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ABSTRACT

This paper addresses the motion control in joint space of robot manipulators with friction

described by the generalized LuGre friction model. The paper extends the nonadaptive ver-

sion of the Slotine and Li’s control system originally designed for friction–free manipulators

to the case where a friction observer is incorporated to deal with friction. This observer

corresponds to an adaptation of the friction compensation scheme proposed in Canudas de

Wit et al in 1975. Passivity concepts are the fundamental tools invoked in this paper to

analyze the closed–loop system behavior which lead to the conclusion of global asymptotic

joint position tracking. A major advantage of this framework is that it allows to develop

in a separate way the control law from the observer design provided that each part satisfies

some passivity properties.
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1



1 INTRODUCTION

Friction is a harmful physical phenomenon present in mechanisms such as in robotic systems

and machine tools. Typical undesirable behaviors caused by friction in control systems of

mechanisms are steady–state positioning errors and oscillations due to limit cycles. Fortu-

nately, attenuation of some of these effects can be achieved by utilizing friction compensators

into the control systems.

Model–oriented friction compensation techniques are based on the knowledge of a suitable

friction model that predicts the real friction and commands an opposed control action to

compensate it [1]. However, friction is a hard process to model because the many ingredients

involved in this physical phenomenon such as material of the bodies in contact, lubrication,

temperature, etc. Thus, a large class of simplified friction models are available for control

system design. Two main families can be distinguished: static and dynamic models. The

former is described by static maps between velocity and friction force (or torque) such as the

Coulomb friction and viscous friction models. Although there are many applications using

such a models, e.g. [2] and [3], several important properties observed in systems with friction

such as stick-slip motion, pre-sliding displacement, Dahl effect and frictional lag, cannot be

only explained by static models. This is basically due to the fact that friction does not have

an instantaneous response on a change of velocity, i.e., it has an internal dynamics. This is

the reason of the dynamic friction models such as the Dahl model [4] and its generalization

the LuGre model introduced by [3].

The LuGre model captures the Coulomb and viscous friction terms, Stribeck effect, the

stick–slip motion, and pre–sliding displacement. All these static and dynamic characteristics

of friction are important for friction compensation purposes. Thus, the LuGre model turns

out to be suitable for the design of model–based friction compensation schemes into control

systems. The control scheme proposed in [3] uses the inherent passivity property from the

velocity to the internal state as a control design tool. In multi-dimensional systems with

nonlinear coupling like the robot manipulators, it is some time suited to formulated the

control problem in a way that a better passivity property of the friction model are stated

from the velocity to the predicted force. For the simplest version of the LuGre model (see [3])

the passivity from velocity to force is limited by an inequality that restrict choice of there

parameters; see [5], [6], [7].

If these conditions can be not satisfied for a particular mechanisms, then it is also possible

to use the generalized form of the LuGre model introduced in [6] that makes the I/O maps

from velocity to force passive for an arbitrarily value set of parameters. The idea is based
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in making the micro-damping term in the original LuGre model, vanish as the velocity

increases. In this paper we use such a model to enforce the stability analysis via passivity.

These mathematical tools have been also utilized for the study of adaptive control systems

of robot manipulators [8], [9].

This paper studies the nonadaptive version of the Slotine and Li’s control system intro-

duced in [10] but incorporating an observer-based friction compensator to deal with robots

having friction characterized by the generalized LuGre model. This analysis is carried out

completely in an input–output analytical framework. An important previous related work

was reported by [11] where the Slotine and Li’s control structure is considered but two main

differences arise with regard to this paper: first, a smooth friction observer is considered

here while in [11] a discontinuous action is used instead of a friction observer, and second,

we analyze the control system under an input–output optics while in [11] is performed via

the Lyapunov theory. Finally, recent works, like the one in [12] addresses similar problems

in the sense that the generalized LuGre model is included into the study but differs in the

observer gain depending on the state variables (instead of a simple constant gain as pro-

posed in this paper) and more important, without explicit application to the Slotine and

Li’s control scheme.

