-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Permission Specifications for Common Multithreaded
Programming Patterns

Marieke Huisman, Clément Hurlin

» To cite this version:

Marieke Huisman, Clément Hurlin. Permission Specifications for Common Multithreaded Program-
ming Patterns. Book in the honor of Henk Barendregt for his 60th birthday, Dec 2007, Nimegue,
Netherlands. inria-00204771

HAL Id: inria-00204771
https://hal.inria.fr /inria-00204771
Submitted on 15 Jan 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50333953?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00204771
https://hal.archives-ouvertes.fr

PERMISSION SPECIFICATIONS FOR
COMMON MULTITHREADED PROGRAMMING PATTERNS

MARIEKE HUISMAN AND CL EMENT HURLIN

INRIA Sophia Antipolis, France
e-mail addressMarieke.Huisman@inria.fr

INRIA Sophia Antipolis, France
e-mail addressClement.Hurlin@inria.fr

ABSTRACT. Multithreading is the next challenge for program verification. To support modular veri-
fication of multithreaded programs, one should know when data might be accessed or updated by the
different threads in the system. We propose a permission-based annotation system that is designed
to do exactly thisj.e. it specifies when a thread can read or write a variable. The annotation system
ensures that threads have exclusive access to a variable whenever they have the possibility to write it,
thus avoiding data races. Moreover, the annotation system allows to change permissions dynamically
throughout the execution. The information from the permission annotations can be used for further
verification of the program. This paper shows how the annotation system can be used to specify
variable access in several typical multithreaded programming patterns.

1. INTRODUCTION

Because of increasing requirements on performance and reactivity, multithreading nowadays is
unavoidable for programmers. However, multithreaded programs are notoriously difficult to write
correctly. Therefore, it is important to have the means to establish a formal correctness statement for
the application (it behaves as specified, does not contain security bugs etc.). However, just as writing
multithreaded applications is more difficult than writing sequential ones, verifying multithreaded
applications is also more complicated than verifying sequential ones.

A promising approach to verify multithreaded programs is to abstract the behaviour of threads
by specifying what thegannotdo. This can be considered as the worst-case behaviour of a thread.
Then, to verify a particular thread, one can reduce all other threads to their abstractions, which
makes it unnecessary to know the precise state each thread is in. Our annotation system for per-
missions does exactly this: it specifiebethera thread can potentially change or read a variable,
without specifyingwhatit reads or writes. In addition, our system also ensures(th#ta thread
can write to a location no other thread may write or read to this location simultaneouslyj)ahd
a thread can read to a location no other thread can write to this location simultaneously. The an-
notation system has been designed to be as general as possible, and to handle a large class of

This work is funded in part by the IST programme of the EC, under the IST-FET-2005-0M@&05s project and
the French national research organisation (ANR), under the ANR-06-SETINP&YBEC project.

LOGICAL METHODS © Marieke Huisman and Clément Hurlin
IN COMPUTER SCIENCE DOI:10.2168/LMCS-??? Creative Commons

Permission ::= permission (PermName (= PermDecl™)";)t

LockClause ::= lock {LockName} = PermDecl™
PermDecl ::= PrimPermDecl | ObjPermDecl | LockPermDecl
PrimPermDecl ::= FieldName: BasePerm
ObjPermDecl ::= FieldName:. BasePerm(EncapsPermList)
LockPermDecl ::= {LockName}
BasePerm ::= \split(Nat) | W|R
EncapsPermList ::= EncapsPerm | EncapsPerm, EncapsPermList
EncapsPerm ::= \split(PermName, Nat) | PermName

Figure 1: Grammar for permission declarations

programming patterns. It can be used to show the correctness of lock-free algorithms, algorithms
based on locking, and mixtures of both.

