
HAL Id: inria-00185311
https://hal.inria.fr/inria-00185311v2

Submitted on 8 Jan 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fitted Q-iteration in continuous action-space MDPs
Andras Antos, Rémi Munos, Csaba Szepesvari

To cite this version:
Andras Antos, Rémi Munos, Csaba Szepesvari. Fitted Q-iteration in continuous action-space MDPs.
[Technical Report] 2007, pp.24. �inria-00185311v2�

https://hal.inria.fr/inria-00185311v2
https://hal.archives-ouvertes.fr

Fitted Q-iteration in continuous action-space MDPs

András Antos
Computer and Automation Research Inst.
of the Hungarian Academy of Sciences

Kende u. 13-17, Budapest 1111, Hungary
antos@sztaki.hu

Rémi Munos
SequeL project-team, INRIA Lille
59650 Villeneuve d’Ascq, France
remi.munos@inria.fr

Csaba Szepesvári∗
Department of Computing Science

University of Alberta
Edmonton T6G 2E8, Canada

szepesva@cs.ualberta.ca

Abstract

We consider continuous state, continuous action batch reinforcement learning
where the goal is to learn a good policy from a sufficiently rich trajectory gen-
erated by some policy. We study a variant of fitted Q-iteration, where the greedy
action selection is replaced by searching for a policy in a restricted set of can-
didate policies by maximizing the average action values. We provide a rigorous
analysis of this algorithm, proving what we believe is the first finite-time bound
for value-function based algorithms for continuous state and action problems.

1 Introduction

Batch reinforcement learning (RL) refers to the problem of finding a good policy given some fixed
set of samples. This problem is highly relevant for industrial applications where data is gathered by
following a fixed controller, after which there is no further opportunity to interact with the system.
Another very common characteristics of industrial problems is that the space of states and actions is
continuous (or has continuous components). In this paper we study such problems. Intriguingly, to
our best knowledge there is no known theoretically sound approach to this problem.

Continuous action problems are most often tackled by means of policy search algorithms (e.g.
[1, 2, 3]). Although these algorithms tend to assume that they can obtain new samples (either by
interacting with the environment or in a simulated environment) they could be adopted to the batch
setting.

In this paper, however, we start from value-function based methods [4]. The potential advantage of
these methods is that they may make a better use of the structure of the problem by exploiting the
recursive nature of the value functions. However, for this they need efficient function approximation
algorithms and learning algorithms that are capable of dealing with the imprecisions introduced by
the approximate representation of the value functions. This approach can be criticized on the basis
that it may run into trouble when the value functions are difficult to represent. Nevertheless, we
find it more interesting to study these methods because at least they carry the promise of being more
efficient than brute-force search methods.

Value-function based RL is deeply connected to dynamic programming (DP). Most algorithms are
relatives to one of the basic DP methods. Policy iteration based algorithms keep a policy, compute its

∗Also with: Computer and Automation Research Inst. of the Hungarian Academy of Sciences Kende u.
13-17, Budapest 1111, Hungary.

1

action-value function and then compute a new policy based on the obtained value function. Least-
squares policy iteration (LSPI) is a recent algorithm that uses least-squares temporal difference
learning to evaluate policies [5]. Another example is the algorithm proposed in [6] that employs a
modified Bellman-residual minimization (BRM) criterion. Interestingly, LSPI can be shown to be
a special case of this algorithm [7]. The BRM algorithm comes with a finite time performance
bound that (under appropriate “richness” conditions on the data and “smoothness” conditions on the
problem) shows that in the limit of an indefinite number of samples the loss compared to an optimal
policy can be made to converge to zero, i.e., the algorithm is consistent. Since LSPI is a special case
of the BRM algorithm, the theoretical results show that the LSPI can also be made consistent. These
results, however, heavily exploits that the number of actions is finite: The bounds explicitly depend
on the number of actions (in a quadratic fashion) and therefore it is not evident if these algorithms
would work without any modifications when the actions-space is infinite.

Another recent algorithm is fitted Q-iteration (FQI) due to Ernst et al. [8], which is a variant of
fitted value iteration [9] applied to action-value functions. Fitted value iteration algorithms come
with convergence guarantees but only when the function approximator employed is restricted to
“averagers” [10, 9]. These guarantees hold for infinite action spaces, as well. However, to our
best knowledge there are no results that would characterize the finite-sample performance of these
algorithms and hence no guidance is available for how to make the best use of the available samples
(for a related asymptotic result see [11]). Nevertheless, FQI has been applied successfully in a
number of challenging domains and was found to perform well even when used with non-averager
function approximation methods, such as neural networks [12, 13].

In this paper we study FQI in continuous state and action spaces. We propose a modification of
the basic algorithm and prove bounds on its finite-sample performance that can be used to show the
consistency of the modified algorithm. The modification concerns the selection of greedy actions:
In the modified algorithm the exact, pointwise optimization is replaced by searching for a policy
in a restricted policy class that maximizes the sum of action-values over the sampled states. The
resulting algorithm thus might well be called a fitted actor-critic algorithm. Although the policy
optimization is not necessarily cheaper than the original pointwise optimization, we will argue that
it improves across-state generalization and so is essential to prevent overfitting, which might happen
when using the unmodified updates.

2 Preliminaries

We will build on the results from [6, 7, 14] and for this reason we use the same notation as these
papers. The unattributed results cited in this section can be found in the book [15].

A discounted MDP is defined by a quintuple (X ,A, P, S, γ), where X is the (possible infinite)
state space, A is the set of actions, P : X × A → M(X) is the transition probability kernel with
P (·|x, a) defining the next-state distribution upon taking action a from state x, S(·|x, a) gives the
corresponding distribution of immediate rewards, and γ ∈ (0, 1) is the discount factor. Here X is
a measurable space and M(X) denotes the set of all probability measures over X . The Lebesgue-
measure shall be denoted by λ.

We start with the following mild assumption on the MDP:

Assumption A1 (MDP Regularity) X is a compact subset of the dX -dimensional Euclidean space,
A is a compact subset of [−A∞, A∞]dA . The random immediate rewards are bounded by R̂max

and that the expected immediate reward function, r(x, a) =
∫

rS(dr|x, a), is uniformly bounded
by Rmax: ‖r‖∞ ≤ Rmax.

A policy determines the next action given the past observations. The action can be chosen stochas-
tically. Formally, a policy thus maps past observations to a distribution over the set of actions.1 A
policy is deterministic if the probability distribution concentrates on a single action for all histories.
A policy is called (non-stationary) Markovian if the distribution depends only on the last state of the
observation sequence and the length of the history. A policy is called stationary (Markovian) if the

1The policy should be a measurable function. However, in this paper, by assuming sufficient regularity, we
will disregard measurability issues.

2

distribution depends only on the last state of the observation sequence (and not on the length of the
history).

The value of a policy π when it is started from a state x is defined as the total expected discounted
reward that is encountered while the policy is executed: V π(x) = Eπ [

∑∞
t=0 γtRt|X0 = x]. Here

Rt ∼ S(·|Xt, At) is the reward received at time step t, the state, Xt, evolves according to Xt+1 ∼
P (·|Xt, At), where At is sampled from the distribution determined by π. We use Qπ : X ×A → R
to denote the action-value function of policy π: Qπ(x, a) = Eπ [

∑∞
t=0 γtRt|X0 = x, A0 = a].

The goal is to find a policy that attains the best possible values, V ∗(x) = supπ V π(x), at all states
x ∈ X . Here V ∗ is called the optimal value function and a policy π∗ that satisfies V π∗(x) =
V ∗(x) for all x ∈ X is called optimal. The optimal action-value function Q∗(x, a) is Q∗(x, a) =
supπ Qπ(x, a). We say that a (deterministic stationary) policy π is greedy w.r.t. an action-value
function Q ∈ B(X ×A), and we write π = π̂(·;Q), if, for all x ∈ X , π(x) ∈ argmaxa∈AQ(x, a).
Under mild technical assumptions, such a greedy policy always exists. Any greedy policy w.r.t. Q∗
is optimal. For π : X → A we define its evaluation operator, Tπ : B(X ×A) → B(X ×A), by

(TπQ)(x, a) = r(x, a) + γ

∫

X
Q(y, π(y)) P (dy|x, a).

It is known that Qπ = TπQπ . Further, if we let the Bellman operator, T : B(X ×A) → B(X ×A),
defined by

(TQ)(x, a) = r(x, a) + γ

∫

X
sup
b∈A

Q(y, b)P (dy|x, a)

then Q∗ = TQ∗. It is known that V π and Qπ are bounded by Rmax/(1− γ), just like Q∗ and V ∗.

For a deterministic stationary policy π : X → A, the operator Eπ : B(X × A) → B(X) is
defined by (EπQ)(x) = Q(x, π(x)), while E : B(X × A) → B(X) is defined by (EQ)(x) =
supa∈AQ(x, a). These operators are useful in connecting action-value functions with value func-
tions: If Qπ is the action-value function of policy π, EπQπ gives its value function, V π . Further,
V ∗ = EQ∗ and π is a greedy policy w.r.t. Q if and only if EπQ = EQ. Moreover, Tπ and T can
be written as

(TπQ)(x, a) = r(x, a) + γ

∫

X
EπQdP (·|x, a) and (TQ)(x, a) = r(x, a) + γ

∫

X
EQ dP (·|x, a).

We shall also need two operators corresponding to the transition probability kernel P that we
define now. A right-linear operator, P · : B(X) → B(X × A), is defined by (PV)(x, a) =∫

V (y)P (dy|x, a), i.e., PV just gives the one-step lookahead values with no discounting and no
rewards. The left-linear operator, ·P : M(X × A) → M(X), is defined with (ρP)(dy) =∫

P (dy|x, a)ρ(dx, da). Intuitively, ρP is the distribution of states obtained after picking a state-
action pair (X, A) randomly according to ρ and then executing action A in state X . This operator is
also extended to act on measures overX with the definition (ρP)(dy) =

∫
P (dy|x, a)ρ(dx)dλA(a),

where λA is the uniform distribution overA.2 This corresponds to the distribution of states obtained
by executing a random action from a state sampled from ρ. By composing P and Eπ, we define
Pπ = PEπ. Note that this equation defines two operators: a right- and a left-linear one and with
their help the operator Tπ can be succinctly written as TπQ = r + γPEπQ.