In this paper, it will be shown that the overall closed-loop system can be described

by the feedback interconnexion of two passive subsystems. One subsystem describes the

error tracking dynamics and the other the observer dynamics. This approach allows to

analyze separately each of these subsystems and provides global asymptotic position tracking,

throughout the only requirement of ensuring the output strictly passivity of the subsystem

associated with the error tracking dynamics.

We digress momentarily to recall the mathematical preliminaries borrowed from [13]

related to passivity theory useful for the purpose of this paper. We will denote by R+ the set

of nonnegative real numbers, and by Rn the n–dimensional real vector space over R endowed

with the Euclidean norm ‖·‖. All operators are assumed to be well defined over the extended

normed function space Ln
2 defined as

Ln
2 =

{

x : R+ → Rn :

∫ T

0

‖x(s)‖2 ds < ∞, ∀ T ∈ R+

}

.

Consider the operator

Σ : Ln
2 → Ln

2

u 7→ y = Σ(u)
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The operator Σ is said to be passive if there exists a constant β > 0 such that

∫ T

0

u(s)y(s) ds > −β ∀ T > 0.

Σ is input strictly passive if there exists a constant ρ > 0 such that

∫ T

0

u(s)y(s) ds > ρ

∫ T

0

‖u(s)‖2 ds ∀ T > 0.

Σ is output strictly passive if there exists a constant µ > 0 such that

∫ T

0

u(s)y(s) ds > µ

∫ T

0

‖y(s)‖2 ds ∀ T > 0.

2 ROBOT MODEL WITH DYNAMIC LUGRE FRIC-

TION

The dynamic model of a n degrees–of–freedom robot manipulator with friction at the joints

is given by [14]:

M(q)q̈ + C(q, q̇)q̇ + g(q) + F (q̇) = τ (1)

where q ∈ Rn is the joint position, M(q) is the inertia matrix, C(q, q̇)q̇ is the Coriolis and

centripetal matrix, g(q) is the gravitational torque vector, τ in the input torque and F (q̇) is

the friction torque.

Although a number of friction are available in the literature, the friction torque F (q̇) is

usually modeled by nonlinear static functions of the velocity q̇. However, several friction phe-

nomena cannot be explained with this simple approach. This has motivated the introduction

of more adequate dynamic friction model as the LuGre dynamic friction model described by

[3]

ż = q̇ − N(q̇)z (2)

F = σ0z + σ1ż + α2q̇ (3)

where

N(q̇) = Diag

{ |q̇i|
g(q̇i)

}

(4)

and

g(q̇i) =
1

σ0

[

α0 + α1e
−(

q̇i
v0

)2
]

(5)
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for i = 1, · · · , n, and notation Diag{·} stands for a diagonal matrix.

The friction internal state z ∈ Rn describes the averaging deflection (relative) of the

contact surfaces during the sticktion phases (this state is not measurable). The complete

friction model is thus characterized by the four “static parameters” α0, α1, α2 and v0,

and the two “dynamic ” parameters σ0, σ1. In their turn, the former parameters have the

following physical meaning: α0+α1 represents the static parameter, α0 denotes the Coulomb

parameter, v0 stands for the Stribeck parameter and α2 is the viscous parameter.

For reasons of simplicity, but without lost of generality, in this paper we have taken the

same friction parameters for each joint. v0 is a scalar constant, while the other parameters

stand for diagonal matrices of equal coefficients; for instance σ0 = σ0I is a n×n matrix. The

parameter σ0 can be understood as being a stiffness coefficient of the microscopic deforma-

tions of z [rad] during the pre-sliding displacement, and σ1 as being the damping coefficient

associated with ż. See Fig. 1
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Figure 1: Microscopic representation of surfaces in contact

The scalar (one dimension) LuGre model has been shown in [3] to be passive whether the

map q̇ 7→ z is considered. Necessary and sufficient conditions for the passivity of the map

q̇ 7→ F have been reported in [7]. This condition is

σ1 6
σ2α0

α1

.