The annotation system declares for each object one or more permission states, listing all per-
missions on an object that may exist at a particular point in time. If a thread can be shown to hold
all permissions on a particular objecg. it has the exclusive access to the object, then the object's
permission state can be changed. Method’s preconditions specify which permissions are needed
to call a method, while postconditions specify which permissions are given back to the caller. As
mentioned above, the annotations should ensure that at each point ifi)tifmere exists at most
one permission to write a variable, afii) if a thread has the permission to write a variable, then no
other thread has the permission to read this variable.

Our annotation system is strongly based on Boyland’s fractional permission system [2], but
whereas Boyland’s system is defined for a simple language with parallel composition, we extended
it to a Java-like language with synchronisation, thread creation and.jdiaseover, our annotation
system supports proper encapsulation of the object state by introducing names for the different
permissions.

This paper gives a quick overview of the syntax of our annotation system, described as an ex-
tension of JML [7]. The remainder of the paper shows how the annotations can be used to specify
typical multithreaded programming patterns. In particular, we discuss the following patterns: Im-
mutability, Lock Splitting, Confinement across methods, Worker threads, Fork/Join algorithms, and
concurrent Subject/Observers. These patterns and their implementations are all taken or inspired by
Lea’s book on concurrency in Java [6] or the Design Pattern book [3].

2. SHORT OVERVIEW OF THE ANNOTATIONS

A class can contain several permission and lock clauses. Figure 1 gives their grammar (where
we use regular expression notationi’ for 0 or 1 X, X* for 0 or moreX, andX * for 1 or moreX).
A permission consists of a list of names and for each name, a (possibly empty) list of permission
declarations. A permission declaration can specify a permission for a field of primitive type, a field
of reference type, or it can be a special lock permission. A permission declaration for a primitive
field contains the field name and a base permission. A permission declaration for a reference field,
in addition, specifies the encapsulated permissions of the object referenced to. Finally, references
can be declared to be special lock permissions.

INotice that such a thread creation/join mechanism can simulate parallel composition, but parallel composition cannot
simulate all programs using thread creation and joining.

2

PermPred ::= \split(Path. PermName, Nat) |\part(Path. PermName)
| \has(Path, Nat, Nat) | \hasnot(Path)
| Path. PermName | PermPred * PermPred
Path ::= ArgAccess’ | ArgAccess’. FieldAccess
ArgAccess ::= this | VarName
FieldAccess ::= FieldName | FieldAccess. FieldName
Figure 2: Grammar for permission predicates
A base permission is of the forisplit(n) (wheren is a natural number). Its intuitive
meaning is that there are at m@8tthreads accessing the field at the same time. Permissions can
be split, using the equivalendsplit(n) = \split(n+1)*\split(n+1) , Where the*

operator comes from separation logic [9]. For standard JML expresgicansd & are equivalent,

but their meaning is slightly different for permission formulas. Intuitively? idnd(@ are permission
formulas, ‘P+(Q is valid w.r.t. to a hea” means that can be split in two disjoint heaps, and

ho such that “P is valid w.r.t.h;” and “Q is valid w.r.t. hs". For this paper, it is sufficient to
understand as&. The equivalence doubles the number of threads that can access the field. Notice
that permission splitting is unbounded.

For convenience we introdud&'to abbreviatdsplit(0) : since2’ = 1, this means that
the thread has exclusive access to the field, and thus can be allowed to write to it. Any permission
\split(n) , wheren > 0, allows only to read, because there might be other threads accessing the
field. We useR to abbreviatasplit(1) , & basic read permission.

Encapsulated permissions are of the fasplit(p,n) , meaning that the reference permis-
sion containg1/2")" of the permission namegl, from the object that the reference points to. We
use the permission nanpeto abbreviatasplit(p,0) , I.e. exclusive hold of the permission. As
base permissions, encapsulated permissions can be split using the equi\sétipan) =
\split(p,n+1)*\split(p,n+1) .