Throughout the paper F ⊂ {f : X × A → R} will denote a subset of real-valued functions
over the state-action space X × A and Π ⊂ AX will be a set of policies. For ν ∈ M(X)
and f : X → R measurable, we let ‖f‖p,ν (p ≥ 1) denote the Lp(ν)-norm of f : ‖f‖p

p,ν =∫
X |f(x)|pν(dx). We simply write ‖f‖ν for ‖f‖2,ν . Further, we extend ‖·‖p,ν (p ≥ 1) to F by
‖f‖p

p,ν =
∫
X×A |f |p(x, a) d(ν×λA)(x, a), where ν×λA denotes the product measure over X ×A

obtained from ν and λA. We shall use the shorthand notation νf to denote the integral
∫

f(x)ν(dx).
We denote the space of bounded measurable functions with domain X by B(X). Further, the space
of measurable functions bounded by 0 < K < ∞ shall be denoted by B(X ;K). We let ‖·‖∞ de-
note the supremum norm: ‖f‖∞ = supx∈X |f(x)|. IE denotes the indicator of event E, 1 denotes
the function that takes on the constant value one everywhere over its domain.

2For any measurable subset U of A, λA(U) = λ(U)/λ(A).

3

3 Fitted Q-iteration with approximate policy maximization

We assume that we are given a finite trajectory, {(Xt, At, Rt)}1≤t≤N , generated by some stochastic
stationary policy πb, called the behavior policy: At ∼ πb(·|Xt), Xt+1 ∼ P (·|Xt, At), Rt ∼
S(·|Xt, At), where πb(·|x) is a density with π0

def= inf(x,a)∈X×A πb(a|x) > 0.

The generic recipe for fitted Q-iteration (FQI) [8] is

Qk+1 = Regress(Dk(Qk)), (1)

where Regress is an appropriate regression procedure and Dk(Qk) is a dataset defining a regression
problem in the form of a list of data-point pairs:

Dk(Qk) =
{[

(Xt, At), Rt + γ max
b∈A

Qk(Xt+1, b)
]
1≤t≤N

}
.3

Fitted Q-iteration can be viewed as approximate value iteration applied to action-value func-
tions. To see this note that value iteration would assign the value (TQk)(x, a) = r(x, a) +
γ

∫
maxb∈AQk(y, b)P (dy|x, a) to Qk+1(x, a) [4]. Now, remember that the regression function for

the jointly distributed random variables (Z, Y) is defined by the conditional expectation of Y given
Z: m(Z) = E [Y |Z]. Since for any fixed function Q, E [Rt + γ maxb∈AQ(Xt+1, b)|Xt, At] =
(TQ)(Xt, At), the regression function corresponding to the data Dk(Q) is indeed TQ and hence if
FQI solved the regression problem defined by Qk exactly, it would simulate value iteration exactly.

However, this argument itself does not directly lead to a rigorous analysis of FQI: Since Qk is
obtained based on the data, it is itself a random function. Hence, after the first iteration, the “target”
function in FQI becomes random. Furthermore, this function depends on the same data that is used
to define the regression problem. Will FQI still work despite these issues? To illustrate the potential
difficulties consider a dataset where X1, . . . , XN is a sequence of independent random variables,
which are all distributed uniformly at random in [0, 1]. Further, let M be a random integer greater
than N which is independent of the dataset (Xt)N

t=1. Let U be another random variable, uniformly
distributed in [0, 1]. Now define the regression problem by Yt = fM,U (Xt), where fM,U (x) =
sgn(sin(2M2π(x + U))). Then it is not hard to see that no matter how big N is, no procedure can
estimate the regression function fM,U with a small error (in expectation, or with high probability),
even if the procedure could exploit the knowledge of the specific form of fM,U . On the other hand,
if we restricted M to a finite range then the estimation problem could be solved successfully. The
example shows that if the complexity of the random functions defining the regression problem is
uncontrolled then successful estimation might be impossible.

Amongst the many regression methods in this paper we have chosen to work with least-squares
methods. In this case Equation (1) takes the form

Qk+1 = argmin
Q∈F

N∑
t=1

1
πb(At|Xt)

(
Q(Xt, At)−

[
Rt + γ max

b∈A
Qk(Xt+1, b)

])2

. (2)

We call this method the least-squares fitted Q-iteration (LSFQI) method. Here we introduced the
weighting 1/πb(At|Xt) since we do not want to give more weight to those actions that are preferred
by the behavior policy. Other weighting factors, expressing ones’ beliefs about the behavior policy,
are also possible.

Besides this weighting, the only parameter of the method is the function set F . This function set
should be chosen carefully, to keep a balance between the representation power and the number of
samples. As a specific example for F consider neural networks with some fixed architecture. In
this case the function set is generated by assigning weights in all possible ways to the neural net.
Then the above minimization becomes the problem of tuning the weights. Another example is to use
linearly parameterized function approximation methods with appropriately selected basis functions.
In this case the weight tuning problem would be less demanding. Yet another possibility is to let F
be an appropriate restriction of a Reproducing Kernel Hilbert Space (e.g., in a ball). In this case the
training procedure becomes similar to LS-SVM training [16].

3Since the designer controls Qk, we may assume that it is continuous, hence the maximum exists.

4

As indicated above, the analysis of this algorithm is complicated by the fact that the new dataset
is defined in terms of the previous iterate, which is already a function of the dataset. Another
complication is that the samples in a trajectory are in general correlated and that the bias introduced
by the imperfections of the approximation architecture may yield to an explosion of the error of the
procedure, as documented in a number of cases in, e.g., [9].

Nevertheless, at least for finite action sets, the tools developed in [6, 14, 7] look suitable to show
that under appropriate conditions these problems can be overcome if the function set is chosen in
a judicious way. However, the results of these works would become essentially useless in the case
of an infinite number of actions since these previous bounds grow to infinity with the number of
actions. Actually, we believe that this is not an artifact of the proof techniques of these works, as
suggested by the counterexample that involved random targets. The following result elaborates this
point further:
Proposition 3.1. Let F ⊂ B(X × A). Then even if the pseudo-dimension of F is finite, the fat-
shattering function of

F∨max =
{

VQ : VQ(·) = max
a∈A

Q(·, a), Q ∈ F
}

can be infinite over (0, 1/2).

Without going into further details, let us just note that the finiteness of the fat-shattering function is
a sufficient and necessary condition for learnability and the finiteness of the fat-shattering function
is implied by the finiteness of the pseudo-dimension [17].The above proposition thus shows that
without imposing further special conditions on F , the learning problem may become infeasible.

One possibility is of course to discretize the action space, e.g., by using a uniform grid. However, if
the action space has a really high dimensionality, this approach becomes unfeasible (even enumer-
ating 2dA points could be impossible when dA is large). Therefore we prefer alternate solutions.

Another possibility is to make the functions inF , e.g., uniformly Lipschitz in their state coordinates.
Then the same property will hold for functions in F∨max and hence by a classical result we can bound
the capacity of this set (cf. pp. 353–357 of [18]). One potential problem with this approach is that
this way it might be difficult to get a fine control of the capacity of the resulting set.

In the approach explored here we modify the fitted Q-iteration algorithm by introducing a policy
set Π and a search over this set for an approximately greedy policy in a sense that will be made
precise in a minute. Our algorithm thus has four parameters: F , Π,K,Q0. Here F is as before, Π
is a user-chosen set of policies (mappings from X to A), K is the number of iterations and Q0 is an
initial value function (a typical choice is Q0 ≡ 0). The algorithm computes a sequence of iterates
(Qk, π̂k), k = 0, . . . ,K, defined by the following equations:

π̂0 = argmax
π∈Π

N∑
t=1

Q0(Xt, π(Xt)),

Qk+1 = argmin
Q∈F

N∑
t=1

1
πb(At|Xt)

(
Q(Xt, At)−

[
Rt + γQk(Xt+1, π̂k(Xt+1))

])2

, (3)

π̂k+1 = argmax
π∈Π

N∑
t=1

Qk+1(Xt, π(Xt)). (4)

Thus, (3) is similar to (2), while (4) defines the policy search problem. The policy search will
generally be solved by a gradient procedure or some other appropriate method. The cost of this step
will be primarily determined by how well-behaving the iterates Qk+1 are in their action arguments.
For example, if they were quadratic and if π was linear then the problem would be a quadratic
optimization problem. However, except for special cases4 the action value functions will be more
complicated, in which case this step can be expensive. Still, this cost could be similar to that of
searching for the maximizing actions for each t = 1, . . . , N if the approximately maximizing actions
are similar across similar states.

4Linear quadratic regulation is such a nice case. It is interesting to note that in this special case the obvious
choices for F and Π yield zero error in the limit, as can be proven based on the main result of this paper.

5

This algorithm, which we could also call a fitted actor-critic algorithm, will be shown to overcome
the above mentioned complexity control problem provided that the complexity of Π is controlled
appropriately. Indeed, in this case the set of possible regression problems is determined by the set

F∨Π = {V : V (·) = Q(·, π(·)), Q ∈ F , π ∈ Π } ,

and the proof will rely on controlling the complexity of F∨Π by selecting F and Π appropriately.

4 The main theoretical result

4.1 Outline of the analysis

In order to gain some insight into the behavior of the algorithm, we provide a brief summary of its
error analysis. The main result will be presented subsequently.

For f ,Q ∈ F and a policy π, we define the tth TD-error as follows:

dt(f ; Q, π) = Rt + γQ(Xt+1, π(Xt+1))− f(Xt, At).

Further, we define the empirical loss function by

L̂N (f ;Q, π) =
1
N

N∑
t=1

d2
t (f ;Q, π)

λ(A)πb(At|Xt)
, (5)

where the normalization with λ(A) is introduced for mathematical convenience. Then (3) can be
written compactly as

Qk+1 = argmin
f∈F

L̂N (f ; Qk, π̂k).

The algorithm can then be motivated by the observation that for any f ,Q, and π, L̂N (f ; Q, π) is an
unbiased estimate of

L(f ;Q, π) def= ‖f − TπQ‖2ν + L∗(Q, π), (6)
where the first term is the error we are interested in and the second term captures the variance of the
random samples:

L∗(Q, π) =
∫

A
E [Var [R1 + γQ(X2, π(X2))|X1, A1 = a]] dλA(a).