This inequality imposes an upperbound in the local behavior of the motion within the pre-

displacement region. The linear approximation in this region for one joint of inertia J is

described by the linear map G(s) : τ 7→ q, is:

G(s) =
1

Js2 + (σ1 + σ2)s + σ0

.

Typically one would like to set σ1 to obtain well-behaved stick-slip transitions, during sim-

ulations, i.e.

σ1 = 2ζ
√

σ0J − σ2.
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Typically, ζ = 1 is chosen, in order to suitable damp the poles of G(s). However, if the

passivity property is to be enforced, then the larger damping compatible with the passivity

condition is given by

ζ 6
σ2

2
√

σ0J

[

α0

α1

+ 1

]

.

This constraint can easily relaxed by using the the extended LuGre model obtained by

making each of the σ1’s velocity dependent [6], i.e.

σ1(q̇i) = c1 e−q̇2

i
/c2

0 (6)

where c1 and c0 are free parameters. The idea is that in pre-sliding when the model need to

be well damp, the value of σ1 ≈ c1 can be set large enough, whereas σ1 decreases as velocity

increases. It should be notice that large values of σ1 at large velocities restrict the passivity

properties.

The passivity property from q̇ 7→ F as it will be shown below provided that the constants

c1 and c0 are selected such that

σ0I − c1Diag
{

e−q̇2

i
/c2

0

}

N(q̇) > 0, ∀q̇

For a given value of c1 (fixing the desired local damp properties), a simple sufficient condition

to this hold is to select the positive c0 as

c0 < e1/2α0

√

2/c2
1.

Note that the steady-state characteristic of the model is invariant.

Property 1. Both the LuGre model and the extended LuGre model (2)–(6) have the same

static map at constant velocity, which captures the static (α0 + α1), Coulomb (α0), the

Stribeck (v0) and viscous (α2) friction coefficients.

∇

Proof. Assume that the velocity q̇ is a non zero constant, thus matrix N(q̇) defined in (4)

is nonsingular. Therefore, according with (2), the steady state value of z is given by

zss = N(q̇)−1q̇.

By noting that in steady state ż = 0, hence from (3) we get

Fss = σ0zss + α2q̇ = σ0N(q̇)−1q̇ + α2q̇.
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Finally, using (4) and (5) we obtain

Fss = Diag
{

α0 + α1e
−(

q̇i
v0

)2
}

sgn(q̇) + α2q̇. (7)

∇∇∇

The extended LuGre model described by (2)–(6) satisfies the important physical property

of passivity. This is summarized in the following

Proposition 1. The extended LuGre dynamic friction model (2)–(6) defines an input strictly

passive operator q̇ 7→ F , i.e.

∫ T

0
q̇T (t)F (t) dt > ρ

∫ T

0
‖q̇(t)‖2

dt,

for all T > 0 and some ρ > 0.

∇

Proof. First, it is convenient to rewrite model (2)–(3) as

ż = −N(q̇)z + q̇ (8)

F = [σ0I − σ1N(q̇)] z + [σ1 + α2] q̇. (9)

Notice that matrix σ0I − σ1N(q̇) is positive definite by a proper selection of c1, thus the

constant λ0 defined as

λ0 = infq̇∈Rnλmin {σ0I − σ1N(q̇)}

is positive.