For each lock permission declaration, the class contains a special lock clause. This specifies
which permissions are obtained when the lock is acquired. Intuitively, at every point in the exe-
cution, a thread has certain permissions on an object. If a thread acquires a lock, it obtains the
permissions that are held by that lock, and when it releases the lock, it returns these permissions to
the lock. Fields that are declared as locks are required to be final.

To ensure that the annotations avoid data races, each permission should contain at most one
write permission per field, and if a permission contains a write permission, it cannot contain read
permissions on the same field. Notice that this only has to be guaranteed at the current class level:
it is implicitly guaranteed to hold for all objects that are referenced to by fields in the class.

Method pre- and postconditions can be extended with permission predicates, see Figure 2 for
their grammar (where a path denéter more indirections beginning withis or a variable name,

i.e., a sequence of the forthis.fl.....fn or v.fl.....fn). Intuitively, a precondition
specifies which permissions are necessary to execute a method, a postcondition specifies which
permissions are returned to the caller

2\We do not consider exceptional postconditions in this paper. Typically, exceptional permission postconditions would
coincide with the method’s normal permission postconditions.

class Fraction{
/@ permission rd = num : R, den : R;
protected final long num, den;

/@ ensures rd;
public Fraction(long n, long d) { // ... normalize
num = ...; den = ... }

/@ requires \part(rd) * \part(f.rd);
/l@ ensures \part(rd) * \part(f.rd) * \result.rd;
public Fraction plus(Fraction f) {
return new Fraction(hum * f.den + f.num * den, den * f.den);}}

Figure 3: Fragment of immutable claSgaction

Permission predicates can be base permissions on the fields of the object, or on the encapsulated
fields of the object (hamed by a qualified expression, containing the name of the surrounding per-
mission). Additionally, permission predicates can express whether a thread owns a lock or not: per-
mission\has(path,i,j) means that the considered thread has acquired the lock on the object
pointed to bypath j times, and in addition at mostother threads have permission to acquire this
lock. Further, we introduce to useful abbreviatioyrt(p) and\hasnot(path) , defined in
terms of JML/permission expressions. Expresspant(p) abbreviateg\exists int n.

\split(p,n) & n >= 0) , i.e. it denotes a read permission on the fields containgul iEx-
pressionhasnot(path) indicates that a thread does not hold the lock pointed tpdif : it
abbreviateg\exists int i\has(path,i,0) & i >= 0) . Other useful abbreviations
could be imaginede.g.to express that exactly the same permission is returned. More experience
with writing permission annotations will show which abbreviations are useful.

To allow modular verification, standard JML uses modifies clauses. However, because permis-
sions can be considered as modifies clauses (i.e., a write permission on a field in a precondition is
similar to a modifies clause mentioning this field), we do not need to specify modifies clause in this
paper.

3. ANNOTATIONS OFDIFFERENT CONCURRENCYPATTERNS

This section shows how the annotation system presented above is particularly suited to specify
several common concurrent programming patterns. The patterns that we present here are derived
from Lea’s pattern collection [6] and the Design Pattern book [3].

3.1. Immutability. The first example is the immutability pattern. An object is said to be immutable
if after initialisation it can never change its internal state (see also [4]). This is useful for multi-
threaded programming, because accesses to (initialised) immutable objects do not have to be pro-
tected by locks. Typical applications of immutable objects are abstract data types, value containers
and shared state representations.

