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ABSTRACT

When an ordinary differential/recurrence system presents
a m-parameters solvable group of symmetries, Lie group
theory states that its number of variables could be reduced
by m. This reduction process is classically done by rewrit-
ing original problem in an invariant coordinates set for these
symmetries. We show how to use computational strategies
using non explicit (infinitesimal) data representation in the
reduction process and thus, how to avoid—for differential
systems—the explicit expansive computation of these invari-
ants. Thus, these strategies lead to efficient algorithms that
were used in the maple implementation [13].

Categories and Subject Descriptors

J.2 [Computer Applications]: Physical Sciences and En-
gineering; G.4 [Mathematics of Computing]: Mathemat-
ical Software—Algorithm design and analysis

General Terms

Reduction of ordinary differential/recurrence systems

Keywords

Moving frame method, Computer algebra.

1. INTRODUCTION
This note presents strategies used in the implementation [13]
for the reduction process of some parametric ordinary sys-
tems that are invariant under a Lie group of transformation.

Examples 1. In order to give an example of such a re-
duction, let us consider the Verhulst’s logistic growth model
with linear predation (see § 1.1 in [10]):

Σ :
dt

dt
= 1,

dx

dt
= (a − b x) x,

da

dt
=

db

dt
= 0. (1)
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One can represent the flow (t, x) of (1) using the flow (et, ex)
of the reduced differential equation dex/det = (1 − ex)ex and
the fibre t = et/a, x = aex/b. In this formulation of (1), the
variables x and t were nondimensionalised.

This reduction process reduces the number of relevant pa-
rameters that determine the considered dynamics. This pro-
cess is used in various applications (for example, as the di-
mension of the reduced system is smaller, the qualitative
analysis—determination of fixed points, etc.—is simplified).

The process applied above to an ordinary differential sys-
tem could be used on an ordinary recurrence system; as this
type of model is widely encountered in biological modelisa-
tion for example, we gather the treatment of these two cases
in our presentation. The literature on reduction and simi-
lar simplification procedures is far too vast to be reviewed
properly here; thus, the next section just evokes works that
are closely related to the standpoint adopted in this note.

1.1 Related Works
In [2], the authors introduce a new version of the so-called
Cartan’s method of moving frames that leads—among other
applications—to the construction of invariants for a given
finite-dimensional Lie group action on a manifold.

This work produces a growing interest in the field of com-
puter algebra; in particular, it inspired some works concern-
ing the effective computation of invariants in the polyno-
mial (resp. differential) case [4] (resp. [9]) implemented in
maple [3] (resp. [8]). In—apparently—a completely differ-
ent application field, there are many implementations deal-
ing with exact parametric system simplification (like dimen-
sional analysis for example; see [7] and references therein).

This note is devoted to present the relationship between
these two domains and to explicit some algorithmic improve-
ments occurring when the general moving frame method is
used in this—ordinary system simplification—particular ap-
plication field.

1.2 Main Contribution
Several methods of parametric system simplification (dimen-
sional analysis, lumping, etc.) amount to rewrite the consid-
ered system in an invariant coordinates set (see [12] that
follows this strategies). This rewriting (a.k.a. reduction)
process could be efficiently done using the moving frame
method. In fact, we show below how to avoid—as much
as possible—the explicit computation of invariants. Instead



we explicit computational strategies using non explicit (in-
finitesimal) data representation in the reduction process (for
differential systems). As the explicit computation of invari-
ants is computationally expansive, the strategies presented
in this notes lead to efficient algorithms that were imple-
mented in the maple package [13].

1.3 Outline
In the next section, we recall some basic definitions concern-
ing considered dynamical systems, their encoding as pseudo-
derivations and the notion of continuous system’s rectifica-
tion. Then, we give the definition of dynamical systems’
symmetries and their determining infinitesimal criteria. Fi-
nally, this section presents the classical reduction of dynam-
ical systems based on the explicit computation of their sym-
metries’ invariants. In Section 3, we present how symmetries
determination is handled by the package [13]. Then, we re-
call briefly the moving frame based invariant computation
and we show that the same strategy could be applied in order
to reduce a continuous dynamical system without explicitly
computing the invariants associated to its symmetries.

