generic algorithms for point location, point insertions
and �ips. This class is �nally specialized to Delaunay triangulation and regular triangulation.

Introducing new spaces becomes easy with this design: only the space class (and possibly the
geometric traits) is needed, since the algorithms provided by the triangulation classes are fully
generic.

3.4 Redistributing the Functionality of Triangulation_3.

In the current triangulation package, the functionality is distributed as shown in Figure 5.
In the Delaunay triangulation as well as in the regular triangulation, the find_conflicts

function and the insert function overload the corresponding functions of Triangulation_3. Ad-
ditionally, both specialized triangulation classes implement their own remove method: it removes
the given vertex from the data structure and uses insert to retriangulate the hole.
In the new design, the functionality is redistributed as shown in Figure 6. All of the four functions
mentioned in the �gures depend on the space used. That means that we must provide a di�erent
implementation for each space. Therefore, the class Triangulation_base_3 provides only basic
functionality that is independent of space and triangulation type used. The space classes contain
the actual geometric functionality: point location, con�ict search, point insertion, and point re-
moval. Out of these four functions, only the point location does not depend on the triangulation
type. This means that we need to implement each of the remaining three functions twice for each
space (once for Delaunay and once for regular triangulation). To minimize code redundancy, we
use the design pattern of visitors as explained in the next section.

RR n° 6318

8 Caroli & Kruithof & Teillaud

Triangulation_3

Gt:
Tds:
Space:

Delaunay_triangulation_3

+insert(...)

+find_conflicts(...)

+remove(...)

Gt:
Tds:
Space:

Regular_triangulation_3

+insert(...)

+find_conflicts(...)

+remove(...)

Gt:
Tds:
Space:

Triangulation_base_3

Point_3:
Tds:

Triangulation_space_euclidean_3

+locate(...)

+insert(...)

+remove(...)

+find_conflicts(...)

Gt:
Tds:

Triangulation_space_torus_3

+locate(...)

+insert(...)

+remove(...)

+find_conflicts(...)

Gt:
Tds:

or

Triangulation_data_structure_3

Cell_base:
Vertex_base:

Figure 6: Distribution of functions in the new design (simpli�ed).

3.5 Visitors.

In a class hierarchy, it is usually hard to extend subclasses with new functions, because the new
functions must be added to each subclass. The idea of the visitor design pattern [GHJV95] is to
move functions operating on objects from the class hierarchy into their own classes, called visitors.
In this way, functions can be reused for several types of objects, and adding a new function
corresponds to only adding a new visitor.

class Conflict_tester {

typename Conflict_vertices_iterator;

typename Hidden_points_iterator;

// Constructor: the visitor is initialized with the point to test

Conflict_tester(Point, Embedding_space<Traits, Tds>)

// returns true if the point is in conflict with the cell

bool operator()(Cell_handle);

// access functions

Conflict_vertices_iterator conflict_vertices_begin();

Conflict_vertices_iterator conflict_vertices_end();

Hidden_points_iterator hidden_points_begin();

Hidden_points_iterator hidden_points_end();

};

template <class ConflictTester, class Iter1, class Iter2, class Iter3>

Triple<Iter1,Iter2,Iter3> find_conflicts(

Cell_handle,

ConflictTester,

Triple<Iter1,Iter2,Iter3>);

Figure 7: Pseudo-code listing to illustrate the visitor ConflictTester.

In our implementation we modify the presented ideas of the visitor pattern to meet the generic
programming paradigm. Visitors have been used in Cgal before, e.g. to permit the user to provide

INRIA

Decoupling Triangulations from Space 9

his own functions that must be applied during the algorithm run [WFZH07]. In our approach, we
use visitors to exchange triangulation type dependent functionality in the functions from the space
class.
The naive solution to our problem would be to implement four di�erent classes for

• Delaunay triangulation in R3,
• Regular triangulation in R3,
• Delaunay triangulation in T3,
• Regular triangulation in T3.

This solution would require another pair of triangulation classes for each further space. Instead,
we implement two space classes providing functionality for both triangulation types. The space
classes correspond to the object in the above description of the visitor pattern. Now, we factor
out the parts of the code that have to be implemented di�erently depending on the triangulation
type. This functionality is coded in separate visitor classes.

An example for a visitor class is the con�ict tester (Figure 7). The find_conflicts function
needs to be able to decide whether or not a cell and a point are in con�ict. In the Delaunay triangu-
lation, this corresponds to an in_sphere test whereas in the regular triangulation, it corresponds
to a power_test (cf. Section 2). Therefore, the find_conflicts function in the space class is
templatized by a class of the model Conflict_tester and receives an object of this class. We only
need to implement a class Delaunay_conflict_tester and a class Regular_conflict_tester

instead of implementing the whole find_conflicts function twice.
Further visitors are needed:

� [Delaunay|Regular]_point_hider: In a regular triangulation it may happen that the in-
sertion of a heavy-weighted point hides lighter-weighted points nearby. The hidden points
disappear from the triangulation. But we need to store them in some data structure to
reinsert them again in the case that the heavy-weight point that caused their disappear-
ance is removed. The task of the point hider is to manage this data structure. The
Delaunay_point_hider exists only for consistency reasons and does nothing.