Figure 3 presents an example of an immutable object, representing the abstract data type of
fractions (taken from [6§2.1.1]). The annotations specify that the class has only one permission
rd , in which both numeratornum) and denominatorden) can only be read. The constructor
returns the full permissiord to its caller. These permissions can then freely be split, to give read
access to the fraction object to any thread that requires this. To be able to compute with fractions (as

4

class Person{
protected int age, salary;

/l@ permission d = {11}, {12};
/l@ lock {I1} = age : W;
/l@ lock {12} = salary : W,

final protected Object I1
final protected Object 12

= new Object();

= new Object();

/l@ requires \part(d);

/l@ ensures \part(d);

public int getAge(){synchronized(l1) {return age;}}

/l@ requires \part(d);

/l@ ensures \part(d);

public void birthday(){
synchronized(l1){synchronized(12){age++; salary +=100;}}}

/l@ requires \part(d);
/l@ ensures \part(d);
public int getSalary(){synchronized(I2) {return salary;}}}

Figure 4: Fragment of clag®erson , illustrating the lock splitting pattern

does methoglus), one needs to have some part of tHepermission. Afteplus has finished, a
(possibly different) part of thed permission is returned to the caller. In addition, the caller obtains
the completed permission on the newly created object.

Notice that our permission system is also suitable to exypad&l immutability, where only
some fields are immutable, or an object only is immutable during a part of the execution (e.g.,
before or after calling a certain method). To support the first case, a class can declare different
permissions: one containing read permission declarations for all immutable fields, and one (or
more) containing write permission declarations for the mutable fields. To support the second case,
different permissions can be specified, so that the object can change its state from one permission to
another. Methods that need the object to be immutable, require that the object is in the appropriate
permission state, and thus that the appropriate read permissions are held.

3.2. Lock Splitting. To increase performance, it often is useful to associate locks only with certain
functionalities of a class. Thus, different (groups of) fields are protected by different locks. Natu-
rally, this makes it even more important to clearly specify which fields are protected by which lock
(and to ensure that the application respects this).

Figure 4 gives a typical example of this lock splitting pattern§B.4.2]. The clas®erson
contains fieldage andsalary . It has a single permissiah which declares two lock permissions.
All methods in the class require and ensure a fraction of this permission. Further the class contains
two lock clauses: the first specifies that if a thread acquiresIibckit obtains the permission to
write the fieldage ; similarly acquiring lock2 gives the permission to writgalary . Notice that
the method specifications only mention the permissioHowever, the lock clauses ensure that any
access tage or salary is protected by the appropriate locks.

5

class Point{
public int x, vy;
/@ permission g = x : W,y : W; }

class Plotter{
/@ ensures true;
public void showNextPoint(){
Point p = new Point();
p.X = ... Py = ..
display(p); }

/@ requires p.q;
protected void display(Point p¥{ ... }}

Figure 5: Fragment of clag3otter , showing confinement across methods

Note that thesynchronized(..) statements in clad8erson can bereentrantacquire-
ments ofll orl2 . A lock acquirement is said to be reentrant if the thread acquiring the lock
already owns it. In this case, Java’s semantics is such that the thread continues normally. To allow
reentrant acquirement of locks, our system proceeds as follows: whenever a thread acquires a lock,
the thread must show it does not already have the lock (i.e., the thread can gain the permissions
inside the lock) or the thread must show it already has the permissions inside the lock. Thus, after
acquiring a lock, one is sure that the permissions inside the lock have been transfered to (or were
already owned by) the thread considered. For example, after executiagrtieronized(l1)
statement irgetAge , a thread gains the permissions inslitle(i.e., write access to the fielbe)
and can executeeturn age;

3.3. Confinement Across Methods.Thread locality,.e. the case where an object is only accessi-
ble via a single thread, is another means to guarantee non-interference of other threads. A gener-
alisation of this is the case where there is at most one thread at the time having a reference to an
object. After passing an object to another method (which might cause it to be accessed by different
threads), the calling method guarantees that it does not access it anymore. Thus, possible changes
to the object do not change the correct behaviour of the method. This pattern isccadfedement
across methodg, §2.3.1].
Figure 5 shows a typical example of this pattern. The bResiat class contains a single per-
mission set that allows to write both its fields. In cl®etter , the methodshowNextPoint
creates a new point class, and properly initialises it. After initialisation, it gives the newly cre-
ated point to the display method (that will typically use special threads for doing the graphics).
The fact that the object is given away, is made explicit by the method’s postcondition: the caller
of showNextPoint does not get back any permissions on the newly created point. Also the
display method requires the full permission on the point, and does not return any permission.
Notice that other confinement patterns (confinement within a thread, confinement within an
object) can also be expressed in a natural way with our annotation system.

