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A CONVERGENT ADAPTIVE FINITE ELEMENT METHOD WITH
OPTIMAL COMPLEXITY

ROLAND BECKER*, SHIPENG MAOTf, AND ZHONG-CI SHI*

Abstract. In this paper, we introduce and analyze a simple adaptive finite element method for
second order elliptic partial differential equations. The marking strategy depends on whether the data
oscillation is sufficiently small compared to the error estimator in the current mesh. If the oscillation
is small compared to the error estimator, we mark as many edges such that their contributions to
the local estimator is at least a fixed proportion of the global error estimator (bulk criterion for the
estimator). Otherwise we reduce the oscillation by marking sufficiently many elements, such that the
oscillations of the marked cells is at least a fixed proportion of the global oscillation (bulk criterion
for the oscillation). This marking strategy guarantees a strict reduction of the error augmented by
the oscillation term. Both, convergence rates and optimal complexity of the adaptive finite element
method are established, with an explicit expression of the constants in the estimates.

Key words. Adaptive finite element method, a posteriori error estimator, convergence rate,
optimal computational complexity.

AMS subject classifications. 65N12, 65N15, 65N30, 656N50

1. Introduction. The analysis of adaptive finite element methods has made
important progress in recent years. Up to now, a large amount of work has been
performed concerning AFEMSs based on a posteriori error estimation for finite element
methods, which typically consists of successive loops of the sequence

SOLVE — ESTIMATE — MARK — REFINE. (1.1)

We refer to the review articles of Eriksson et al. [17] and the books of Ainsworth [1],
Babuska [2], Verfiirth [24] and the references therein.

On the other hand, while these adaptive finite element methods have been shown
to be very successful computationally, the theory describing the advantages of such
methods over their nonadaptive counterparts is still not complete. Apart from the
well-known results in the one dimensional case by Babuska and Vogelius [3], the
convergence of AFEMs in the multidimensional case was an open issue before the work
by Dorfler [16], which was later extended by Morin, Nochetto and Siebert [20, 21], and
more recently by Carstensen and Hoppe for mixed FEM [7] and for nonconforming
FEM (8], by Mekchay and Nochetto for general second order linear elliptic PDE [18].
Especially, the importance and necessity of controlling data oscillations and inner
nodes are pointed out in [20] and [21].

Another important break through in the theoretical understanding of AFEMs is
the estimation of the dimension of the adaptively constructed discrete spaces, first
achieved by Binev, Dahmen and DeVore [5] who showed the optimal computational
complexity. The key to prove the optimality was the introduction of an additional
so-called coarsening step. A further significant improvement has been achieved by
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Stevenson [22] who shows that the additional coarsening step is not necessary in order
to prove optimal complexity. The importance of the above mentioned results lays in
the fact that they show optimal complexity of adaptive algorithms in the following
sense: if the exact solution can be approximated by a given adaptive method at a
certain rate (quotient of accuracy to number of unknowns), the iteratively constructed
sequence of meshes will realize this rate up to a constant factor.

In this paper, we present a simple adaptive finite element method for second order
elliptic partial differential equations, which is a modification of the MNS algorithm of
[20] and [21] by Morin, Nochetto and Siebert. Our modification is motivated by the
idea that if the data oscillation term is small compared to the error estimator, it is
sufficient to mark elements such that the sum of the local error indicators amounts to
a fixed proportion of the global error estimator, otherwise we only need to perform a
similar marking strategy for the oscillation term. The adaptive algorithm considered
here simplifies the MNS algorithm, but its convergence proof is not obvious. Since
in one refinement step we mark elements either according to the error estimator or
according to the oscillation term, one cannot expect the oscillation term to be reduced
in every iteration as is the case in the MNS algorithm. Therefore, in order to prove
convergence of our algorithm, we need to couple the error and oscillation term by an
argument similar to [20]. As a novel theoretical result, we prove a contraction property
of the error augmented by the data oscillation term. In addition, both convergence
rates and optimal complexity of the adaptive finite element method are established
by a detailed analysis in the spirit of [20] and [22].