2. CLASSICAL FRAMEWORK
The next section introduces inputs of our reduction process.

2.1 Infinitesimal Generator, Recurrence Op-
erator and Associated Dynamical System

In the sequel, we consider:

• Σ an explicit ordinary differential system (ODS) hav-
ing t as its continuous independent variable, bearing
on k state variables X := (x1, . . . , xk) and depending
on ℓ parameters Θ := (θ1, . . . , θℓ):

Σ : dt
dt

= 1, dΘ
dt

= 0, dX
dt

= F (t, X, Θ). (2)

The finite set F := (f1, . . . , fk) denotes rational func-
tions in K(t, X, Θ) where K is either R or C;

• Ω an explicit first order ordinary recurrence system
(ORS) with the same notations except that the inde-
pendent variable n is discrete in that case:

Ω : Θn+1 = Θn, Xn+1 = F (n, Xn, Θn). (3)

In above formulations, a parameter is considered as a con-
stant state space variable; thus, it is worthwhile to work
in an expanded state space i.e. to denote the coordinates
set (t, X, Θ) or (n, X, Θ) by Z := (z1, . . . , zm)—and its car-
dinal by m := 1 + k + ℓ—in order to avoid any distinction
between parameters and variables.

Examples 2. Hence, the Verhulst’s logistic growth model
presented in Example 1 is an example of ODS and the fol-
lowing recurrence system is a simple example of ORS with
two state variables x, y and one parameter c:

Ω : xn+1 = cn xn, yn+1 = yn + xn, cn+1 = cn. (4)

2.1.1 Algebraic Standpoint

In order to simplify forthcoming presentation, let us intro-
duce the following algebraic definitions:

Definition 3. A pseudo-derivation δ of K[Z] is a linear
operator δ : K[Z] → K[Z] that has K in its kernel and that
satisfies the twisted Leibniz rule:

∀ (f1, f2) ∈ K[Z]2, δ(f1f2) = f1 δf2 + σ(f2) δf1, (5)

where σ is an endomorphism of K[Z]. In the sequel, we
denote by OreK[Z] the set of all such pseudo-derivations
(see [1] for a complete description and more references).

Definition 4. An infinitesimal generator δ is a deriva-
tion i.e. a pseudo-derivation where σ is the identity map Id;
in the canonical basis {∂/∂z1, . . . , ∂/∂zm} of derivations, it
is written as follows δ =

Pm

ı=1 δzı∂/∂zı where δzı is in K[Z].
In particular, the infinitesimal generator δD associated to
the ODS (2) is defined by δD := ∂/∂t +

Pk

ı=1 fı∂/∂xı.

Definition 5. Given an algebra K[Z], a recurrence op-
erator σ associated to the ORS (3) is a K[Z]-endomorphism
defined by the relations σκ = κ for all κ in K and by the
images σn = n + 1, σΘ = Θ and σX = F (n, X, Θ).

One can associate a pseudo-derivation δ to every ORS, de-
fined in terms of its recurrence operator σ as follows:

∀f ∈ K[Z] , δf := σf − f. (6)

Examples 6. Using the notations introduced in the Ex-
amples 2, we could illustrate the above definitions as follow:

• the infinitesimal generator δD associated to the sys-
tem Σ is ∂/∂t + (a − b x) x ∂/∂x;

• the recurrence operator σ associated to the system Ω is
defined by relations σn = n + 1, σx = c x, σy = y + x
and σc = c.

2.1.2 Dynamical System

In the sequel, we consider algebraic groups of transformation
represented by dynamical systems associated to an infinites-
imal generator δ (resp. a recurrence operator σ):

Definition 7. A dynamical system D is composed by a
group G with internal operator ⋆ and neutral element e, a
state space K

m and an evolution function D:

D : G × K
m → K

m,
(ν, Z) →D(ν, Z) = (Dz1(ν, Z) , . . . ,Dzm(ν, Z)).