3.4. Worker Threads. The next pattern that we discuss is the worker thread pattern; an important

pattern for many industrial applications. A main thread prepares different tasks, and sends them

off to a worker thread for computation. This ensures that the main thread is never blocked for a

long time, and thus that the application can stay reactive. It is important that access to the task
6

class MainThread extends Thread{

//@ permission before
//@ permission after

= wk : R (p), t : R (wr, regain);
=wk : R (p), t: R (wr);

final private Task t;

final private WorkerThread wk;

/@ requires wk.p;

/l@ ensures before;

public MainThread(WorkerThread wk)
{thiswk = wk; t = new Task();}

/l@ requires before;
/l@ ensures after;
public void run()
{t.prepare(); wk.addTask(t); ...; if tisDone()}{...}}}

Figure 6: Fragment of clasderverThread , part of the worker thread pattern

class WorkerThread extends Thread{

final private Vector<Task> tp; /task pool
/@ permission p = {this};
/l@ lock {this} = tp : W (...); // encapsulate permissions from Vector

/@ requires \part(p);
/l@ ensures \part(p);
public void run(){
Task t;
while(true){
if(taskWaiting()){t = getTask(); t.doTheJob(); t.setisDone();}}}

/@ requires \part(p) * t.wr;
/@ ensures \part(p);
public synchronized void addTask(Task t){tp.add(t);}

/@ requires \part(p);
/l@ ensures \part(p) * \result.wr;
public synchronized Task getTask(){
Task t = tp.elementAt(0); tp.removeElementAt(0); return t; }

/l@ requires \part(p);
/@ ensures \part(p);
public synchronized boolean taskWaiting(){return tp.size != 0;}

Figure 7: Fragment of clad&/orkerThread , part of the worker thread pattern

class Task{
volatile boolean done;

/@ permission wr = ..;
/l@ permission regain;

/l@ requires wr;
/l@ ensures wr;
public void prepare(){}

[/@ requires wr;
/@ ensures wr;
public void doTheJob(){ ... }

/l@ requires wr;
public void setlsDone(){ ... }

//@ requires regain;
/l@ ensures \result ==> wr && Nresult ==> regain;
public boolean isDone(){ ... }}

Figure 8: Fragment of classask , part of the worker thread pattern

is exclusive,i.e. once the main thread has send off the task, it should no longer access the fields
involved in the computation. Only once it knows that the task has finished, it can be allowed to
access these fields again.

Figure 6 shows an implementation of a main thread, that prepares jobs for a worker thread. In
our simple example, it has read-only references to a single worker thread and a single task object.
It has two different permissionshefore andafter . The only difference between these two
permissions is whether the server thread has a spexjain permission on task. The role
of thisregain permission will be explained below. The permissions on the worker thread and
task objects are encapsulated in the permission state f@e¢herThread object. Notice that
since bothbefore andafter contain the full encapsulated permissignandwr (explained
below), the main thread cannot hold both before and theafter permission at the same time.
Notice further thatServerThread 's constructor requires that its parameter has an appropriate
permission on the worker thread. In contrast, since the task is a newly created object, no further
requirements are necessatry.

Figure 7 shows the implementation of a worker thread (inspired b§48,.4]). The worker
thread has a single permission, which ensures that access to the task pool is protected by a lock.
This avoids possible race conditions.

Figure 8 gives a possible implementation of tasks. It has a permigsi@iving write access
to the fields of the task (not further detailed here), and a spesi@in permission, mentioned
above. This permission is only a marker, it does not give access to any of the fields. The holder
of theregain permission is allowed to regain thver permission, once the task is done. The
constructor ofTask returns this permission to the thread that constructed the object. This (or some
other) thread can inspect whether the task is finished, and if so, it regains the write permission
on the fields of the task, and tihegain permission is destroyed.