An outline of the remaining parts of the paper is as follows. In Section 2, we
introduce the set-up and discretization of the model problem, an a posteriori error
estimate for the finite element method and the adaptive algorithm AFEM along with
some notations and preliminaries for subsequent use. In Section 3 we present some
useful lemmata concerning the a posteriori error estimator and prove the convergence
rates and optimal complexity of the adaptive finite element method by a detailed
analysis. Finally, some comments and extensions of the results conclude the paper in
Section 4.

2. A simple adaptive finite element method. We start this section with
some useful notation. Throughout this paper, we adopt the standard conventions for
Sobolev spaces (see, e.g. [14]), the norms and seminorms of a function v defined on
an open set G:

2 2
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Let Q@ C R™ be a bounded polygonal (polyhedral) domain. We consider the
following second order elliptic equations : Find u € Hg(£2) such that

2.1
u =0, on 092, 2.1)

{ —Au = f, in Q
where f € L*(Q).
We denote by (-,-)g the L?(G) inner product, and if G = Q, we drop the index
Q) for simplicity. For any f € L?(2), the weak formulation of the problem (2.1) reads
2



as follows:

Find u € Hy (), such  that
(2.2)

a(u,v) = (f,v),Vve H&(Q)

with a(u,v) = [, Vu- Vuvdz.

Let 7y be a conforming regular triangulation of Q and let Vi denote the finite
element space of piecewise linear functions over 7. We denote by V# the space of
continuous piecewise linear functions over 7z, and let Vi be the subspace of functions
of VH that vanish at the boundary 0. Let uy denote the solution of the discrete
problem

(2.3)

Find ugy € Vi, such that
G(UH,’UH) = (fa’UH)a v vy € VOH'

We shall not discuss the step SOLVE which deserves a separate investigation.
We assume that the solutions of the finite-dimensional problems can be generated to
any accuracy to accomplish this in optimal space and time complexity. Multigrid-like
methods are well-known to achieve this goal, cf. [4, 26].

We denote by £ the set of edges (or faces in 3D) of the triangulation 7y that
do not belong to the boundary 99 of the domain Q. For E € £y, Hg denotes the
diameter of E and the domain wg is the union of the two elements in 7y sharing F.
For any K € Ty, Hi stands for its diameter and the domain wg is the union of the
adjacent elements in 7.

Subtracting (2.2) from (2.3) and integrating by parts yields

alu — ug,v) = Z (f,v—Tgyv)+ Z /EJE(U—IHv)ds,VUEH&(Q). (2.4)

KeTy Ecény

Here and below, Jg = [[Vug]]g - v represents the jump of flux across side E which
is independent of the orientation of the unit normal v, and Zy denotes the Clément
interpolation operator [13]. It plays an important role in the analysis of the reliability,
which is well established in the literature, see for example [9].

Let ng be the local error indicator associated with edge F € £y which is defined

as
1/2
'l
ne(um) = ( > IHK A 5 + ||H15JE||3,E> - (2.5)
Kewg

For any given subset Fg C €y and Sy C 7y, we define

1/2
(s, Frr) = ( 3 n%(um) (2.6)

EcFu
and

1/2
osc(f,Sm) = ( > ”HK(f_fH)”aK> ; (2.7)
KeSu
3



where fg denotes a piecewise constant approximation of f on 7y. If f € L%(), its
value on K is the mean value of f over K.
The following upper and lower bounds are well known, see e.g., [1] and [24].

Lemma 2.1 (upper bound) There exists a constant Cy > 0 depending only on
the minimum angle of Ty such that

lu—unli o < Cin*(un, Tn). (2.8)

Lemma 2.2 (lower bound) There exist two constants Co,C3 > 0 depending only
on the minimum angle of Ty such that, for any E € &y,

n%(uH) < Cy Z lu — ’U'HE,K + C3OSC2(f, wE). (2.9)
Kewg

Summing up all £ € £y in (2.9) we have
n*(um, Ex) < (n+ 1)Calu — ug|i g + (n+1)Csosc®(f, Tn ). (2.10)

We note that we can assume without loss of generality Co > Cj.

In practice, both the local error estimator n(ug, Fp) and the oscillation term
osc(f, Sy ) should be used in the MARK step of the algorithm. The precise way they
are used in the MARK step influences the convergence of the AFEM, see [20] and
[21]. What is more, it also influences the optimality of the AFEM. Therefore, the
MARK step plays a key role in AFEMs and should be designed properly.