� [Delaunay|Regular]_point_remover: The point remover extracts the hidden points from
removed cells. Those vertices can be read by the remove function to be reinserted to the
triangulation. This visitor is also empty for the Delaunay case.

4 The Periodic Space

In this section, we show how the design presented previously can be used for computing triangu-
lations in the periodic space T3. We only sketch the basic ideas here. More details about this
speci�c space will be developed in a forthcoming paper.

The periodic space T3 is represented here as [0, 1]3. It can be embedded in R3 using a rectangular
tiling. We denote points in R3 and their coordinates by p = (x, y, z) and points in T3 by q =
(u, v, w). Any point q = (u, v, w) ∈ T3 is mapped onto a regular point lattice in R3 given by:

g(q) := {(u, v, w) + (i, j, k) | i, j, k ∈ Z},

In this de�nition, we map the periodic space into R3 by repeating it in�nitely in all three
directions of space.

De�nition 4 (domain) The domain (i, j, k) is de�ned as the set of points in R3 with the same
constant (i, j, k) in the above de�ned mapping g.

As mentioned above, a triangulation is de�ned as a simplicial complex (cf. Section 3.1). As
long as the subdivision we compute is not a simplicial complex, it is not a valid triangulation. As
an example, let us subdivide T2 using one vertex such that the subdivision meets the Delaunay
property when we embed it into R2. It consists of 3 edges and 2 facets (see Figure 8). This subdi-
vision is not a simplicial complex because the vertices of all simplices are equal. The corresponding
subdivision of T3 with one vertex has 7 edges, 12 facets and 6 cells. This subdivision cannot be
used as a starting point for an incremental construction of a Delaunay triangulation.

Coverings. We propose to construct the triangulation of the torus in two stages. First, we
construct a Delaunay triangulation of a 3-sheeted covering of the underlying space [Zom05]. In

RR n° 6318

10 Caroli & Kruithof & Teillaud

Figure 8: Left: invalid triangulation of T2 with a single vertex. Right: 9 periodic copies are shown.

other words, the domain is explicitly copied 3 times in each direction of space (see Figure 8 for
T2). It can be shown that the subdivision computed as described in Sections 2.1 and 3.4 is always
a valid triangulation in such a covering. However, for the three-dimensional space we now have
to cope with 27 times as many points as the triangulation contains. It is clear that this becomes
very ine�cient when computing triangulations of large point sets. Once the triangulation contains
enough points, it is likely that it is a simplicial complex in the 1-sheeted covering as well. We could
prove that after checking some precise criteria, we can fall back to the 1-sheeted covering.

O�sets. As mentioned above, the triangulation is stored as a set of vertices and a set of cells,
where a cell contains pointers to its four neighboring cells and to its four incident vertices. In a
periodic space, we also need to store whether or not a cell is wrapped around the domain. To do so,
we introduce o�sets: Each vertex of a cell is endowed with an o�set, which is a three-dimensional
vector of non-negative3 integer entries. To get the vertex coordinates of a cell, we take the point
coordinates attached to the respective vertex and add the o�set multiplied by the domain size (cf.
Figure 9). To use the o�sets in the implementation we specialize the cell class in the triangulation
data structure. Additionally, the space class and the respective visitors need to be modi�ed to
handle o�sets.

(0, 0)

(0, 1)

(1, 1)

Figure 9: The concept of o�sets in 2D space.

5 Benchmarks

The main constraint on our work is that the implementation should not lose e�ciency after the
redesign of the triangulation package. To ensure this, we tested the performance of both current
and new implementations for Delaunay triangulations as well as regular triangulations in R3.

All benchmarks have been run with the Cgal internal release CGAL-3.4-I-85 on an Intel
Pentium 4 CPU clocked at 3.6 GHz. The used operating system is Linux Fedora Core 5 and
gcc version 4.1.1 with the optimization option -O2. The given results are obtained by using
CGAL::Timer and computing the average of the run time of three runs rounded to three signi�cant
digits. All computations have been performed on a random point set, uniformly distributed in a
half-open unit cube. The results are given in seconds.

3We can always move the reference coordinate system such that no negative entries are needed.

INRIA

Decoupling Triangulations from Space 11

No. of points current design new design

1000 0.0190 0.0190
10000 0.204 0.205
100000 2.11 2.10
1000000 21.5 21.4

No. of points current design new design

1000 0.0880 0.0907
10000 1.00 1.01
100000 10.3 10.5
1000000 104 106

Table 1: Benchmarks for Delaunay triangulation (left) and regular triangulation (right).

Table 1 allows us to compare the two designs. As we see, no signi�cant loss in e�ciency is
identi�able. The point insertion uses spatial sorting4 [Del07], which accelerates the point location
considerably. We can observe that the asymptotic behavior is almost linear.