Therun method of theServerThread first prepares the task, and then it puts it in the
task pool of the worker thread. Notice that the specificatiomadTask in WorkerThread

8

class Fib extends FJTask{
int number;
//[@ permission p = number : W;

/l@ ensures p;
Fib(int n) { number = n; }

/@ requires p;
//@ ensures p;
public void run() {
int n = number;
if (n = 1) number = 1;
else {Fib f1 = new Fib(n - 1);Fib f2 = new Fib(n - 2);
colnvoke(fl, f2);
number = fl.number + f2.number;}}}

Figure 9: Fragment of fork-join implementation of Fibonacci function

requires thenr permission on the task object, and does not returneitthe server thread looses
its permission to do something with the task. When\terkerThread takes the task from the
task pool (usingyetTask) it acquires the permissionr on the task, and thus it is able to do the
job, and then set a volatile fieldo signal that it is done. By executing tsetlsDone method,
it looses its permission to access the task. In the mean time&dherThread can continue
with other things €.g.react on other requests). When it needs the result of the task, it can inspect
whether the task is finished, using tleDone method. For this it needs the speciabain
permission. If thasDone method returns true, thegain permission is destroyed, and instead
thewr permission is returned (otherwise thegain permission is kept). Thus, implicitly the
permission ofServerThread changes frontbefore to after

The use of the speciakgain permission ensures that th permission is not duplicated:
once thewr permission has been returnedibipone , theregain permission is destroyed, and
thus theisDone method cannot be called anymore for this task. A variant of this specification
would be that the method would only return thve permissionjf the method was called with the
regain permission (which is then destroyed). Alternatively, one could also imagine a specification
where methodsDone requires only a part of theegain permission and returns the correspond-
ing part of thewr permission (see methadn of theMatrix example in the next paragraph for
such an example).

3.5. Fork/Join Algorithms. Animportant class of concurrent algorithms are fork/join algorithms —

the concurrent variation of divide-and-conquer algorithme-each thread spawns off several other
threads to do sub-computations. It waits for all these threads to finish, and then combines their re-
sults into a single result. We show how our annotation system can be used to show that the fork-join
implementation in Figure 9 of the Fibonacci function §8,4.1] does not contain data races.

3To avoid possible race conditions, and therewith unexpected behaviours.
4Even though, as pointed out by Lea, this is an unrealistic example, because there are much faster non-recursive
solutions. However, because of its simplicity, it nicely illustrates the working of our annotation system.

ClassFib contains a permissiop, that allows to write the fielsiumber °. The implemen-
tation of the methodcolnvoke from the classFJTask is such that it implicitly behaves as
f1.fork(); f2.fork(); f2.join(); f1.join(); . Since thefork method starts a
new thread, that will execute itsn method, the precondition of threan method is propagated to
also be the precondition of tHerk method. Further, each runnable object is supposed to contain
an implicitjoin permission, that is returned to the creator of the class (and can be passed around).
Thejoin method has the following (implicit) specification:

requires join;

ensures Q_run;
also

requires true;

ensures true;

where@_run is the specified postcondition of the methaoh (notice that to get even more pre-
cision and flexibility, we could specify that only a fraction of floén permission is required, and
that exactly this fraction of the permissionsrim ’s postcondition are returned). Thus, when a
thread creates objects andf2 , it obtains the permission to write theiumber fields, plus a
specialjoin permission. Withincolnvoke , the permission omumber is given to the forked
threads, and after joining, they regain the permission to acegsber — however, they have lost
the implicitjoin permission.