As for the REFINE step, we need to carefully choose the rule for dividing the
marked triangles such that the family of meshes obtained by this refinement rule is
conforming and shape regular. In addition, we need to control the number of elements
added in order to ensure the overall optimality of the refinement procedure. In this
article, we shall use the newest vertex bisection technique. We refer to [5, 19, 22] for
details of this algorithm and restrict ourselves to list the following properties used
later on.

Lemma 2.3. Let Ty, ,k = 0,...n be a sequence of locally refined triangulations
created by the newest vertex algorithm, starting from the initial mesh Tp,,. Let My, k =
0,...n — 1 be the collection of all marked triangles in step k. Let N'(T) denote the
number of elements of a triangulation T. Then Ty, is uniformly shape regular and
the shape regularity of Ty, only depends on that of Tn, and furthermore,

n—1

N(Th,) < N (Tng) +Co Y N (M), (2.11)

k=0

Remark 2.1. The result (2.11) was first proved by Binev, Dahmen and DeVore
[5] in the 2D triangular case and generalized by Stenvenson [23] to the case of general
n-simplices.

Another important rule which appears in the REFINE step is the interior node
property. Let 7p, be a refinement of the triangulation 7. We say that the refinement
satisfies the interior node property if each element of the marked set My, to be refined,
as well as each of its edges, contains a node of 7, in its interior. In fact, the interior
node property is also a necessary condition for the error reduction of adaptive linear
finite element methods, see [20] for an example which shows that if the refinement
does not produce interior nodes, the error may not change.
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Algorithm 1 AFEM

(0) Select parameters 0 < «,0,v < 1 and an initial mesh 7y, and set k = 0.

(1) Solve the discrete system (2.3) on 7y, for the finite element solution w.

(2) Compute the a posteriori error estimator 7(uy, 7% ) and oscillation term osc(f, 7).
If n(uk, 7) < €, then stop.

(3) i) Ifosc?(f,Tx) < v n?(uk, Tx) mark the minimal edge set F, of & such that

nQ(uk,fk) > anZ(uk,Ek). (2.12)

Define the marked elements My, = Upc s, wE-
ii) Otherwise choose the marked elements set My, of 7y to be set of elements
with the minimal cardinality such that

osc?(f, My) > 0 osc®(f, Tr). (2.13)

(4) Let Tg41 be the refinement of 7y (in the case i), the refinement should satisfy
the interior node property).
(5) Set k:=k+1 and go to step (1).

We are now in the position to present our adaptive algorithm AFEM.

Similar adaptive mesh adaptation algorithms have been presented in the literature
[20, 22]. The new ingredient in Algorithm 1 is the introduction of an adaptive marking
strategy, which compares the oscillation term with the estimator in each step of the
iteration. Depending on this comparison, only the dominant term is used for local
refinement. The makes an importance difference with the algorithms known before.
Since for many practical applications, the oscillation term can be expected to be
significantly smaller, the algorithm will practically be driven by the estimator. In
the recent technical reports [10, 11, 12], published after submission of the present
article, the authors also try to overcome the drawback of the original MNS algorithm.
However, they do not consider an adaptive marking strategy, which allows us here to
prove quasi-optimal convergence behavior.

Finally, we comment on the choice of the constants in Algorithm 1. According to
our analysis, the constant v has to be chosen small enough. A theoretical value ensur-
ing geometrical convergence is given in Theorem 3.5, see (3.7) below. An additional
condition for the choice of « is necessary in order to guarantee optimal complexity
in Theorem 3.7, see (3.50) below. It is clear that such a condition has to be im-
posed, since the choice of & = 1 corresponds to global refinement in each step of the
algorithm.

3. Convergence and optimality of AFEM. In this section we shall prove the
convergence and optimality of the algorithm developed in Section 2. The techniques
are adapted from [5, 20, 18, 22]. For completeness we include some results established
in the mentioned references without proofs.

The convergence analysis starts from the orthogonality relation between u — ug
and uj — ugy, the so-called Pythagoras equality, which follows immediately from the
Galerkin orthogonality.