This result is stated formally in the following lemma:
Lemma 4.1 (Unbiased Loss Approximation). Assume that π0 > 0. Then for any f ,Q ∈ F , policy
π, L̂N (f ; Q, π) as defined by (5) provides an unbiased estimate to L(f ; Q, π):

E
[
L̂N (f ; Q, π)

]
= L(f ; Q, π). (7)

Proof. Let us define
T̃Q,π,t = Rt + γEπQ(Xt+1). (8)

Then, by (5), the tth term of L̂N (f ; Q, π) can be written as

L(t) =
1

λ(A)πb(At|Xt)
(f(Xt, At)− T̃Q,π,t)2. (9)

Note that E [Rt|Xt, At] = r(Xt, At) and

E
[
T̃Q,π,t

∣∣∣ Xt, At

]
= r(Xt, At) + γ

∫

y

EπQdP (·|Xt, At) = (TπQ)(Xt, At). (10)

Taking expectations,

E
[
L(1)

]
= E

[
E

[
L(1)

∣∣∣ X1, A1

]]
= E

E

[
(f(X1, A1)− T̃Q,π,1)2|X1, A1

]

λ(A)πb(A1|X1)

 .

6

Now since all actions are sampled with positive probability in any state, we get

E
[
(f(X1, A1)− T̃Q,π,1)2|X1, A1

]

= Var
[
T̃Q,π,1|X1, A1

]
+

(
f(X1, A1)− E

[
T̃Q,π,1|X1, A1

])2

= Var
[
T̃Q,π,1|X1, A1

]
+ (f(X1, A1)− (TπQ)(X1, A1))2 (by (10)).

Taking expectations of both sides we get that

E
[
L(1)

]
= E

Var

[
T̃Q,π,1|X1, A1

]
+ (f(X1, A1)− (TπQ)(X1, A1))2

λ(A)πb(A1|X1)

= L∗(Q, π) + ‖f − TπQ‖2ν (11)
= L(f ; Q, π).

Because of stationarity this holds for E
[
L(t)

]
for any t, thus finishing the proof of (7).

Since the variance term in (6) is independent of f , argminf∈F L(f ; Q, π) =
argminf∈F ‖f − TπQ‖2ν . Thus, if π̂k were greedy w.r.t. Qk then argminf∈F L(f ; Qk, π̂k) =
argminf∈F ‖f − TQk‖2ν . Hence we can still think of the procedure as approximate value iteration
over the space of action-value functions, projecting TQk using empirical risk minimization on the
space F w.r.t. ‖·‖ν distances in an approximate manner. Since π̂k is only approximately greedy, we
will have to deal with both the error coming from the approximate projection and the error coming
from the choice of π̂k. To make this clear, we write the iteration in the form

Qk+1 = T π̂kQk + ε′k
= TQk + ε′k + (T π̂kQk − TQk)
= TQk + εk, (12)

where ε′k is the error committed while computing T π̂kQk, ε′′k
def= T π̂kQk−TQk is the error commit-

ted because the greedy policy is computed approximately and εk = ε′k + ε′′k is the total error of step
k. Hence, in order to show that the procedure is well behaved, one needs to show that both errors are
controlled and that when the errors are propagated through these equations, the resulting error stays
controlled, too. Since we are ultimately interested in the performance of the policy obtained, we
will also need to show that small action-value approximation errors yield small performance losses.
For these we need a number of assumptions that concern either the training data, the MDP, or the
function sets used for learning.

4.2 Assumptions

4.2.1 Assumptions on the training data

We shall assume that the data is rich, is in a steady state, and is fast-mixing, where, informally,
mixing means that future depends weakly on the past. More formally, we use β-mixing, which is
one of the weakest mixing concepts:

Definition 4.2 (β-mixing). Let {Zt}t=1,2,... be a stochastic process. Denote by Z1:n the collection
(Z1, . . . , Zn), where we allow n = ∞. Let σ(Zi:j) denote the sigma-algebra generated by Zi:j

(i ≤ j). The m-th β-mixing coefficient of {Zt}, βm, is defined by

βm = sup
t≥1

E

[
sup

B∈σ(Zt+m:∞)

|P (B|Z1:t)− P (B)|
]

.

{Zt} is said to be β-mixing if βm → 0 as m → ∞. In particular, we say that a β-mixing process
mixes at an exponential rate with parameters β,b,κ > 0 if βm ≤ β exp(−bmκ) holds for all m ≥ 0.

Now we are ready to state our assumptions on the data (cf. [7]):

7

Assumption A2 (Sample Path Properties) Assume that
{(Xt, At, Rt)}t=1,...,N

is the sample path of πb, a stochastic stationary policy. Further, assume that {Xt} is strictly station-
ary (Xt ∼ ν ∈ M(X)) and exponentially β-mixing with the actual rate given by the parameters
(β, b, κ). We further assume that the sampling policy πb satisfies π0 = inf(x,a)∈X×A πb(a|x) > 0.

The β-mixing property will be used to establish tail inequalities for certain empirical processes.5
Note that the mixing coefficients do not need to be known. In the case when no mixing condition is
satisfied, learning might be impossible. To see this just consider the case when X1 = X2 = . . . =
XN . Thus, in this case the learner has many copies of the same random variable and successful
generalization is thus impossible. We believe that the assumption that the process is in a steady state
is not essential for our result, as when the process reaches its steady state quickly then (at the price
of a more involved proof) the result would still hold.

4.2.2 Assumptions on the MDP

In order to prevent the uncontrolled growth of the errors as they are propagated through the updates,
we shall need some assumptions on the MDP. A convenient assumption is the following one [19]:

Assumption A3 (Uniformly stochastic transitions) For all x ∈ X and a ∈ A, assume that
P (·|x, a) is absolutely continuous w.r.t. ν and the Radon-Nikodym derivative of P w.r.t. ν is bounded
uniformly with bound Cν :

Cν
def= sup

x∈X ,a∈A

∥∥∥∥
dP (·|x, a)

dν

∥∥∥∥
∞

< +∞.

Note that by the definition of measure differentiation, Assumption A3 means that P (·|x, a) ≤
Cνν(·), where the inequality holds for every measurable set. This assumption essentially requires
the transitions to be noisy. We will also prove (weaker) results under the following, weaker assump-
tion:

Assumption A4 (Discounted-average concentrability of future-state distributions) Given ρ, ν,
m ≥ 1 and an arbitrary sequence of stationary policies {πm}m≥1, assume that the future-state
distribution ρPπ1Pπ2 . . . Pπm is absolutely continuous w.r.t. ν. Assume that

c(m) def= sup
π1,...,πm

∥∥∥∥
d(ρPπ1Pπ2 . . . Pπm)

dν

∥∥∥∥
∞

satisfies
Cρ,ν

def= (1− γ)2
∑

m≥1

mγm−1c(m) < +∞.

We shall call c(m) the m-step concentrability of a future-state distribution, while we call Cρ,ν the
discounted-average concentrability coefficient of the future-state distributions.

The number c(m) measures how much ρ can get amplified in m steps as compared to the reference
distribution ν. Hence, in general we expect c(m) to grow with m. In fact, the condition that Cρ,µ is
finite is a growth rate condition on c(m). Thanks to discounting, Cρ,µ is finite for a reasonably large
class of systems (see the discussion in [19]).

A related assumption is needed in the error analysis of the approximate greedy step of the algorithm:

Assumption A5 (The random policy “makes no peak-states”) Consider the distribution µ =
(ν × λA)P which is the distribution of a state that results from sampling an initial state according
to ν and then executing an action which is selected uniformly at random.6 Then

Γν =
∥∥∥∥

dµ

dν

∥∥∥∥
∞

< +∞.

5We say “empirical process” and “empirical measure”, but note that in this work these are based on depen-
dent (mixing) samples.

6Remember that λA denotes the uniform distribution over the action set A.

8

Note that under Assumption A3 we have Γν ≤ Cν . This (very mild) assumption means that after
one step, starting from ν and executing this random policy, the probability of the next state being in
a set is upper bounded by Γν-times the probability of the starting state being in the same set.

Besides, we assume that A has the following regularity property: Let

Py(a, h, ρ) def=
{

(a′, v) ∈ RdA+1 : ‖a− a′‖1 ≤ ρ, 0 ≤ v/h ≤ 1− ‖a− a′‖1 /ρ
}

denote the pyramid with hight h and base given by the `1-ball B(a, ρ) def={
a′ ∈ RdA : ‖a− a′‖1 ≤ ρ

}
centered at a.

Assumption A6 (Regularity of the action space) We assume that there exists α > 0, such that for
all a ∈ A, for all ρ > 0,

λ(Py(a, 1, ρ) ∩ (A× R))
λ(Py(a, 1, ρ))

≥ min
(

α,
λ(A)

λ(B(a, ρ))

)
.

For example, if A is an `1-ball itself, then this assumption will be satisfied with α = 2−dA .

Without assuming any smoothness of the MDP, learning in infinite MDPs looks hard (see, e.g.,
[1, 20]). Here we employ the following extra condition:

Assumption A7 (Lipschitzness of the MDP in the actions) Assume that the transition probabilities
and rewards are Lipschitz w.r.t. their action variable, i.e., there exists LP , Lr > 0 such that for all
(x, a, a′) ∈ X ×A×A and measurable set B of X ,

|P (B|x, a)− P (B|x, a′)| ≤ LP ‖a− a′‖1 ,

|r(x, a)− r(x, a′)| ≤ Lr ‖a− a′‖1 .

Note that previously Lipschitzness w.r.t. the state variables was used, e.g., in [19] to construct con-
sistent planning algorithms.

4.2.3 Assumptions on the function sets used by the algorithm

These assumptions are less demanding since they are under the control of the user of the algorithm.
However, the choice of these function sets will greatly influence the performance of the algorithm,
as we shall see it from the bounds. The first assumption concerns the class F :

Assumption A8 (Lipschitzness of candidate action-value functions) Assume F ⊂ B(X × A)
and that any elements of F is uniformly Lipschitz in its action-argument in the sense that

|Q(x, a)−Q(x, a′)| ≤ LA ‖a− a′‖1
holds for any x ∈ X , a,a′ ∈ A, and Q ∈ F .