(7)

This evolution function verifies for all ν1 and ν2 in G and
all Z in K

m the following relations:

D (e, Z) = Z and D (ν1 ⋆ ν2, Z) = D
`

ν1,D (ν2, Z)
´

. (8)

An orbit of a dynamical system D associated to an initial
point Z in K

m is the following set of points:

OrbZ := {D (ν, Z) | ν ∈ G}. (9)

Hypothesis 8. We suppose that D is at least of differen-
tiability class C1 w.r.t. initial conditions Z in K

m and thus,
the following relation holds for ǫ in the neighbourhood of 0
in R and for all H in K

m:

D (ν, Z + ǫH) = D (ν, Z) + ǫ
∂D

∂Z
(ν, Z) H + O

`

ǫ2
´

. (10)

In the next paragraphs, we explicit the relationship between
dynamical systems and their encoding (associated pseudo-
derivation).

Continuous case. For a continuous dynamical system D, G
is a Lie group i.e. an—additive—continuous group identi-
fied to a subgroup of K. In that case, a continuous dy-
namical system defined by an ODS and associated to the
derivation δD is continuous w.r.t. group parameter ν; thus,



it verifies the following property for all ν in G and ǫ in a
neighbourhood of e in G:

D (ν + ǫ, Z) = D (ν, Z) + ǫ δDD (ν, Z) + O
`

ǫ2
´

. (11)

This analytic remark leads to the following algebraic rela-
tions in the framework of formal power series:

δD · =
∂D(τ, ·)

∂τ

˛

˛

˛

τ=0
,D (τ, Z) = eτδDZ :=

X

ı∈N

τ ıδD
ıZ

ı!
. (12)

Discrete case. For a discrete dynamical system D, G is a
discrete group identified to Z and the flow is given by the
discrete exponential map defined by iteration of the endo-
morphism σ:

D (ν, Z) = σ[ν]Z with σ[ν] = σ[ν−1] ◦ σ, σ[0] = Id. (13)

Examples 9. For the examples 2:

• the continuous dynamical system associated to the sys-
tem Σ is given by:

D : (R, +) × R
4 → R

4,
`

τ, (t, x, a, b)
´

→
“

t + τ, a

b+e−a τ x a
, a, b

”

.
(14)

• the discrete dynamical system associated to the sys-
tem Ω is given by:

D : (Z, +) × R
4 → R

4,
`

η, (n, x, y, c)
´

→
“

n + η, xcη, cη
−1

c−1
x + y, c

”

.
(15)

Remark 10. In the sequel, we are going to avoid—as
much as possible—to work with the evolution function D be-
cause we do not know in most cases how to compute one
of its explicit—closed form—representation even if in the-
ory, it is always possible by exponentiating the associated
(pseudo-)derivation (see Theorem 1.57 in [11] for example).
Instead, we work with the (pseudo-)derivation and consider
it as an implicit representation of the evolution function.

2.1.3 Rectification of an Infinitesimal Generator

Definition 11. Given an infinitesimal generator δ:

• a principal element p of δ is a function of the coordi-
nates Z that satisfies the relation δp = 1;

• an invariant I of δ is a function of the coordinates Z
satisfying the relation δI = 0.

To obtain a rectified form of a derivation δ consists to find
a new coordinates set composed by a principal element p
and m − 1 independent invariants (I1, . . . , Im−1) satisfying:

δp = 1 and δIı = 0, ∀ı ∈ {1, . . . , m − 1}. (16)

Such local coordinates always exist (see [11]) and in these
rectifying coordinates, δ acts as the translation δ = ∂/∂p.

2.2 Lie Point Symmetries of Dynamical Sys-
tems and their Determining System

First, let us precise the definition of a symmetry:

Definition 12. Let us consider a dynamical system D.
A continuous dynamical system S is a Lie point symme-
try of D, if and only if, S sends an orbit of D on another
orbit of D. For the sake of simplicity, we do not consider

in this note the symmetries acting on independent variables
(see Remark 15). Hence, the Definition 12 reduces to the
commutation of the diagram presented in Figure 1 i.e. to
the relation:

D
`

ν,S (t, Z)
´

= S
`

t,D (ν, Z)
´

, (17)

G × K
m

K
m

D

G × K
m

K
m

D

S S

× ×
G G

Figure 1: Diagram involving a dynamical system D
and one of its Lie symmetries S.

The two next sections show how the Definition 12 leads to
partial differential equation (PDE) systems that determine
existing symmetries in the discrete and continuous cases.