Lemma 3.1. (Galerkin orthogonality) Let 7, be a refinement of the triangulation
Ty such that VH C V* | suppose up,uy, are then the discrete finite element solutions
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over Ty and Ty, respectively. Then the following relation holds:

u—unli o =lu—unlio—lun —unli o (3.1)

The following local bound for the estimator in terms of the local difference be-
tween two Galerkin solutions up to a local oscillation term plays a key role in the
convergence analysis of AFEM.

Lemma 3.2. Let 73, be a refinement of the triangulation Ty such that VE c VP,
if for any E € Eg, both E and K € wg satisfy the interior node property, then we
have

ne(ug) < Cy Z lup — uH\iK + Cs0s¢?(f,wp). (3.2)
Kewg

As mentioned in the previous section, a successful convergent AFEM should in-
clude the so-called oscillation reduction. This idea has been developed by Morin,
Nochetto and Siebert [20, 21], and is stated as follows.

Lemma 3.3. (oscillation reduction) Let 0 < o < 1 be the reduction factor
of element size associated with one refinement step. Given 0 < 6 < 1, let a :=
1—(1—02)0. Let My be a subset of Ty such that

0s¢®(f, M) > 0osc®(f, Trr). (3.3)

If Ty, is a triangulation obtained from Ty by refining at least every element in My,
then the following data oscillation reduction occurs:

osc®(f,T,) < @osc®(f, Ta). (3.4)

The following lemma deals with a localized version of the upper bound for the
difference between two Galerkin solutions with respect to two different partitions,
which was proved by Stevenson [22].

Lemma 3.4. Let C; be the constant in Lemma 2.1. Then there exists a subset
Fy C €, such that

lun —unliq < Cin’(um, Fr) (3.5)
and
N (Fg) < Ce(N(Tn) — N(Tx)). (3.6)

Based on Lemmata 2.1, 2.2 and Lemmata 3.1, 3.2, 3.3, we are now in a position
to prove the convergence of Algorithm 1 developed in the last section. Since they are
of importance in the choice of the parameters employed in Algorithm 1 and since the
Lemmata are given without proofs, we add some comments on the involved constants.
Except Cp, they all depend on the minimal angle condition. To be more precise, con-
stants C4 and C5 depend on Verfiirth’s inverse estimate and could be determined by
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an eigenvalue problem. The constants C; and Cg depend on the Clément operator, see
[25, 9]. The constant Cjy depends on the details of the refinement algorithm, see [5, 23].

Theorem 3.5. (Convergence of AFEM). Let {V*}>0 be a sequence of nested
finite element spaces generated by algorithm AFEM and let {ug}r>0 be the corre-
sponding sequence of finite element solutions. Assume that

(n + 1)02[(7’1, + 1)0105 + 0&03] '

0<y<y* = (3.7)

Then there exist constants > 0 and 0 < p < 1, depending only on the shape regu-
larity of meshes, the data, the dimension n, the parameters «, 8,y used by AFEM,
such that for any two consecutive iterates k and k + 1 we have

|u — Uk+1|§,sz + 505C2(f, Tit1) < P<|U - Uk\isz + 50502(f7 Tk)) (3.8)

Therefore, algorithm AFEM converges with a linear rate p, namely

Ju—ukli o + fosc?(f, T) < C*pt, (3.9)
where C* 1= |u — uoﬁﬂ + Bosc?(f, o). The reduction rate is:
(1—pa
=1-—— 3.10
p CESeYn (3.10)

with p defined through (3.20),(3.25), and (3.29) below. The value of ( is defined by
0 = max(f1, f2) with 51 and B2 deined below in (3.19) and (3.24), respectively.