We shall also need to control the capacity of our function sets. We assume that the reader is familiar
with the concept of VC-dimension.7 Here we use the pseudo-dimension of function sets that builds
upon the concept of VC-dimension:

Definition 4.3 (Pseudo-dimension). The pseudo-dimension VF+ of F is defined as the VC-
dimension of the subgraphs of functions in F (hence it is also called the VC-subgraph dimension of
F).

Since A is multidimensional, we define VΠ+ to be the sum of the pseudo-dimensions of the coordi-
nate projection spaces, Πk of Π:

VΠ+ =
dA∑

k=1

VΠ+
k
, Πk = {πk : X → R : π = (π1, . . . , πk, . . . , πdA) ∈ Π } .

See Lemma E.3 for the motivation of this definition.

Now we are ready to state our assumptions on our function sets:
7Readers not familiar with VC-dimension are suggested to consult a book, such as the one by Anthony and

Bartlett [21].

9

Assumption A9 (Capacity of the function and policy sets) Assume that F ⊂ B(X × A; Qmax)
for Qmax > 0 and VF+ < +∞. Also, A ⊂ [−A∞, A∞]dA and VΠ+ < +∞.

Besides their capacity, one shall also control the approximation power of the function sets involved.
Let us first consider the policy set Π. Introduce

e∗(F , Π) = sup
Q∈F

inf
π∈Π

ν(EQ− EπQ).

Note that infπ∈Π ν(EQ − EπQ) measures the quality of approximating νEQ by νEπQ. Hence,
e∗(F ,Π) measures the worst-case approximation error of νEQ as Q is changed within F . This can
be made small by choosing Π large.

Another related quantity is the one-step Bellman-error of F w.r.t. Π. This is defined as follows: For
a fixed policy π, the one-step Bellman-error of F w.r.t. Tπ is defined as

E1(F ; π) = sup
Q∈F

inf
Q′∈F

‖Q′ − TπQ‖ν .

Taking again a pessimistic approach, the one-step Bellman-error of F is defined as

E1(F , Π) = sup
π∈Π

E1(F ;π).

Typically by increasing F , E1(F ,Π) can be made smaller (this is discussed at some length in
[14]). However, it also holds for both Π and F that making them bigger will increase their capacity
(pseudo-dimensions) which leads to an increase of the estimation errors. Hence, F and Π must be
selected to balance the approximation and estimation errors, just like in supervised learning.

4.3 The main result

Our main result is the following theorem (the theorem is restated as Theorem B.1 in the Appendix
with more details):

Theorem 4.4. Under Assumptions A1, A2, and A5–A9, for all δ > 0 we have with probability
at least 1 − δ: given Assumption A3 (respectively A4), ‖V ∗ − V πK‖∞ (resp. ‖V ∗ − V πK‖1,ρ), is
bounded by

C

E1(F ,Π) + e∗(F , Π) +

(log N + log(K/δ))
κ+1
4κ

N1/4

1
dA+1

+ γK

,

where C depends on dA, VF+ , (VΠ+
k
)dA
k=1, γ, κ, b, β, Cν (resp. Cρ,ν), Γν , LA, LP ,Lr, α, λ(A), π0,

Qmax, Rmax, R̂max, and A∞. In particular, C scales with V
κ+1

4κ(dA+1) , where V = 2VF+ + VΠ+

plays the role of the “combined effective” dimension of F and Π.

5 Discussion

We have presented what we believe is the first finite-time bounds for continuous-state and action-
space RL that uses value functions. Further, this is the first analysis of fitted Q-iteration, an algorithm
that has proved to be useful in a number of cases, even when used with non-averagers for which no
previous theoretical analysis existed (e.g., [12, 13]). In fact, our main motivation was to show that
there is a systematic way of making these algorithms work and to point at possible problem sources
the same time. We discussed why it can be difficult to make these algorithms work in practice. We
suggested that either the set of action-value candidates has to be carefully controlled (e.g., assuming
uniform Lipschitzness w.r.t. the state variables), or a policy search step is needed, just like in actor-
critic algorithms. The bound in this paper is similar in many respects to a previous bound of a
Bellman-residual minimization algorithm [7]. It looks that the techniques developed here can be
used to obtain results for that algorithm when it is applied to continuous action spaces. Finally,
although we have not explored them here, consistency results for FQI can be obtained from our
results using standard methods, like the methods of sieves. We believe that the methods developed

10

here will eventually lead to algorithms where the function approximation methods are chosen based
on the data (similar to adaptive regression methods) so as to optimize performance, which in our
opinion is one of the biggest open questions in RL. Currently we are exploring the possibility of
this.

A Proof of Proposition 3.1

Proof. We give such an F the following way: Choose X = A = {1, 2, . . .}. Enumerate all the
finite subsets of X as S1,S2,. . . . Let Qi(x, a) = I{x∈Si,a=i} and F = {Qi : i = 1, 2, . . . }. Then

VQi
(x) = max

a∈A
Qi(x, a) = I{x∈Si},

hence the subgraph system of F∨max shatters arbitrary large set of finite number of points with any
positive fat-shattering less than 1/2. Thus the fat-shattering function ofF∨max is not finite over (0, 1).
On the other hand, it is easy to see that the subgraph system of F does not shatter even two points,
hence VF+ = 1.

B The main theorem

Here we present the main theorem with the precise constants.

Theorem B.1. Under Assumptions A1, A2, and A5–A9, for all δ > 0 we have with probability at
least 1− δ:

• Given Assumption A3: ‖V ∗ − V πK‖∞ ≤ 2γ
(1−γ)2

{
Cν w + 2Rmax

1−γ γK
}

.

• Given Assumption A4: ‖V ∗ − V πK‖1,ρ ≤ 2γ
(1−γ)2

{
Cρ,ν w + 2Rmax

1−γ γK
}

.

where

w =
[

λ(A)(dA + 1)!
α(2/(LA + Lr + γQmaxLP))dA

ε

]1/(dA+1)

+ (dA + 1)ε,

with ε = ε′ + ε′′,

(ε′)2 = E2
1(F , Π) +

√
ΛN (δ/(2K)) [ΛN (δ/(2K))/b ∨ 1]1/κ

C2N
,

ε′′ = γΓν

(
e∗(F ,Π) +

√
Λ′N (δ/(2K)) [Λ′N (δ/(2K))/b ∨ 1]1/κ

C ′2N

)
.

(By definition, a∨b = max(a, b)). Here ΛN (δ) and Λ′N (δ) quantify the dependence of the estimation
error on N , δ, and the capacities of the sets F and Π:

ΛN (δ) = V
2 log N + log(e/δ) + log+ (C1C

V/2
2 ∨ β),

Λ′N (δ) = V ′
2 log N + log(e/δ) + log+ (C ′1C

′
2
V ′/2 ∨ β),

V ,V ′ playing the role of the “combined effective” dimensions of F and Π:

V = 2VF+ + VΠ+ , V ′ = VF+ + VΠ+ ,

log C1 = V log

(
128eR̃max(1 + γ(LA + 1))

λ(A)π0

)
+ 2VF+ log Qmax + VΠ+ log(dAA∞)

+
dA∑

k=1

log(e(VΠ+
k

+ 1)) + 2 log(VF+ + 1) + 2 log(4e),

11

log C ′1 = V ′ log(64e(LA + 1)) + VF+ log Qmax + VΠ+ log(dAA∞)

+
dA∑

k=1

log(e(VΠ+
k

+ 1)) + log(VF+ + 1) + log(16e),

C2 =
1
2

(
λ(A)π0

32R̃2
max

)2

, C ′2 =
1
2

(32Qmax)−2,

and
R̃max = (1 + γ)Qmax + R̂max.

C Some definitions

To avoid any confusions we introduce the definition of covering numbers:

Definition C.1 (Covering Numbers). Fix ε > 0 and a pseudo-metric space M = (M, d).8 We
say that M is covered by m discs D1, . . . , Dm if M ⊂ ∪jDj . We define the covering number
N (ε,M, d) of M as the smallest integer m such that M can be covered by m discs each of which
having a radius less than ε. If no such finite m exists then we let N (ε,M, d) = ∞.

In particular, for a class F of real-valued functions with domain X and points x1:N def=
(x1, x2, . . . , xN) in X , we use the empirical covering numbers, i.e., the covering number of F
equipped with the empirical `1 pseudo-metric,

lx1:N (f, g) =
1
N

N∑
t=1

d(f(xt), g(xt)),

where d is a distance function on the range of functions in F . When this range is the reals then
we use d(a, b) = |a − b|. If we define F(x1:N) as

{
f(x1:N) : f ∈ F }

then we see that the
empirical covering number of F can be equivalently defined as the covering number of F(x1:N)
when this latter set is equipped with the `1 distance normalized by N . (Here and in what follows
f(x1:N) def= (f(x1), . . . , f(xN)).) For brevity we shall denote N (ε,F , lx1:N) by N1(ε,F , x1:N).

The concept of pseudo-dimensions has been introduced earlier. The “scale-sensitive” counterpart
of pseudo-dimension is the fat-shattering function, which is defined as follows: Let F be a set of
functions from X to (say) [0, 1]. Let γ > 0. We say that x1:N ∈ XN is γ-shattered if there is
r ∈ [0, 1]N such that for any binary sequence b of length N there is a function f ∈ F such that
f(xi) ≥ ri + γ if bi = 1 and f(xi) ≤ ri− γ if b0 = 0. Thus, x1:N is γ-shattered by the function set
F if it is shattered with a “width of shattering” of at least γ. The fat-shattering function, fatF , takes
a shattering width γ and returns the largest integer N such that some x1:N ∈ XN is γ-shattered
with the understanding that if no such upper bound exists then the function returns infinite. We
shall say that F has finite fat-shattering function whenever it is the case that for all γ ∈ (0, 1),
fatF (γ) < +∞.

D Error propagation during the updates

D.1 Error propagation for value functions

The update rule Qk+1 = TQk + εk, (for εk ∈ B(X ×A)) when T is expanded take the form

Qk+1(x, a) = r(x, a) + γ

∫
P (dy|x, a)max

b∈A
Qk(y, b) + εk(x, a).

8A pseudo-metric satisfies all the properties of a metric except that the requirement of distinguishability is
removed.