2.2.1 Discrete Case

In this section, we consider a discrete dynamical system D
and its associated recurrence operator σ. In this situation,
the group G is equal to (Z, +). In any case S is a contin-
uous dynamical system and thus, we always consider δS its
associated infinitesimal generator.

We saw above that S is an expanded Lie point symmetry
of D, if and only if, the defining system (17) holds. Fol-
lowing Lie’s standpoint, one can deduce from the defining
system (17), a determining system of PDEs by applying a
linearisation process. As we suppose that D is of class C1

w.r.t. initial conditions Z, the following relations hold:

D
`

n,S (ǫ, Z)
´

= D
“

n, Z + ǫ δSZ + O
`

ǫ2
´

”

,

= D (n, Z) + ǫ ∂D(n,Z)
∂Z

δSZ + O
`

ǫ2
´

.
(18)

Moreover, as S is a continuous dynamical symmetry, the
relation (11) leads to the following relations:

D
`

n,S (ǫ, Z)
´

= S
`

ǫ,D(n, Z)
´

,

= D(n, Z) + ǫ δSD(n, Z) + O
`

ǫ2
´

.
(19)

Hence, for all ν in G the following equation holds:

∂D(ν, Z)

∂Z
δSZ = δSD(ν, Z). (20)

In the case of a discrete dynamical system, these relations
are equivalent to (∂σ[n]Z/∂Z)δSZ = σ[n]δSZ. Thus, the de-
termining system of a Lie point symmetry of an ORS is given
for n = 1 by the equation:

∂σZ

∂Z
δSZ = σ δSZ. (21)

A further linearisation does not bring new information in
discrete case but we show in the next section that this is not
true in the continuous case.

2.2.2 Continuous Case

When the considered dynamical system D is continuous,
the group G is supposed to be isomorphic to a subgroup
of (K, +) and we work with the infinitesimal generator δD
associated to D.



As we do not use the discrete behaviour of the dynamical
system D in the relations of commutation (20), they are also
valid for a continuous dynamical system. But, as D is also a
continuous dynamical system, we could preform another lin-
earisation and thus, show that the following relations hold:

∂D(ǫ,Z)
∂Z

δSZ =

„

∂
∂Z

“

Z + ǫ δDZ + O
`

ǫ2
´

”

«

δSZ,

= δSZ + ǫ ∂δDZ

∂Z
δSZ + O

`

ǫ2
´

,

(22)

δSD (ǫ, Z) = δS
“

Z + ǫ δDZ + O
`

ǫ2
´

”

,

= δSZ + ǫ ∂δSZ

∂Z
δDZ + O

`

ǫ2
´

.
(23)

Finally, we deduce from the relations (22) and (23) the sys-
tem that determines the Lie point symmetries of an ODS:

∂δDZ

∂Z
δSZ =

∂δSZ

∂Z
δDZ. (24)

For a slightly different presentation of the discrete case and
more references, see [5, 6]; we refer to [11] for the general
treatment of the continuous case. Usually in the literature—
and contrary to above presentation, the definitions of deter-
mining systems (21) and (24) are disconnected. The next
section is devoted to show how these determining systems
could be summarised in a single algebraic relation.

2.2.3 Algebraic Definition of Determining System

A bracket could be defined on the set of pseudo-derivations
as follows:

Definition 13. The bracket of two pseudo-derivations is
defined by the K-bilinear skew-symmetric map:

[ , ] : OreK[Z] × OreK[Z] → OreK[Z] ,

(δ1, δ2) → δ1δ2 − δ2δ1.

(25)

In continuous and discrete cases, systems (21) and (24) that
determine a continuous symmetry could be summarised by
a simple algebraic relation involving the associated pseudo-
derivations and their bracket. In fact, the computations
made in above sections show the following result:

Lemma 14. Given a dynamical system D and its associ-
ated pseudo-derivation δD, a derivation δS is associated to
a continuous dynamical system that is a symmetry of D if,
and only if, the relation [δD, δS ] = 0 holds.

Remark 15. For the sake of simplicity, we restrict our-
selves in this note to the study of symmetries that do not
affect independent variable of the considered dynamical sys-
tem (i.e. the bracket [δD, δS ] is equal to 0); the same study
could be made and the results presented in the sequel remain
valid when the independent variable is affected by the sym-
metry (i.e. when [δD, δS ] = λδD with δDλ = 0; see [12] for
an example in the continuous case).