As a more complex example, we sketch a program where we split and recombine permissions.
Suppose we have a clabfatrix with permissionwr, that allows to write the elements in the
matrix (but not to change the shape of the matrix), and with appropriate method annétations
class Matrix{

final int[][] elems;
/l@ permission wr: w = elems : R[R[W]]; ...

To be able to initialise the matrices, we need write permission on the elements. However, if we
suppose that we only need read access to do the matrix computations, we can have the following
programming pattern (where we have matriaeendb):

while(true){
initialise(a,b);
/I split matrix permissions for different threads
colnvoke(...); /I do fork-join matrix computations
/I recombine fractioned permissions into complete permission }
provided that theun method for the matrix computation is specified as follows:
requires \part(a.wr) * \part(b.wr);
ensures \part(a.wr) * \part(b.wr) &
(\forall int n.\old(\split(a.wr, n)) = \split(a.wr, n)) &
(\forall int n.\old(\split(b.wr, n)) = \split(b.wr, n));

This specifies that a fraction of ther permission ora andb is needed for the thread to start,
and that after joining the finished thread, exactly the same permission is given back. It is crucial
here that exactly the same fraction of the permission is given back: this allows to conclude that
after joining all threads, the main thread holds the complgt@ermission again, and thus that the
matrices can be re-initialised.

SNotice that we do not requinreumber to be volatile, in contrast with Lea’s implementation. With our annotation
system, and knowledge of the new Java Memory Model [8], we can show that there will be no data races, thus there is no
need for this variable to be volatile.

Swhere the grammar of permission declarations is extended to array declarations in the obvious way.

10

class Subject{
/l@ permission p = {this};
ha r=v:Ww,
/l@ lock {this} = v : W, obs : W (\split(g,1));

Observer obs; int v;

*@ requires (\exists int ij. \has(this,i,j) & i >= 0 & j > 0) *

@ obs.s == this;

@ ensures (\exists int ij. \has(this,ij) & i >= 0 & j > 0) *
@ obs.s == this;

@/

public void notifyObs(){ obs.update(); }

*@ requires (\exists int i,j. \has(this,i,j) & i >= 0 & j > 0) *
@ obs.s == this;
@ ensures (\exists int ij. \has(this,i,j) & i >= 0 & j > 0) *
@ obs.s == this;
@*/
public void setState(int v){
this.v = v;
notifyObs();}

/l@ requires \part(r);
//@ ensures \part(r);
int getState(){ return v; }}

Figure 10: Fragment of clagubject

3.6. Concurrent Subject Observer. The last pattern we discuss is the subject observer pattern; a
typical example of object-oriented programming{3]. In this pattern, a single subject is observed
by several observers: when the subject’s state changes, the observers are notified, so that they can
update their internal representation of the subject’s state. Figures 10 and 11 show a fragment of an
implementation of this pattern. For clarity of presentation, we only have one observer per subject.
The Subject class has a permissignthat allows to lock the considered subject. Once a
subject is locked, write access to its stat@ énd permissiom on the observer are granted. Class
Subject imposes client-side locking: to call a method on a subject, one must lock it beforehand.
For examplenotifyObs s precondition indicates that to call this method, a thread has to hold the

lock on the subjectthas(this,i,j) with j greater tham is required.
The method described in paragraph 3.2 to handle reentrance works also well in this pattern.
For example, when theynchronized(this) statement is executed in methagdate of

classObserver , our system makes sure that the observer was not already locked (in this case, the
permissions inside the observer is transferred to the executing thread), or that the thread considered
already has the permissions inside the lock (i.e., write access to thecfiela). Thus, after
acquiring the observer a thread can execatehe = v;

Note that a thread can lock the subject and the observer if it has permpssiothe subject,
while another thread can lock the observer if it has a part of permigsidrthis observer. Two dif-
ferent threads can simultaneously hold permisgi@md a part of permission, because the subject
only has half of the permissianon its observer (see annotatimeck {this } = ..., obs : W