12

Defining Vk(x) = maxa∈AQk(x, a) ∈ B(X), we have

Vk+1(x) = max
a∈A

[
r(x, a) + γ

∫
P (dy|x, a)Vk(y) + εk(x, a)

]

= r(x, πk+1(x)) + γ

∫
P (dy|x, πk+1(x))Vk(y) + εk(x, πk+1(x))

≤ sup
a∈A

[
r(x, a) + γ

∫
P (dy|x, a)Vk(y)

]
+ εk(x, πk+1(x))

= TVk(x) + εk(x, πk+1(x)),

where we wrote πk+1(x) = argmaxa∈AQk+1(x, a) for the greedy policy w.r.t. Qk+1, and T for
the Bellman operator applied to functions in B(X).

Now, writing π̄k(x) the greedy policy w.r.t. Vk, i.e.,

π̄k(x) = argmax
a∈A

[
r(x, a) + γ

∫
P (dy|x, a)Vk(y)

]
,

we have:

Vk+1(x) ≥ r(x, π̄k(x)) + γ

∫
P (dy|x, π̄k(x))Vk(y) + εk(x, π̄k(x))

= TVk(x) + εk(x, π̄k(x)).

Thus we have:
|Vk+1(x)− TVk(x)| ≤ ε̄k(x),

where ε̄k(x) = max{|εk(x, π̄k(x))|, |εk(x, πk+1(x))|}.

We would like to apply the following lemma:

Lemma D.1 (Lemma 4 of [19]). Let Assumptions A1,A7 hold. Let Vk+1 = TVk + ε̄k, where V0 is
an arbitrary bounded function over X and let wk = ‖ε̄k‖p,ν . Let πk be a policy that is greedy w.r.t.
Vk. Then for any positive integer K the following inequalities hold:

• Given Assumption A3 we have

‖V ∗ − V πK‖∞ ≤ 2γ

(1− γ)2
C1/p

ν max
0≤k<K

wk +
2Rmax

1− γ
γK/p.

• Given Assumption A4 we have

‖V ∗ − V πK‖p,ρ ≤
2γ

(1− γ)2
C1/p

ρ,ν max
0≤k<K

wk +
2Rmax

1− γ
γK/p.

In [19] this result was proven for finite action spaces and was stated in a slightly different form. How-
ever, the original proof goes through for infinite action spaces without any changes and the bounds
stated here can be readily obtained by a careful investigation of that proof. In particular, the com-
pactness of the action space (cf. Assumption A1) and the continuity of r(x, ·) +

∫
V (y)P (dy|x, ·)

which holds for any state x ∈ X and integrable function V due to Assumption A7 ensure that greedy
policies do exist for any bounded function V and thus, in particular, an optimal policy exists, too.

In order to apply this lemma we need to develop bounds on ‖ε̄k‖p,ν , which we develop next.

D.2 Bound on ‖ε̄k‖p,ν

As a first step, now we bound the Lp norm (with weight ν ∈ M(X)) of ε̄k in terms of the Lp norm
(with weight (ν×λA) ∈ M(X ×A)) of εk = Qk+1−TQk. For that we use the Lipschitz property
of εk w.r.t. the action variable.

Lemma D.2. Under Assumptions A7 and A8, for all k ≥ 0, εk is L-Lipschitz w.r.t. its action
variable, with L = LA + Lr + γQmaxLP .

13

Proof. From Assumption A8, we know that Qk+1 ∈ F is LA-Lipschitz. Now, from A7, for any
function Q ∈ B(X ×A, Qmax), TQ is (Lr + γQmaxLP)-Lipschitz since:

|TQ(x, a)− TQ(x, a′)| = r(x, a)− r(x, a′) + γ

∫
[P (dy|x, a)− P (dy|x, a′)]max

b∈A
Q(y, b)

≤ (Lr + γQmaxLP) ‖a− a′‖1 ,

thus εk = Qk+1 − TQk is (LA + Lr + γQmaxLP)-Lipschitz.

Lemma D.3. Under Assumptions A6, A7, and A8, for all p ≥ 1, we have

‖ε̄k‖p,ν ≤
[
λ(A)(dA + 1)!

α(2/L)dA
‖εk‖p,ν

]1/(dA+1)

+ (dA + 1) ‖εk‖p,ν ,

where L = LA + Lr + γQmaxLP .

Notice that the left-hand side of the bound makes use of a Lp norm (weighted by ν ∈ M(X)) for
functions defined onX whereas the right-hand side uses Lp norm (weighted by ν×λA) for functions
defined on X ×A.

The proof of this result follows immediately from the following result that bounds the L∞-norms of
Lipschitz functions over domain A in terms of their Lp(λA)-norms:

Lemma D.4. Assume that λA < ∞ and Assumption A6 is satisfied. Let f be an L-Lipschitz function
defined over A: |f(a)− f(a′)| ≤ L ‖a− a′‖1 (a,a′ ∈ A). Then for all p ≥ 1,

‖f‖∞ ≤ max

([
λ(A)(dA + 1)!

α(2/L)dA
‖f‖p,λA

]1/(dA+1)

, (dA + 1) ‖f‖p,λA

)
.

Proof. We may assume without the loss of generality that f ≥ 0. Now, given a function f and
a ∈ A such that f(a) > 0, from the Lipschitz property of f , it follows that the function cannot go
below the surface of the pyramid Py(a, f(a), ρ) with height f(a) and with base B(a, ρ) centered at
a for ρ = f(a)/L. Thus, given that λA is a uniform distribution over A, we have that for all a ∈ A,

‖f‖1,λA =
1

λ(A)

∫

A
|f(a′)| da′ ≥ λ(Py(a, f(a), f(a)/L) ∩ (A× R))

λ(A)
.

But, using Assumption A6, and since the volume of any pyramid with base B and height h is

λ(B)
∫ h

0

(
1− x

h

)dA
dx =

λ(B)h
dA + 1

,

we deduce that:

‖f‖1,λA ≥ λ(Py(a, f(a), f(a)/L))
λ(A)

min
(

α,
λ(A)

λ(B(a, f(a)/L))

)

= min
(

α

λ(A)
λ(B(a, f(a)/L)), 1

)
f(a)

dA + 1

= min
(

α

λ(A)
(2/L)dA

(dA + 1)!
f(a)dA+1,

f(a)
dA + 1

)
,

where we used the fact that

λ(B(a, ρ)) = λ(
{

a′ ∈ RdA : ‖a− a′‖1 ≤ ρ
}
) = (2ρ)dA/(dA!).

Since this holds for all a ∈ A, the desired inequality follows with p = 1 (i.e., for the L1(λA)-norm).
This is extended to Lp(λA)-norms since ‖f‖1,λA ≤ ‖f‖p,λA .

Now, let us return to the proof of Lemma D.3.

14

Proof. We apply Lemma D.4 to εk(x, ·) for each x, which is an L-Lipschitz function w.r.t. its action
variable, thanks to Lemma D.2. This gives, using here shortly c = λ(A)(dA+1)!

α(2/L)dA ,

|ε̄k(x)| ≤ sup
a∈A

|εk(x, a)| ≤ max
(
[c ‖εk(x, ·)‖p,λA]1/(dA+1), (dA + 1) ‖εk(x, ·)‖p,λA

)
,

leading to

|ε̄k(x)|p ≤ max
([

cp ‖εk(x, ·)‖p
p,λA

]1/(dA+1)

, (dA + 1)p ‖εk(x, ·)‖p
p,λA

)

≤
[
cp ‖εk(x, ·)‖p

p,λA

]1/(dA+1)

+ (dA + 1)p ‖εk(x, ·)‖p
p,λA .

ν-integrating both sides, we get

‖ε̄k‖p
p,ν ≤

∫

X

[
cp ‖εk(x, ·)‖p

p,λA

]1/(dA+1)

ν(dx) +
∫

X
(dA + 1)p ‖εk(x, ·)‖p

p,λA ν(dx)

≤
[
cp

∫

X
‖εk(x, ·)‖p

p,λA ν(dx)
]1/(dA+1)

+ (dA + 1)p

∫

X
‖εk(x, ·)‖p

p,λA ν(dx)

=
[
cp ‖εk‖p

p,ν

]1/(dA+1)

+ (dA + 1)p ‖εk‖p
p,ν

≤
(
[c ‖εk‖p,ν]1/(dA+1) + (dA + 1) ‖εk‖p,ν

)p

,

which implies the desired result taking pth root and substituting c.

D.3 Error propagation for action value functions

We now deduce the following Lp performance bound on V ∗ − V πK in terms of the Lp-norm of εk,
with weight ν × λA.

Lemma D.5. Under Assumptions A1, A6, A7, and A8 the followings hold:

• Given Assumption A3 we have

‖V ∗ − V πK‖∞ ≤ 2γ

(1− γ)2

{
C1/p

ν max
0≤k<K

wk +
2Rmax

1− γ
γK/p

}
.

• Given Assumption A4 we have

‖V ∗ − V πK‖p,ρ ≤
2γ

(1− γ)2

{
C1/p

ρ,ν max
0≤k<K

wk +
2Rmax

1− γ
γK/p

}
.

Here

wk =
[
λ(A)(dA + 1)!

α(2/L)dA
‖εk‖p,ν

]1/(dA+1)

+ (dA + 1) ‖εk‖p,ν

and L = LA + Lr + γQmaxLP .

Proof. This directly follows from Lemma D.1 and Lemma D.3.

E Controlling the error of the individual updates

E.1 Some definitions and technical results

Since we are dealing with β-mixing process, we need an extension of Pollard’s tail inequality for
this case.

15

Lemma E.1 ([7], Lemma 4, see also [22]). Suppose that Z1, . . . , ZN ∈ Z is a stationary β-mixing
process with mixing coefficients {βm}, Z ′t ∈ Z (t ∈ H) are the block-independent “ghost” samples
as done by [23], H = { 2ikN + j : 0 ≤ i < mN , 1 ≤ j ≤ kN } and F is a permissible class of
Z → [−K, K] functions. Then

P

(
sup
f∈F

∣∣∣∣∣
1
N

N∑
t=1

f(Zt)− E [f(Z1)]

∣∣∣∣∣ > ε

)
≤ 16E

[N1(ε
8 ,F , (Z ′t)t∈H)

]
e−

mN ε2

128K2 + 2mNβkN+1.