2.3 Classical Reduction Process
Hereafter, we make the following assumptions (see [11]).

Hypothesis 16. Let S be a continuous dynamical system
considered as a local group of transformation acting on K

m.
We suppose that this action is regular i.e. for all points Z1

and Z2 in K
m, there exists exactly one ν in G such that the

relation S (ν, Z1) = Z2 holds. Remark that in this case, S
acts locally freely on K

m i.e. the orbits of S are all of the
same dimension as G itself.

This assumption is not restrictive for our applications and
allows to state the following result:

Theorem 17. (see Section 3.4 in [11]). Let G be of di-
mension s and so the associated orbits of S. Then, there
exists a (m − s)-dimensional quotient space of K

m by the
action of S, denoted K

m/G, together with a smooth projec-
tion π : K

m → K
m/G, that satisfy the following properties:

• The points Z1 and Z2 lie in the same orbit of S in K
m,

if and only if, π (Z1) is equal to π (Z2).

• If L denotes the Lie algebra (see [11]) of infinitesi-
mal generators associated to the action of S, then the
linear map dπ : TK

m|Z → T (Km/G)|π(Z) between tan-
gent spaces is surjective, with kernel {v|Z : v ∈ L}.

From a computational standpoint, when a dynamical sys-
tem D presents a symmetry, its reduction is performed by
the rectification of the symmetry S as shown below.

Example 18. Let us consider the recurrence system Ω
given in the Examples 2. The infinitesimal generator as-
sociated to one of its symmetries is:

δS = x
∂

∂x
+ y

∂

∂y
. (26)

Classically, the reduction of D requires two steps:

1. Invariants computation. As (26) is a scaling, the
computation of its associated invariants N := n, C := c
and Y := y/x is straightforward.

2. Elimination step. In order to eliminate x, we are
going to express σY and σC in terms of these invari-
ants. The recurrence operator σ is an endomorphism,
thus we obtain σC = C, σN = N + 1 and

σY =
σy

σx
=

(y/x) + 1

cx
x =

Y + 1

C
. (27)

Thus, the reduced ORS associated to Ω is:

eΩ : eσ Y = (Y + 1)/C, eσ C = C. (28)

The reduced operator eσ obtained above, acts on the state-
space denoted by K

m/G in the Theorem 17 (a.k.a. the state-
space K

m quotiented by the orbits of S). The same type of
computations hold for a continuous dynamical system.

Example 19. Let us consider the following ODS:

dt

dt
= 1,

dx

dt
= y,

dy

dt
=

y

x
. (29)

1. Invariants Computation. The corresponding infini-
tesimal generator δD and one of its symmetries δS are:

δD :=
∂

∂t
+ y

∂

∂x
+

y

x

∂

∂y
, δS := t

∂

∂t
+ x

∂

∂x
. (30)

As δS is a scaling, in that special case the computation
of its invariants T := t/x and Y := y is simple.

2. Elimination step. Classical reduction could be per-
formed in order to eliminate x exactly with the same
type of computation done above (rewrite δDY and δDT
w.r.t. Y and T ). But, one could also use the dual form
of the infinitesimal generator δD:

dx = y dt, x dy = y dt, (31)



as follows. The exterior derivation of T implies that
the relation x dT + T dx = dt holds; using (31), one
can eliminate dx in this relation to obtain:

x dT + T x dy =
x dy

y
. (32)

Using explicit definition of the invariants T and Y , the
variable x can be eliminated from (32) to obtain:

Y dT = (1 − T Y ) dY. (33)

Thus, the associated reduced ODS is associated to the
following infinitesimal generator:

fδD = (1 − T Y )
∂

∂T
+ Y

∂

∂Y
. (34)

In the next section, we show how to perform the same type
of reduction but without computing explicitly the invariants
and avoiding as much as possible nonlinear elimination steps.

3. STRATEGIES TO DEAL WITH HIGH

COMPLEXITY PROBLEMS
The previous sections introduced all the definitions neces-
sary to describe each steps of the classical and most general
reduction process. Now, let us describe how this process is
handled in our work.