The last benchmark shows a preliminary comparison of the computation of triangulations in
R3 and in T3, made possible by the new design. To be able to compare the two triangulations,
we precompute a triangulation of the �rst 1000 points. This is enough for the torus triangulation
to switch back to the 1-sheeted covering (cf. Section 4). It does not make much sense to compare
with computing in the 3-sheeted covering. Table 2 shows that with the �rst version of the space
class for T3, the computation is clearly slower than in R3, but the di�erence will be reduced after
improvements in the implementation.

No. of points R3 T3

1000 0.0190 0.0500
10000 0.204 0.498
100000 2.11 4.93
1000000 21.5 49.5

Table 2: Benchmarks for Delaunay triangulation in R3 and T3.

References

[Aur87] F. Aurenhammer. Power diagrams: properties, algorithms and applications. SIAM J. Com-
put., 16:78�96, 1987.

[BKSV00] Hervé Brönnimann, Lutz Kettner, Stefan Schirra, and Remco Veltkamp. Applications of the
Generic Programming Paradigm in the Design of Cgal, volume 1766 of Lecture Notes in
Computer Science, pages 206�216. Springer, Berlin, Germany, January 2000.

[BY98] Jean-Daniel Boissonnat and Mariette Yvinec. Algorithmic Geometry. Cambridge University
Press, UK, 1998. Translated by Hervé Brönnimann.

[cga] Cgal, Computational Geometry Algorithms Library. http://www.cgal.org.

[dBvKOS00] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer-Verlag, Berlin, Germany, 2nd edition,
2000.

[Del07] Christophe Delage. Spatial sorting. In CGAL Editorial Board, editor, CGAL User and
Reference Manual. 3.3 edition, 2007.

[Dev02] Olivier Devillers. The Delaunay hierarchy. Internat. J. Found. Comput. Sci., 13:163�180,
2002.

[DPT02] Olivier Devillers, Sylvain Pion, and Monique Teillaud. Walking in a triangulation. Internat.
J. Found. Comput. Sci., 13:181�199, 2002.

4The idea is to sort the points so that geometrically close points will be close in the insertion order with high
probability.

RR n° 6318

12 Caroli & Kruithof & Teillaud

[DT03] Olivier Devillers and Monique Teillaud. Perturbations and vertex removal in a 3D Delaunay
triangulation. In Proc. 14th ACM-SIAM Sympos. Discrete Algorithms (SODA), pages 313�
319, 2003.

[DT06] Olivier Devillers and Monique Teillaud. Perturbations and vertex removal in delaunay and
regular 3d triangulations. Research Report 5968, INRIA, Sophia-Antipolis, 2006.

[ES96] H. Edelsbrunner and N. R. Shah. Incremental topological �ipping works for regular triangu-
lations. Algorithmica, 15:223�241, 1996.

[FT06] E� Fogel and Monique Teillaud. Generic programming and the CGAL library. In Jean-Daniel
Boissonnat and Monique Teillaud, editors, E�ective Computational Geometry for Curves and
Surfaces. Springer-Verlag, Mathematics and Visualization, 2006.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns. Addison-
Wesley, Reading, MA, 1995.

[Hel01] M. Held. Vroni: An engineering approach to the reliable and e�cient computation of Voronoi
diagrams of points and line segments. Comput. Geom. Theory Appl., 18:95�123, 2001.

[PT07a] Sylvain Pion and Monique Teillaud. 3d triangulation data structure. In CGAL Editorial
Board, editor, CGAL User and Reference Manual. 3.3 edition, 2007.

[PT07b] Sylvain Pion and Monique Teillaud. 3d triangulations. In CGAL Editorial Board, editor,
CGAL User and Reference Manual. 3.3 edition, 2007.

[qhu] Qhull. http://www.qhull.org.

[RV06] Günter Rote and Gert Vegter. Computational topology: An introduction. In Jean-Daniel
Boissonnat and Monique Teillaud, editors, E�ective Computational Geometry for Curves and
Surfaces. Springer-Verlag, Mathematics and Visualization, 2006.

[She96] J. R. Shewchuk. Triangle: Engineering a 2d quality mesh generator and Delaunay triangu-
lator. In First Workshop on Applied Computational Geometry. Association for Computing
Machinery, May 1996.

[WFZH07] Ron Wein, E� Fogel, Baruch Zukerman, and Dan Halperin. Advanced programming tech-
niques applied to cgal's arrangement package. Computational Geometry: Theory and Ap-
plications, 38:37�63, 2007. Special issue on Cgal.

[Zom05] Afra Zomorodian. Topology for Computing. Cambridge University Press, Cambridge, 2005.

INRIA

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	Introduction
	Delaunay Triangulation and Regular Triangulation
	Algorithm.
	Particularities of R3.

	Design
	The Triangulation Data Structure.
	The Triangulation Class and its Specializations.
	The New Design.
	Redistributing the Functionality of Triangulation_3.
	Visitors.

	The Periodic Space
	Benchmarks