We now state some results that will be used to build estimates of the covering numbers of F∨Π . We
start by the following observation:

Lemma E.2. Let Assumption A8 hold for the function space F . Fix x1:N ∈ XN and α ∈ (0, 1).
Let K = N1

(
αε
LA

,Π, x1:N
)

and let (πk)k=1,...,K be the corresponding cover. Then

N1(ε,F∨Π , x1:N) ≤
K∑

k=1

N1

(
(1− α)ε,F , 〈πk(x1:N)〉) ≤ K sup

π∈Π
N1

(
(1− α)ε,F , 〈π(x1:N)〉) ,

where 〈πk(x1:N)〉 def= ((x1, πk(x1)), . . . , (xN , πk(xN))).

Proof. Let (πk)k=1,...,K be the αε
LA

-covering of Π(x1:N) and let (Qkj)j=1,...,J(k) be the
(1 − α)ε-covering of F(〈πk(x1:N)〉), k = 1, . . . ,K. It suffices to show that
(Qkj(·, πk(·)))k=1,...,K,j=1,...,J(k) is an ε-covering of F∨Π(x1:N).

Pick any pair (Q, π) ∈ F × Π. Let k be such that lx1:N (π, πk) ≤ αε
LA

. Further, let j be such that
l〈πk(x1:N)〉(Q,Qkj) ≤ (1− α)ε. Then

1
N

N∑
t=1

|Q(xt, π(xt))−Qkj(xt, πk(xt))|

≤ 1
N

N∑
t=1

(|Q(xt, π(xt))−Q(xt, πk(xt))|+ |Q(xt, πk(xt))−Qkj(xt, πk(xt))|)

≤ LA
N

N∑
t=1

‖π(xt)− π′(xt)‖1 +
1
N

N∑
t=1

|Q(xt, πk(xt))−Qkj(xt, πk(xt))| ≤ ε,

proving that (Qkj(·, πk(·)))k=1,...,K,j=1,...,J(k) is an ε-covering of F∨Π(x1:N).

Lemma E.3. If A ⊂ RdA , we have

N1(ε, Π, x1:N) ≤
dA∏

k=1

N1(ε/dA, Πk, x1:N).

Proof. The lemma follows directly from

1
N

N∑
t=1

‖π(xt)− π′(xt)‖1 =
dA∑

k=1

1
N

N∑
t=1

|πk(xt)− π′k(xt)|.

We use the following proposition to further bound these covering numbers:

Proposition E.4 ([24], Corollary 3). For any setX , any points x1:N ∈ XN , any classF of functions
on X taking values in [0, K] with pseudo-dimension VF+ < ∞, and any ε > 0,

N1(ε,F , x1:N) ≤ e(VF+ + 1)
(

2eK

ε

)VF+

.

16

Lemma E.5. Let Assumption A8 and A9 hold for the function space F and policy set Π. Fix
x1:N ∈ XN . Then

N1(ε,F∨Π , x1:N)

≤ edA+1(VF+ + 1)

(
dA∏

k=1

(VΠ+
k

+ 1)

)
Qmax

VF+ (dAA∞)VΠ+

(
4e(LA + 1)

ε

)VF++VΠ+

.

Proof. By Lemma E.2 with α = LA/(LA + 1),

N1((LA + 1)ε′,F∨Π , x1:N) ≤ N1(ε′, Π, x1:N) sup
π∈Π

N1(ε′,F , 〈π(x1:N)〉),

and by Lemma E.3, the covering number of Π is bounded by
∏dA

k=1N1(ε′/dA, Πk, x1:N). To bound
these factors, we use Corollary 3 from [24] that was cited here as Proposition E.4. The pseudo-
dimensions of F and Πk are VF+ and VΠ+

k
, respectively, and the ranges of functions from F and

Πk have lengths 2Qmax and 2A∞, respectively. Thus

N1((LA + 1)ε′,F∨Π , x1:N)

≤ e(VF+ + 1)
(

4eQmax

ε′

)VF+ dA∏

k=1

(
e(VΠ+

k
+ 1)

(
4edAA∞

ε′

)V
Π+

k

)

= edA+1(VF+ + 1)

(
dA∏

k=1

(VΠ+
k

+ 1)

)
Qmax

VF+ (dAA∞)VΠ+

(
4e

ε′

)VF++VΠ+

.

Substituting ε = (LA + 1)ε′ yields the result.

For any f ,Q ∈ F , π ∈ Π, define the loss function lf,Q,π : X × A × [−R̂max, R̂max] × X → R in
accordance with (5) as

lf,Q,π(z) = lf,Q,π(x, a, r, y) def=
1

λ(A)πb(a|x)
|f(x, a)− r − γEπQ(y)|2

for z = (x, a, r, y) and LF def= { lf,Q,π : f, Q ∈ F , π ∈ Π }.

Lemma E.6. Let Assumption A2 hold , and let Assumption A9 hold for the function space F . Fix
the multi-set z1:N = [z1, . . . , zN], zt = (xt, at, rt, yt) ∈ X × A × [−R̂max, R̂max] × X . Let
R̃max = (1 + γ)Qmax + R̂max and V = 2VF+ + VΠ+ as in Theorem B.1. Then for any α′ > 0

N1

(
2R̃max

λ(A)π0
(1 + γα′)ε,LF , z1:N

)
≤ N1(ε,F ,D)N1(α′ε,F∨Π , y1:N),

where the multi-sets D def= [(x1, a1), . . . , (xN , aN)] and y1:N def= [y1, y2, . . . , yN] are used. In
particular, if Assumptions A8 and A9 hold, then

N1(ε,LF , z1:N)

≤ edA+2(VF+ + 1)2
(

dA∏

k=1

(VΠ+
k

+ 1)

)
Qmax

2VF+ (dAA∞)VΠ+

(
8eR̃max(1 + γ(LA + 1))

λ(A)π0ε

)V

.

17

Proof. The distance in LF can be bounded as follows:

1
N

N∑
t=1

|lf,Q,π(zt)− lf̃ ,Q̃,π̃(zt)|

=
1

Nλ(A)

N∑
t=1

1
πb(at|xt)

∣∣∣|f(xt, at)− rt − γVQ,π(yt)|2 − |f̃(xt, at)− rt − γVQ̃,π̃(yt)|2
∣∣∣

≤ 1
Nλ(A)

N∑
t=1

2R̃max

π0

(
|f(xt, at)− f̃(xt, at)|+ γ|VQ̃,π̃(yt)− VQ,π(yt)|

)

(using the identity a2 − b2 = (a + b)(a− b), the triangle inequality,

and the assumed bounds for πb, f , f̃ , Q, Q̃, and rt)

=
2R̃max

λ(A)π0

(
1
N

N∑
t=1

|f(xt, at)− f̃(xt, at)|+ γy
1
N

N∑
t=1

|VQ̃,π̃(yt)− VQ,π(yt)|
)

.

Note that the first term is the D-based `1-distance of functions in F , while the second term is just
(γ-times) the y1:N -based `1-distance of functions in F∨Π . This leads to

N1

(
2R̃max

λ(A)π0
(1 + γα′)ε,LF , z1:N

)
≤ N1(ε,F ,D)N1(α′ε,F∨Π , y1:N)

for any α′ > 0.

Applying now Proposition E.4 for the first factor and Lemma E.5 for the second one, with α′ =
LA + 1 and ε′ instead of ε, we have

N1

(
2R̃max

λ(A)π0
(1 + γ(LA + 1))ε′,LF , z1:N

)

≤ e(VF+ + 1)
(

4eQmax

ε′

)VF+

edA+1(VF+ + 1)

(
dA∏

k=1

(VΠ+
k

+ 1)

)
Qmax

VF+ (dAA∞)VΠ+

(
4e

ε′

)VF++VΠ+

= edA+2(VF+ + 1)2
(

dA∏

k=1

(VΠ+
k

+ 1)

)
Qmax

2VF+ (dAA∞)VΠ+

(
4e

ε′

)V

,

and thus substituting ε = 2R̃max
λ(A)π0

(1 + γ(LA + 1))ε′ yields the result.

Finally, we will need the following technical lemma that transforms high probability bounds avail-
able for β-mixing processes into deviation size estimates:

Lemma E.7 ([7], Lemma 13). Let βm ≤ β exp(−bmκ), N ≥ 1, kN = d(C2Nε2/b)
1

1+κ e, mN =
N/(2kN), 0 < δ ≤ 1, V ≥ 2, and C1, C2, β, b, κ > 0. Further, define ε and Λ by

ε =

√
Λ(Λ/b ∨ 1)1/κ

C2N
(13)

with Λ = (V/2) log N + log(e/δ) + log+ (C1C
V/2
2 ∨ β). Then

C1

(
1
ε

)V

e−4C2mN ε2
+ 2mNβkN

< δ.

E.2 The error of a single update

Lemma E.8. Fix Q ∈ F and π ∈ Π. Let f ′ = argminf∈F L̂N (f ; Q, π). Then

‖f ′ − TπQ‖2ν − inf
f∈F

‖f − TπQ‖2ν ≤ 2 sup
f∈F

|L̂N (f ; Q, π)− L(f ; Q, π)|.

18

Proof. Remember that for π arbitrary, we defined the following losses:

L(f ;Q, π) = L∗(Q, π) + ‖f − TπQ‖2ν .

These imply that

‖f ′ − TπQ‖2ν − inf
f∈F

‖f − TπQ‖2ν
= L(f ′;Q, π)− inf

f∈F
L(f ;Q, π)

= L(f ′;Q, π)− L̂N (f ′; Q, π) + L̂N (f ′; Q, π)− inf
f∈F

L(f ; Q, π)

≤ |L̂N (f ′;Q, π)− L(f ′; Q, π)|+ inf
f∈F

L̂N (f ; Q, π)− inf
f∈F

L(f ; Q, π)

(by the definition of f ′)

≤ 2 sup
f∈F

|L̂N (f ; Q, π)− L(f ; Q, π)|.

Here we used that L̂N (f ′; Q, π) = inff∈F L̂N (f ;Q, π) and the elementary inequality infx f(x) −
infy g(y) ≤ supx(f(x)− g(x)).

Lemma E.9. Let Assumptions A1, A2, A8, and A9 hold with |F| ≥ 2. Let Zt = (Xt, At, Rt, Xt+1)
for t = 1,. . . ,N . Then, with probability at least 1− δ,

sup
lf,Q,π∈LF

∣∣∣∣∣
1
N

N∑
t=1

lf,Q,π(Zt)− E [lf,Q,π(Z1)]

∣∣∣∣∣ ≤
√

ΛN (δ)(ΛN (δ)/b ∨ 1)1/κ

4C2N
,

where ΛN (δ) and C2 are defined as in Theorem B.1.