11

class Observer{
/@ permission q = {this}, sub : R ();
/@ lock {this} = cache : W;

final Subject sub; int cache;

/@ ensures q * s == sub;
public Observer(Subject sub){ this.sub = sub; }

/@ requires \part(q) * \part(sub.r);
/l@ ensures \part(q) * \part(sub.r);
void update(){
int v = sub.getState();
synchronized(this){ cache = v; }}

/l@ requires \part(q);
/@ ensures \part(q);
public synchronized int getCache(){ return cache; }}

Figure 11: Fragment of clag3bserver

(\split(g,1)); in classSubject). Thus, one can write a program where one thread updates
the subject and the observer, while another thread simultaneously inspects the observer (to update a
GUI for example).

Finally, to notify the observer, one has to know that its underlying subject iddd is the sub-
ject wherenotifyObserver is called: this is specified (using standard JMLiotifyObs s
precondition byobs.s == this . Because of this equality, the permissi@plit(v,0)
(which is contained inhas(this,i,)) atnotifyObs ’s entry) can be used to show that the
precondition ofupdate is satisfied.

4. CONCLUSION & FUTURE WORK

We have shown how our annotation system for permissions can be used to specify several
common multithreaded programming patterns. The specifications are intuitive to understand, and at
the same time highly expressive. They allow to prove absence of race conditions, and moreover the
annotations can be used as auxiliary information for the further verification of the program: if we
can deduce from the permission annotations that other threads cannot interfere at certain program
points, then we do not have to consider the possible interleavings at these points (see [5] for details).

Currently, we have implemented a run-time checker for the annotation system, and we are
working on the development of a static verification method. For this, we will extend an existing
translation of JML-annotated programs into BoogiePL [1] with information about the permissions
of the current threads. We will then use a verification condition generator for BoogiePL to generate
appropriate proof obligations.

Acknowledgements.lt is our pleasure to dedicate this paper to Henk Barendregt. Henk has been
one of the PhD supervisors of the first author, Marieke Huisman. During this period, Henk has
taught me about the importance of looking at known facts with a different and fresh mindset, in

12

order to establish new connections. This is one of the lessons that | now try to teach to my own PhD
students. Happy birthday!

REFERENCES

[1] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie: A modular reusable verifier for
object-oriented programs. Formal Methods for Components and Obje@805.

[2] J. Boyland. Checking interference with fractional permissions. In R. Cousot, e8itatic Analysis Symposiym
volume 2694 ot ecture Notes in Computer Scienpages 55-72. Springer-Verlag, 2003.

[3] E. Gamma, R. Helm, R. Johnson, and J. VlissidEssign Patterns: Elements of Reusable Object-Oriented Software
Addison-Wesley, 1994.

[4] C. Haack, E. Poll, J. Séfer, and A. Schubert. Immutable objects for a Java-like language. In R. De Nicola, editor,
European Symposium on Programmihgcture Notes in Computer Science, pages 347-362. Springer-Verlag, 2007.

[5] M. Huisman and C. Hurlin. The stability problem for verification of concurrent object-oriented prograAaMP
2007: Proceedings of the 1st International Workshop on Verification and Analysis of Multi-threaded Java-like Pro-
grams 2007. Technical Report ICIS-R07021, Radboud University Nijmegen.

[6] D. Lea. Concurrent Programming in Java: Design Principles and Patterns (Second Edithafgison-Wesley,
Boston, MA, USA, 1999.

[7] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, and J. KinIML Reference Manualuly 2005.
In Progress. Department of Computer Science, lowa State University. Availablénftpriiwww.jmispecs.
org .

[8] J. Manson, W. Pugh, and S. V. Adve. The Java memory modd®rimciples of Programming Languagepages
378-391, 2005.

[9] J. C. Reynolds. Separation logic: A logic for shared mutable data structuresgio in Computer Sciengc€open-
hagen, Denmark, July 2002. IEEE Press.

13