Proof. We treat the two possible cases of the algorithm separately. First consider
the case osc®(f,7) < vn?(ug,&). By Lemma 2.1, Lemma 3.2 and the marking
strategy (2.12), we have

C
lu—ukl o < C1m*(ug, &) < Eln2(wcfk)

(3.11)
n+1)C
< % <C4‘Uk+1 — ’ukﬁ_n + C5OSC2(fa 776)>7
which implies that
) o 9 Cs o
~ > o _ Y5 T.). 3.12
‘Uk+1 uk;|1}Q = (’I’L I 1)0104 ‘u ukll,Q O4OSC (f? kl) ( )

Let 8 > 0 be a constant to be chosen in the subsequent analysis. Thanks to the
Galerkin orthogonality (3.1), one can prove

lu — Ukﬂﬁ,n + Bosc®(f, Tit1)

< |U - ukﬁ,ﬂ - |U'k: - uk+1|iﬂ + ﬁOSC2(f, %) (313)

I 2 Cs 2
<(1- Grriea )l kot (54 &) o070,

7



Introducing another constant 0 < b < 1 and using the lower bound (2.10), we get

lu — Uk+1|% QT 50802(f, Tit1)

<(1- e ) - wka

+7b( C5>n (un, k) + 1—b)(ﬁ+gi>osc2(fﬂ'k) (3.14)
<(1- gapae + et 0oy (54 2 - wia

+ ((1 —b) (64— 04) + (n+ 1)bCsy (64— g)) osc?(f, T,).

In view of (3.14), in order to prove (3.8), we select the two constants 8 and b such
that

(1—10) (ﬁ+gz) + (n 4+ 1)bCsy (ﬁ+gz>

< (1 - m + (n+ 1)bCyy (5 + gi)) 3 .

and

(1 - m + (n+ 1)bCary <5+ gz)) <1 (3.16)

For the sake of our analysis, we can select another parameter u € (0,1), and b is
chosen such that

bh— pox Y (3.17)
(n+1)2C1CoCy (6 + &)
which implies that the error reduction rate is
(1 - pa
=1—- . 3.18
p (n + 1)0104 ( )
Substituting (3.17) into (3.15) and after arrangement, we obtain
a Cs J1%e} 1
- = —Cs),
(n+ 1)0104( Wb = Cy  (n+1)C1Cy ((n +1)Cay 3)
which implies
—(Tl + 1)0105 + Ho (m — 03)
< = 3.19
if we choose p such that
1)C.C
> pl = (n+ 1)CCs (3.20)

o (Grtiom — Cs)
8



Note that pi < 1 under the assumption that 0 < v < ~*.

Now, let us consider the case osc?(f, 7x) > vn?(ux, k), then the marking strategy
(2.13) will be adopted. Let 0 < a < 1 be a constant to be chosen suitably. By Lemma
3.3 and Lemma 2.1, we have

lu — Uk+1|isz + Bosc®(f, Trs1)

= (1= a)lu —up1[i g + alu — w1 [] o + Bosc® (f, Trs1)

< (1 —a)|lu—ups1]} o + aCrn® (ug, &) + Baosc®(f, Tr) (3.21)
C ~

<(1-a)|lu-— ukﬁg + ((171 + ﬁa) oscz(f,ﬂ).

We will choose the constant a such that the error contraction in the second case is
also p, that is to say,

(1—pa
0= ———. 3.22
(n + 1)0104 ( )
Then in order to prove (3.8), it is sufficient that if the constant 3 satisfy
C ~
% +Ba<(1-a)B, (3.23)
which implies
L1 - pa
> = — . 3.24
Bz fam) (1-a)n+1)CiCs — (1 — p)a (3.24)
under that assumption that
1—-a 1)C.C
u>u§::1—( a)(n+1)Cy L. (3.25)

o

Now let us discuss the selection of the value of u. If we select a fixed value for p and
set 8 = max{0, B2}, (3.8) will be obtained. In view of (3.19) and (3.24), the proper
value of 3 can be found if and only if

Ba(p) < Bi(p), (3.26)
which is equivalent to
F() == Ap® 4+ Aap+ A3 > 0, (3.27)

where

1 Cla
Mi=a? [ ———— 0y ) - 2=,
e ((n+1)027 ) ~

Ay = a <W - 03> ((1 —&)(n+1)C1Cy — a)
201«

—(n+ 1)01050é+ 5 s
Cra

As = (n+1)C1Cs (a = (1= @)(n +1)C1C; ) —

9



It can be checked that

F(1) = (1= @)(n + 1)C1Ca (a (1)027 - 03) —(n+ 1)clc5> >0, (3.28)

(n+1

By the continuity of the function f we know that there exists a constant 0 < p3 <1
such that f(u%) > 0. Then the value of 1 can be selected such that

max{puy, u5, p3} < p < 1. (3.29)