Let us consider the positive definite function V (z) = λ0

2
zT z. Its time derivative along the

trajectories of the model (8)–(9) is given by

V̇ (z) = λ0

[

zT q̇ − zT N(q̇)z
]

. (10)

Since matrix σ0I − σ1N(q̇) is positive definite and therefore nonsingular, we substitute z

from (9) into (10) to get

V̇ (z)

λ0
= q̇T

[

[σ0I − σ1N(q̇)]−1 [F − [σ1 + α2]q̇]
]

− zT N(q̇)z

6 q̇T [σ0I − σ1N(q̇)]−1
F − [σ1 + α2]q̇

T [σ0I − σ1N(q̇)]−1
q̇

6
1

λ0
q̇T F − [σ1 + α2]λmin

{

[σ0I − σ1N(q̇)]−1
}

‖q̇‖2 (11)
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where we have used the fact that q̇T [σ0I − σ1N(q̇)]−1 F 6
1
λ0

q̇T F because [σ0I − σ1N(q̇)]−1

is a diagonal matrix.

Finally, form inequality (11) we have the conclusion that

∫ T

0

q̇T (t)F (t) dt > V (z(T )) − V (z(0))

+
α2λ0

λ1

∫ T

0

‖q̇(t)‖2 dt

with λ1 = supq̇∈RnλMax {σ0I − σ1N(q̇)} and ρ = α2λ0

λ1

.

∇∇∇

Remark: Note that this property establishes the stronger input strictly passivity prop-

erty of the map q̇ 7→ F , than the weaker passivity evoked in [6].

3 CONTROL SYSTEM ANALYSIS

Let us denote by qd the desired position which is assumed to be twice differentiable and

q̃ = q − qd stands for the tracking position error. Assuming that all the robot parameters

are known, the nonadaptive version of the Slotine and Li’s control law can be written as [10]

τ = M(q)[q̈d − Λ˙̃q] + C(q, q̇)[q̇d − Λq̃] + g(q)

− Kvs + F̂ (12)

where s = ˙̃q + Λq̃, and Kv, Λ are diagonal positive definite matrices, and F̂ is the output of

the friction observer given by

˙̂z = −N(q̇)ẑ + q̇ − Ks, (13)

F̂ = σ0ẑ + σ1
˙̂z + α2q̇, (14)

with K a diagonal positive definite matrix.

The introduction of the friction observer (13)–(14) is motivated by the fact that the

neither friction force F , nor the variable z are measured, and hence they need to be predicted.

Let us define the error variables z̃ = z − ẑ and F̃ = F − F̂ . The closed–loop equation is

obtained by substituting the control law (12)–(14) into the robot dynamics (1)–(6), giving

M(q)ṡ = −C(q, q̇)s − Kvs − F̃ , (15)
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−F̃

−
Σ1

Σ2

s

Figure 2: Feedback interconnection of two strictly K passive subsystems.

˙̃z = −N(q̇)z̃ + Ks (16)

F̃ = σ0z̃ + σ1
˙̃z

= [σ0I − σ1N(q̇)]z̃ + σ1Ks. (17)

The closed–loop system can be seen as the feedback interconnexion of two subsystems as

indicated in Fig. 2.

The first subsystem, Σ1, is given by (15) which defines the operator Σ1 : −F̃ 7→ s. The

input–output property is summarized in the following

Proposition 2. The operator Σ1 : −F̃ 7→ s defined by (15) is output strictly passive, that

is,
∫ T

0

−F̃ (t)T s(t) dt > µ

∫ T

0

‖s(t)‖2 dt (18)

for all T > 0 and µ > 0.

∇

Proof. In the context of the input–output analysis of the Slotine and Li’s adaptive controller,

[15] studied the system

M(q)q̈r = −C(q, q̇)q̇r − Kvq̇r − Y ã

where Y ã can be seen as the input and q̇r as the output. They proved for the first time that

the map Y ã 7→ q̇r is output strictly passive. Since the structure of Σ1 is exactly the same,

then the passivity result follows straightforwardly.

∇∇∇
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The second subsystem, Σ2 is described by (16)–(17) and depends only on the observer

structure (13)–(14). This defines the operator Σ2 : s 7→ F̃ . Its input–output property is

established in the following

Proposition 3. The operator Σ2 : s 7→ F̃ defined by (16)–(17) is passive, that is,

∫ T

0

sT (t)F̃ (t) dt > −β (19)

for all T > 0 and some β > 0.