Proof. Let ε and ΛN (δ) be chosen as in (13):

ε =

√
ΛN (δ)(ΛN (δ)/b ∨ 1)1/κ

C2N

with ΛN (δ) = (V/2) log N + log(e/δ) + log+ (C1C
V/2
2 ∨ β) ≥ 1. Define

P0
def= P

(
sup

lf,Q,π∈LF

∣∣∣∣∣
1
N

N∑
t=1

lf,Q,π(Zt)− E [lf,Q,π(Z1)]

∣∣∣∣∣ > ε/2

)
.

It follows that it is sufficient to prove that P0 < δ.

Note that the process {Zt} is β-mixing with mixing coefficients {βm−1}. Since the samples are
correlated, Pollard’s tail inequality cannot be used directly. Hence we use the method of [23], as
mentioned previously in Section E.1. For this we split the N samples into 2mN blocks which come
in pairs (for simplicity we assume that splitting can be done exactly), i.e., N = 2mNkN . Introduce
the following blocks, each having the same length, kN :

Z1, . . . , ZkN︸ ︷︷ ︸
H1

, ZkN+1, . . . , Z2kN︸ ︷︷ ︸
T1

, Z2kN+1, . . . , Z3kN︸ ︷︷ ︸
H2

, Z3kN+1, . . . , Z4kN︸ ︷︷ ︸
T2

, . . .

. . . , Z(2mN−2)kN+1, . . . , Z(2mN−1)kN︸ ︷︷ ︸
HmN

, Z(2mN−1)kN+1, . . . , Z2mN kN︸ ︷︷ ︸
TmN

.

Here Hi
def= {2kN (i−1)+1, . . . , 2kN (i−1)+kN} and Ti

def= {2ikN − (kN −1), . . . , 2ikN}. Next,
we introduce the block-independent “ghost” samples as it was done by [23] and [22]:

Z ′1, . . . , Z
′
kN︸ ︷︷ ︸

H1

, Z ′2kN+1, . . . , Z
′
3kN︸ ︷︷ ︸

H2

, . . . Z ′(2mN−2)kN+1, . . . , Z
′
(2mN−1)kN︸ ︷︷ ︸

HmN

,

where any particular block has the same marginal distribution as originally, but the mN blocks are
independent of one another. Introduce H =

⋃mN

i=1 Hi.

19

For this ansatz we use Lemma E.1 above with Z = X × A × R × X , F = LF noting that any
lf,Q,π ∈ LF is bounded by

K =
R̃2

max

λ(A)π0

with R̃max = (1 + γ)Qmax + R̂max, to get the bound

P

(
sup

Q,f∈F,π∈Π

∣∣∣∣∣
1
N

N∑
t=1

lf,Q,π(Zt)− E [lf,Q,π(Z1)]

∣∣∣∣∣ > ε/2

)

≤ 16E [N1(ε/16,LF , (Z ′t; t ∈ H))] e
−mN

2

„
λ(A)π0ε

16R̃2
max

«2

+ 2mNβkN
.

Applying Lemma E.6 we get

N1(ε/16,LF , (Z ′t; t ∈ H))

≤ edA+2(VF+ + 1)2
(

dA∏

k=1

(VΠ+
k

+ 1)

)
Qmax

2VF+ (dAA∞)VΠ+

(
128eR̃max(1 + γ(LA + 1))

λ(A)π0ε

)V

=
C1

16

(
1
ε

)V

,

where V = 2VF+ + VΠ+ and C1 = C1(λ(A), VF+ , (VΠ+
k
)dA
k=1, Qmax, R̂max, A∞, γ, π0, LA, dA).

Putting together the above bounds we get

P0 ≤ C1

(
1
ε

)V

e
−λ(A)2π2

0mN ε2

512R̃4
max + 2mNβkN = C1

(
1
ε

)V

e−4C2mN ε2
+ 2mNβkN , (14)

where C2 = 1
2

(
λ(A)π0

32R̃2
max

)2

= λ(A)2π2
0

2048R̃4
max

. |F| ≥ 2 implies VF+ ≥ 1, and thus V ≥ 2. Defining

kN = d(C2Nε2/b)
1

1+κ e and mN = N/(2kN), the proof is finished by Lemma E.7, which, together
with (14), implies P0 < δ.

Remember that E1(F , Π) = supπ∈Π,Q∈F infQ′∈F ‖Q′ − TπQ‖ν . We are ready to prove the main
result of this section:

Lemma E.10 (PAC-bound for the value fitting procedure). Let Assumption A1 and A2 hold, and
fix the set of admissible functions F satisfying Assumptions A8 and A9 and the set of policies Π
satisfying Assumption A9. Let Q̂ be a real-valued random function over X ×A, Q̂(ω) ∈ F and π̂ be
a random policy in Π, π̂(ω) ∈ Π (possibly not independent from the sample path). Let f ′ be defined
by

f ′ = argmin
f∈F

L̂N (f ; Q̂, π̂).

For 0 < δ ≤ 1, N ≥ 1, with probability at least 1− δ,

∥∥∥f ′ − T π̂Q̂
∥∥∥

2

ν
≤ inf

f∈F

∥∥∥f − T π̂Q̂
∥∥∥

2

ν
+

√
ΛN (δ)(ΛN (δ)/b ∨ 1)1/κ

C2N
,

where ΛN (δ) and C2 are defined as in Theorem B.1.

Proof. Recall that by (8) T̃Q,π,t = Rt + γEπQ(Xt+1). Note that, for fixed, deterministic Q and π,

E
[
T̃Q,π,t|Xt, At

]
= r(Xt, At) + γ

∫

X
EπQdP (·|Xt, At) = (TπQ)(Xt, At),

that is, TπQ is the regression function of T̃Q,π,t given (Xt, At). What we have to show is that
the chosen f ′ is a good estimate for T π̂Q̂ with high probability, noting that Q̂ and π̂ may not be
independent from the sample path.

20

We can assume that |F| ≥ 2 (otherwise the bound is obvious). By Lemma E.8,
∥∥∥f ′ − T π̂Q̂

∥∥∥
2

ν
− inf

f∈F

∥∥∥f − T π̂Q̂
∥∥∥

2

ν
≤ 2 sup

f∈F
|L̂N (f ; Q̂, π̂)− L(f ; Q̂, π̂)|

≤ 2 sup
π∈Π,Q,f∈F

|L̂N (f ; Q, π)− L(f ; Q, π)|.

Note that here Q and π denote an arbitrary (deterministic) function in F and policy in Π, respec-
tively.

We follow the line of proof of [22]. Introduce Zt = (Xt, At, Rt, Xt+1) for t = 1,. . . ,N . Observe
that by (9)

lf,Q,π(Zt) =
1

λ(A)πb(At|Xt)
|f(Xt, At)− T̃Q,π,t|2 = L(t),

hence we have for any f ,Q ∈ F , π ∈ Π,

1
N

N∑
t=1

lf,Q,π(Zt) = L̂N (f ; Q, π),

and (by (11))

E [lf,Q,π(Zt)] = E
[
L(t)

]
= L(f ;Q, π)

(coincidentally with (7)). Thus since

sup
π∈Π,Q,f∈F

|L̂N (f ; Q, π)− L(f ; Q, π)| = sup
lf,Q,π∈LF

∣∣∣∣∣
1
N

N∑
t=1

lf,Q,π(Zt)− E [lf,Q,π(Z1)]

∣∣∣∣∣ ,

the right-hand side reduces to the supremum of an empirical process over LF and is bounded by
Lemma E.9 above. Combining these bounds yields the result.

E.3 Controlling the error of the approximate greedy step

Remember that E : B(X × A) → B(X) is defined by (EQ)(x) = supa∈AQ(x, a), while
Eπ : B(X × A) → B(X) is defined by (EπQ)(x) = Q(x, π(x)). In this section we are in-
terested in bounding

∥∥TQ− T π̂Q
∥∥

1,ν
. The proof will consists of several steps. First, we bound∥∥T π̂Q− TQ

∥∥
1,ν

by ν(EQ − Eπ̂Q). Then we show that νEπ̂Q is close to supπ∈Π νEπQ, from
which the result will follow.

Lemma E.11. Under Assumption A5

‖TQ− TπQ‖1,ν ≤ γΓν ν(EQ− EπQ)

holds for any Q ∈ B(X ×A) and policy π.

Proof. Let ∆ = EQ−EπQ, µ = (ν × λA)P . By noting that EQ ≥ EπQ and so TQ ≥ TπQ and
∆ ≥ 0 we have

‖TQ− TπQ‖1,ν =
∥∥∥∥γ

∫

X
∆ dP (·|x, a)

∥∥∥∥
1,ν

= γ

∫

X
∆ dµ = γ

∫

X
∆

dµ

dν
dν ≤ γΓν ν∆.

Let us introduce the empirical measure νN (·) = 1
N

∑N
t=1 δXt(·), where δx(·) is the Dirac measure

associated with the singleton {x}.

Lemma E.12. Fix Q ∈ F that is bounded. Let π̂ = argmaxπ∈Π

∑N
t=1 Q(Xt, π(Xt)). Then

ν(EQ− Eπ̂Q)− inf
π∈Π

ν(EQ− EπQ) ≤ 2 sup
π∈Π

|νNEπQ− νEπQ|.

21

Proof. The boundedness implies νEQ, supπ∈Π νEπQ < ∞. Let us use the error decomposition

ν(EQ− Eπ̂Q)− inf
π∈Π

ν(EQ− EπQ)

= sup
π∈Π

νEπQ− νNEπ̂Q + νNEπ̂Q− νEπ̂Q

≤ sup
π∈Π

νEπQ− sup
π∈Π

νNEπQ + |νNEπ̂Q− νEπ̂Q|
(by the definition of π̂)

≤ 2 sup
π∈Π

|νNEπQ− νEπQ|.

Here we used that supπ∈Π νNEπQ = νNEπ̂Q and the elementary inequality supx f(x) −
supy g(y) ≤ supx(f(x)− g(x)) for bounded f .