Thus we have proved (3.8). Since (3.9) is a direct consequence of (3.8), the proof of
the theorem is completed. O

For the sake of the proof of the optimal complexity of algorithm AFEM, we
introduce some notation from nonlinear approximation theory, developed in [5, 6, 15,
22]. Let Hy be the set of all triangulations 7 which are obtained by refinement of a
regular initial triangulation 7o and the cardinality of which satisfy N (7) < N. For a
given triangulation, the associated finite element approximation of the problem (2.3)
is denoted by u7. Next we define the approximation class

W= {(u, f) € (HHQ), L) : s )llwe < +o0}, (3.30)
with
I D)l = sup N° int (fu =l +os*(£7).

We say that an adaptive finite element method realizes optimal convergence rates if
whenever (u, f) € W?*, it produces the approximation wuy with respect to the triangu-
lation 7y such that

lu — ug)1,0 < CN(T)~°. (3.31)
First, we estimate the number of elements added in one single refinement step.

Lemma 3.6. Let {V*} x>0 be a sequence of nested finite element spaces produced
by algorithm AFEM and let {uy }>0 be the corresponding sequence of finite element
solutions. Assume that 0 < v < ~*,

1
C.C Cyy < —— 3.32
102+ C3y nil (3.32)
and (u, f) € W?*. Then there exists a constant C7, depending only on the shape

regularity of the initial mesh, the data, the dimension n, the parameters «, 6,y used
by AFEM, and N (7p), such that

—1/s
N (M) < O (Ju— il o+ ose(£,T3)) (3.33)
with
CF = max{(n +1)CeA; 2, A;”S}H(u, NI, (3.34)

where A; and ) are defined by (3.41) and (3.48), respectively.
10



Proof. We split the proof into two cases as in the proof of Theorem 3.5. Let
us consider the first case, i.e., osc?(f,7) < vn?(ux,&). Suppose A\; € (0,1) is a
fixed constant to be chosen appropriately in the subsequent analysis. Let 7,” be a
triangulation refined from 73 with minimal number of elements such that

fu—uze o < A (lu = wll g+ os3(f, 7). (3.35)

Then by the definition of the norm || - ||y,

e —1/s .
NI < (u— g +ost (A7)l (336)

Let us choose 7/ as the refinement of 7 with minimal number of elements such that
Vi C V{ and thus

fu—ury o < lu—uzBo < M (lu—wlio+os(f,7).  (337)
Note that by the definition of 7,/ there holds
N(T) = N(Ti) < N(T}7)
<AV (ju— il g + osc2<f7m)*”s||<u, Dl .

In the following we shall bound N (Zj41) — N(7i) by N(T}) — N(7}) to obtain
the desired results. In view of Lemma 3.4, there exists a subset F}! C & such that

up — ugs|7 o < C1” (ug, Fy) (3.39)
and
N(FF) < CsWN(T{) = N(T)). (3.40)
Then, if the value of Ay is chosen as

o a1 — Oy — CiCsa
1=

A5 —Csy+Cay

(3.41)

we have by the Galerkin orthogonality (3.1), (3.37) and (2.10)

|Uk—UT’|%Q |U—Uk‘%9—|U—UT’%Q
2 *) > k'L — s k'L,
n (uk7]:k) - Cl Cl
=) url} o — Aosc(f, Tr.)
bl Cl
1 1—A 1-X\)C
= a |:(7(1+1)16),2772(U/c,5k) - <)\1 + (C'Ql)3> 0502(f77k)]
2
n (Uk,gk;) 1 1
> _ J— — —_— .
- 010y {nnt 1 Cs1 =M n+1 TG =)

The denominator in (3.41) is positive due to our former assumption Cy > Cs.
Assumption (3.32) leads to Ay < 1.

11



With the choice of A1 in (3.41) we get
0 (ur, Fi) > oo (ug, Ex).