∇

Proof. The proof shown below follows similar steps than those used in the proof of Propo-

sition 1.

Consider the following positive definite function

V2(z̃) =
λ0λ2

2
z̃T z̃

where λ2 = λmin{K−1}. Its time derivative along the trajectories of (16)–(17) yields

V̇2(z̃) = λ0λ2

[

z̃T Ks − z̃T N(q̇)z̃
]

. (20)

Since matrix σ0I − σ1N(q̇) is positive definite, we substitute z̃ from (17) into (20) to get

V̇2(z̃)

λ0λ2
= sT K [σ0I − σ1N(q̇)]−1 [F̃ − σ1Ks] −

−z̃T N(q̇)z̃

6 sT K [σ0I − σ1N(q̇)]−1
F̃ −

σ1s
T K [σ0I − σ1N(q̇)]−1

Ks

6
1

λ0λ2
sT F̃ ,

and finally we conclude the passivity of the friction observer subsystem Σ2, i.e.,

∫ T

0

sT (t)F̃ (t) dt > V2(z̃(T )) − V2(z̃(0)),

> −V2(z̃(0))

where it can be identified from (19) that β = V2(z̃(0)).

∇∇∇
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The closed–loop system (15)–(17) is thus described by the feedback interconnexion of an

output strictly passive operator Σ1 with an passive operator Σ2. The main result regarding

this feedback system is stated in the following

Proposition 4. The feedback interconnexion of the output strictly passive operator Σ1 :

−F̃ 7→ s and the passive operator Σ2 : s 7→ F̃ leads to

• s ∈ Ln
2

• limt→∞ q̃(t) = 0

∇

Proof. Passivity theorems are available to analyze the input–output stability properties of

this kind of interconnected passive systems [16]. However, for the sake of completeness we

provide below a simple self–contained alternative proof.

From the friction observer subsystem property (19), we have

β >

∫ T

0

−sT (t)F̃ (t) dt.

Incorporating this into (18) yields

β >

∫ T

0

−sT (t)F̃ (t) dt

> µ

∫ T

0

‖s(t)‖2 dt,

hence
β

µ
>

∫ T

0

‖s(t)‖2 dt

for all T > 0.

Since µ and β are positive constants, then we conclude that s ∈ Ln
2 . Now from the definition

of s we have the following relation

q̃ = [pI + Λ]−1s

where p = d/dt stands for the differential operator and I for the identity matrix. This is a

strictly proper exponentially stable linear system whose input s belongs to Ln
2 . The output

q̃ of such a system must vanish asymptotically [13], that is

lim
t→∞

q̃(t) = 0.
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This proves the global asymptotic position tracking.

∇∇∇

4 CONCLUSIONS

One of the most popular motion control techniques for robot manipulators in joint space

is the so–called Slotine and Li’s control scheme (nonadaptive version). In order to better

perform in practice, friction compensators may be incorporated to such control system. The

extended LuGre friction model, which matches the physical requirement of being a passive

phenomenon, allows the design of a friction observer retaining also key passivity properties.

Exploiting the fact that the Slotine and Li’s controller enjoys of nice passivity proper-

ties, this paper has carried out the closed–loop system behavior in a complete input–output

framework. It is shown that the overall closed-loop system can be described by the feedback

interconnexion of two passive subsystems. One of them related to the robot/controller struc-

ture —thus a passivity based control scheme— and the remaining to the friction observer.

The analysis is based on standard passivity tools to get the desired conclusion of global

asymptotic position tracking.

The input–output approach presented in this paper offers a framework to analyze also

other control law structures together with the friction observer described here. The only

requirement for global asymptotic position tracking is to ensure the output strictly passivity

of the subsystem associated with such control laws.
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