Remember that F∨Π = {V : V (·) = Q(·, π(·)), Q ∈ F , π ∈ Π }. Combining Lemmas E.1, E.5,
and E.7 we get the following result:

Lemma E.13. Let Assumptions A2, A8, A9 hold. Then, with probability at least 1− δ,

sup
V ∈F∨Π

|νNV − νV | ≤
√

Λ′N (δ)(Λ′N (δ)/b ∨ 1)1/κ

4C ′2N
,

where Λ′N (δ) and C ′2 are defined as in Theorem B.1.

Proof. Let ε and Λ′N (δ) be chosen as in (13):

ε =

√
Λ′N (δ)(Λ′N (δ)/b ∨ 1)1/κ

C ′2N

with Λ′N (δ) = (V ′/2) log N + log(e/δ) + log+ (C ′1C
′
2
V ′/2 ∨ β) ≥ 1. Define

P ′0 = P

(
sup

V ∈F∨Π
|νNV − νV | > ε/2

)
.

It follows that it is sufficient to prove that P ′0 < δ.

Introducing Zt = Xt for t = 1,. . . ,N ,

P ′0 = P

(
sup

V ∈F∨Π

∣∣∣∣∣
1
N

N∑
t=1

V (Zt)− E [V (Z1)]

∣∣∣∣∣ > ε/2

)
.

Again, we use the method of [23]. Introduce the blocks of {Zt}N
t=1, mN , kN , H , and the “ghost”

samples (Z ′t; t ∈ H) as in the proof of Lemma E.9. We use Lemma E.1 above with Z = X ,
F = F∨Π noting that any V ∈ F∨Π is bounded by Qmax, to get the bound

P ′0 ≤ 16E [N1(ε/16,F∨Π , (Z ′t; t ∈ H))] e−
mN ε2

512Qmax2 + 2mNβkN+1.

Applying Lemma E.5 we get

N1(ε/16,F∨Π , (Z ′t; t ∈ H))

≤ edA+1(VF+ + 1)

(
dA∏

k=1

(VΠ+
k

+ 1)

)
Qmax

VF+ (dAA∞)VΠ+

(
64e(LA + 1)

ε

)VF++VΠ+

=
C ′1
16

(
1
ε

)V ′

,

with V ′ = VF+ + VΠ+ and C ′1 = C ′1(VF+ , (VΠ+
k
)dA
k=1, Qmax, A∞, LA, dA). Putting together the

above bounds we get

P ′0 ≤ C ′1

(
1
ε

)V ′

e
− mN ε2

512Qmax2 + 2mNβkN+1 = C ′1

(
1
ε

)V ′

e−4C′2mN ε2
+ 2mNβkN+1, (15)

22

where C ′2 = 1
2

1
(32Qmax)2 = 1

2048Qmax
2 . Defining kN = d(C ′2Nε2/b)

1
1+κ e and mN = N/(2kN),

the proof is finished by Lemma E.7, which, together with (15) and βkN+1 ≤ βkN
implies P ′0 <

δ.

Remember that e∗(F ,Π) = supQ∈F infπ∈Π ν(EQ−EπQ). We are ready to prove the main result
of this section:

Lemma E.14 (PAC-bound for the approximate greedy policy). Let Assumptions A2, A5, A8,
A9 hold. Let Q̂ ∈ F be random (possibly not independent from the sample path), π̂ =
argmaxπ∈Π

∑N
t=1 Q̂(Xt, π(Xt)). Then with probability at least 1− δ,

∥∥∥TQ̂− T π̂Q̂
∥∥∥

1,ν
≤ γΓν

[
inf
π∈Π

ν(EQ̂− EπQ̂) +

√
Λ′N (δ)(Λ′N (δ)/b ∨ 1)1/κ

C ′2N

]
,

where Λ′N (δ) and C ′2 are defined as in Theorem B.1.

Proof. By Lemma E.11,
∥∥∥TQ̂− T π̂Q̂

∥∥∥
1,ν

≤ γΓνν(EQ̂ − Eπ̂Q̂). We can assume that |Π| ≥ 2

(otherwise the bound is obvious). This implies VΠ+ ≥ 1, and thus V ′ ≥ 1. By Lemma E.12

ν(EQ̂− Eπ̂Q̂)− inf
π∈Π

ν(EQ̂− EπQ̂) ≤ 2 sup
π∈Π

|νNEπQ̂− νEπQ̂|

≤ 2 sup
π∈Π,Q∈F

|νNEπQ− νEπQ|.

Note that here Q denotes an arbitrary (deterministic) function in F . Finally, since

sup
π∈Π,Q∈F

|νNEπQ− νEπQ| = sup
V ∈F∨Π

|νNV − νV |,

the right hand side reduces to the supremum of an empirical process over F∨Π and is bounded by
Lemma E.13 above. Combining these bounds yields the result.

E.4 Proof of the Main Result

Proof. For the proof we write the algorithm in the form Qk+1 = TQk +εk with εk = ε′k +ε′′k where
ε′k = Qk+1 − T π̂kQk is the error while computing T π̂kQk and ε′′k = T π̂kQk − TQk is the error
committed because of using the approximately greedy policy π̂k (see also (12)). The result then
follows by Lemma D.5 if we can bound the ‖·‖1,ν error of εk, k = 0, . . . , K − 1. By the triangle
inequality and the well-known relation of Lp norms,

‖εk‖1,ν ≤ ‖ε′k‖1,ν + ‖ε′′k‖1,ν ≤ ‖ε′k‖2,ν + ‖ε′′k‖1,ν .

Now, we can use Lemma E.10 to get a bound on ‖ε′k‖2,ν that fails with probability at most δ/(2K),
giving ε′ defined in the text of the theorem. Similarly, we can use Lemma E.14 to get a bound on
‖ε′′k‖1,ν that fails with probability at most δ/(2K), giving rise to ε′′. Since there are K iterations,
the total failure probability is bounded by δ, thus finishing the proof of the theorem.

Acknowledgments

András Antos would like to acknowledge support for this project from the Hungarian Academy of
Sciences (Bolyai Fellowship). Csaba Szepesvári greatly acknowledges the support received from the
Alberta Ingenuity Fund, NSERC, the Computer and Automation Research Institute of the Hungarian
Academy of Sciences.

References

[1] A.Y. Ng and M. Jordan. PEGASUS: A policy search method for large MDPs and POMDPs. In Proceed-
ings of the 16th Conference in Uncertainty in Artificial Intelligence, pages 406–415, 2000. 1, 9

23

[2] L. Peshkin and C.R. Shelton. Learning from scarce experience. In ICML, pages 498–505, 2002. 1

[3] D. Aberdeen. Policy-gradient methods for planning. In Advances in Neural Information Processing
Systems 18, pages 9–16. 2006. 1

[4] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. Bradford Book. MIT Press, 1998.
1, 4

[5] M. Lagoudakis and R. Parr. Least-squares policy iteration. Journal of Machine Learning Research,
4:1107–1149, 2003. 2

[6] A. Antos, Cs. Szepesvári, and R. Munos. Learning near-optimal policies with Bellman-residual mini-
mization based fitted policy iteration and a single sample path. In COLT-19, pages 574–588, 2006. 2,
5

[7] A. Antos, Cs. Szepesvári, and R. Munos. Learning near-optimal policies with Bellman-residual mini-
mization based fitted policy iteration and a single sample path. Machine Learning, 2007. (accepted). 2,
5, 7, 10, 16, 18

[8] D. Ernst, P. Geurts, and L. Wehenkel. Tree-based batch mode reinforcement learning. Journal of Machine
Learning Research, 6:503–556, 2005. 2, 4

[9] J.A. Boyan and A.W. Moore. Generalization in reinforcement learning: Safely approximating the value
function. In NIPS-7, pages 369–376, 1995. 2, 5

[10] Geoffrey J. Gordon. Stable function approximation in dynamic programming. In A. Prieditis and S. Rus-
sell, editors, Proc. of ICML 20, pages 261–268. Morgan Kaufmann, 1995. 2

[11] D. Ormoneit and S. Sen. Kernel-based reinforcement learning. Machine Learning, 49:161–178, 2002. 2

[12] M. Riedmiller. Neural fitted Q iteration – first experiences with a data efficient neural reinforcement
learning method. In 16th European Conference on Machine Learning, pages 317–328, 2005. 2, 10

[13] S. Kalyanakrishnan and P. Stone. Batch reinforcement learning in a complex domain. In AAMAS-07,
2007. 2, 10

[14] A. Antos, Cs. Szepesvári, and R. Munos. Value-iteration based fitted policy iteration: learning with a
single trajectory. In IEEE ADPRL, pages 330–337, 2007. 2, 5, 10

[15] D. P. Bertsekas and S.E. Shreve. Stochastic Optimal Control (The Discrete Time Case). Academic Press,
New York, 1978. 2

[16] N. Cristianini and J. Shawe-Taylor. An introduction to support vector machines (and other kernel-based
learning methods). Cambridge University Press, 2000. 4

[17] P.L. Bartlett, P.M. Long, and R.C. Williamson. Fat-shattering and the learnability of real-valued functions.
Journal of Computer and System Sciences, 52:434–452, 1996. 5

[18] A.N. Kolmogorov and V.M. Tihomirov. ε-entropy and ε-capacity of sets in functional space. American
Mathematical Society Translations, 17(2):277–364, 1961. 5

[19] R. Munos and Cs. Szepesvári. Finite time bounds for sampling based fitted value iteration. Technical
report, Computer and Automation Research Institute of the Hungarian Academy of Sciences, Kende u.
13-17, Budapest 1111, Hungary, 2006. 8, 9, 13

[20] P.L. Bartlett and A. Tewari. Sample complexity of policy search with known dynamics. In NIPS-19. MIT
Press, 2007. 9

[21] M. Anthony and P. L. Bartlett. Neural Network Learning: Theoretical Foundations. Cambridge University
Press, 1999. 9

[22] R. Meir. Nonparametric time series prediction through adaptive model selection. Machine Learning,
39(1):5–34, April 2000. 16, 19, 21

[23] B. Yu. Rates of convergence for empirical processes of stationary mixing sequences. The Annals of
Probability, 22(1):94–116, January 1994. 16, 19, 22

[24] D. Haussler. Sphere packing numbers for subsets of the boolean n-cube with bounded Vapnik-
Chervonenkis dimension. Journal of Combinatorial Theory, Series A, 69(2):217–232, 1995. 16, 17

24