Since in the marking strategy we choose the minimal edge set Fp C & such that
(2.12) holds, and we conclude that

NMi) < (n+ DN (Fr) < (n+ DN (F)

(n+ 1)06(N(Té) *N(Tk))

1/3
(1 = wnl2 g + oscz(ﬁ m)

<
<

Next we turn to the case osc?(f,7x) > yn?(uk,E). Similar to the first case,
suppose that Ay € (0, 1) is a fixed constant and 7, be a triangulation refined from 7
with minimal number of elements such that

0se?(f,Ty') < No (Ju — unf} o + 05¢*(f, Ta) ) (3.43)
and

l/s

NI <0 (- wfg +ose? (1)) s (344)

Let 7/ be the refinement of 7, with minimal number of elements such that V;* C V/
and then

0se?(f, T}) < o5 (£, T5) < No(Ju— uilf o + 053 (£,T0) ) (3.45)
and
1 S
NI = NT) <35 (o -l +ose?(1T0) DI (340

Let M}, :={K|K € T;;; K € 7/}. Then by Lemma 2.1, we have

os(f, 5) > - (o5 (£, ) — hofu — s )

A2
> - (os? (T = Mo, 1))
> (-9 o) (3.47
_ (Al - C;) (os62(f, Tac) — 05¢3(f, Tic \ M)

then if the value of A5 is chosen as

1-6
1+cl(1 DE
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Ao = (3.48)



we get
osc?(f, T \ M) > Bosc®(f, Ty).

Since in the marking strategy we choose the minimal edge set My C 7} such that
(2.13) holds, and we conclude that

NMi) < N(Tk \ M)
< (N(Zc/) - N(?})) (3_49)

_1/s s —1/s
<\, Y H(wf)“% <|u — upl1.0a® +osc2(f,’17€)> ,

which, together with (3.42) implies the desired result. O
Now, we can prove the optimality of the algorithm AFEM.

Theorem 3.7. (Optimal complexity of AFEM). Let {V¥};>¢ be a sequence
of nested finite element spaces produced by algorithm AFEM and let {uy}x>0 be
the corresponding sequence of finite element solutions. Assume that (u, f) € W*, v
satisfies 0 < v < v* (defined in (3.7)), and further that o satisfies

1

Then there exists a constant C3, such that

ju— g3 g + 05¢*(f, Ty) < G5 (N(T) = N(To) ) (3.51)
. CoCr (1—p§> ’
with Cék = maX{l,ﬁ} p_l/ig—l .

In addition there exists another constant C'5 such that for any e > 0 the following
holds. Let N be the first index such that n(uy,En) < €. Then we have

N(Tn) = N(To) < Cie?/* (3.52)

—1/s

. . —1/s __N/s min 1,M
with C3 := CyCf min {1, %} pl_lp/s_l ( (n{+1)232 })

Proof. In view of (3.33) in Lemma 3.6, for any 0 < i < k, there holds

—1/s —1/s
ip (e ukarsscum) L e

N(M;) < Cf min {1, 3

together with
k—i

—1/s —1/s
(lu—wlfo+Bos?(£, 7)) < 0" (Ju=wiliq + Bosc®(f, Th) (3.54)
13




obtained from (3.8) in Theorem 3.6, we have

k—1
N(T) = N(Ty) < Co Y N(M;)

i=0

—1/s k-1 —1/s
<ocimin{L g} Y (ju-ulo+ s, )

i=0 (3.55)
T A A —1/s
< CyCf min{l,ﬂ} p (\u—ukﬁg—i—ﬁoch(f,'Z}C))
i=0
* . 1 _1/S 1 — p% 2 2 —l/s

< CoCy mm{ ’ﬁ} W(W*UMLQ + Bosc (fka)) ;

which implies (3.51).
The proof of (3.52) is obvious. In fact, the lower bound (2.10) gives
—1/s
min {1, %f}
(n + ].)CQ

—1/s 2
(\u — ukﬁﬂ + Bosc?(f, ’Z}C)) < 0~ (ug, &), (3.56)

then the desired result can be obtained by (3.56) and (3.55). O

4. Conclusions. We have presented a new adaptive finite element method,
which is a variant of the algorithm of Morin/Nochetto/Siebert. The difference lies
in the treatment of the data oscillation term, which is only used for refinement if it
is big compared to the error estimator. We have proved geometrical convergence of
the error augmented by the data oscillation term and optimal complexity in the sense
of nonlinear approximation theory. The dependence of our results on all involved
constants is worked out.
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