Remark 20. The input considered in this note is not the
explicit action of a transformation group S as done usually
in the literature (see [9, 4] for examples) but only a set of
equations representing the considered dynamical system D.
In the implementation [13], a continuous dynamical system
is encoded by its associated infinitesimal generator and a
discrete one by the associated recurrence endomorphism.

Thus, under these assumptions and using classical strategies,

• given D, we must compute a symmetry of D first i.e.
find a solution to the PDE system (24) or (21); then,

• the rectification of S requires the resolution of another
system of PDE given in (16) in order to determine a
new coordinates set composed by a principal element
and a set of invariants; finally,

• using elimination techniques, the original problem is
rewritten w.r.t. to this new coordinates set.

In whole generality, the resolution of each of these tasks is
difficult i.e. it could not be done by algorithms with polyno-
mial time complexity in input size. The forthcoming sections
summarise the strategies used in the maple package [13] to
overcome these difficulties i.e. to reduce the computation
cost to polynomial time complexity and thus, to be able to
treat large problems occurring in practice.

3.1 Restrict the Set of Searched Symmetries
Given a dynamical system, the first task performed by our
package is to determine its symmetries. To do so, the class
of solutions computed by our implementation is initially re-
stricted to the classical geometric transformations (dilata-
tion, scaling, rotation, etc). Then, larger solutions classes
are considered (inversion, Möbius transforms, etc).

This is done by first requesting that infinitesimal genera-
tors encoding the searched symmetries have coefficients lin-
ear w.r.t. the coordinate set Z (classical geometric transfor-
mation); then quadratic coefficients are considered (Möbius
transforms), etc.

These incremental restrictions on the searched symme-
tries are motivated by the type of symmetries occurring in
practice and by the fact that the reduction process could be
done incrementally using one symmetry after the other (un-
der suitable solvability condition on the resulting Lie algebra
of symmetry (see Definition 2.63 in [11]) that are generally
fulfilled in applications).

In the next section, we show—on a particular example—
that these type of restriction on the solution class of de-
termining system (24)–(21) reduces the computation to lin-
ear algebra over a constant effective field using the classical
method of undetermined coefficients.

3.1.1 Example of Affine Infinitesimal Generators

From now, we focus our attention on symmetries associated
with affine infinitesimal generators but almost all the results
remains valid with more general classes of generators (with
quadratic coefficients, etc).

Definition 21. Let us denote by AffDerKK[Z] the follow-
ing set of derivations:

8

<

:

X

z∈Z

δSz
∂

∂z

˛

˛

˛

˛

˛

δSz := bz +
X

z′∈Z

azz′z′, (bz , azz′ ) ∈ K
m+1

9

=

;

. (35)

First, let us introduce some notations. Given a derivation δS
in AffDerKK[Z], we are going to consider Z in the sequel as
a vector and use the following matricial notations:

AδS = (azz′)(z,z′)∈Z2 and BδS = (bz)z∈Z . (36)

Now, we could explicitly encodes the determining systems
considered by our implementation as a linear problem:

Lemma 22. Given Σ (resp. Ω) an ODS (resp. ORS) de-
fined by the relations (2) (resp. (3)), the determining sys-
tem (24) (resp. (21)) of its Lie point symmetries associated
to an affine infinitesimal generator δS in AffDerKK[Z] is
given by the linear system (37) (resp. (38)):
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The next section is devoted to show how the determining
systems (37) and (38) are solved in our implementation by
classical probabilistic numerical methods.



Algorithm 1 Solving determining systems (37) and (38)

Require: A list L of equations which are linear w.r.t. the
coefficients of AδS and BδS . The list of coordinates Z.
A list of indeterminates U := (azz′ , bz)(z,z′)∈Z2 .

Ensure: A list of affine infinitesimal generators represented
by coordinates in basis {∂/∂z}, which are solutions of L.

1: # Rewrite L in the form N tU = 0
2: N := Matrix (seq (seq (coeff (ℓ, u) , ℓ ∈ L) , u ∈ U));
3: r := −1; M := ∅;
4: repeat

5: C := {seq (RandomInteger(), i = 1 . . . m)};
6: s := r;
7: M := StackMatrix (M, subs (Z = C, N));
8: r := Rank (M);
9: until r 6= s;

10: V := Basis (M); # Kernel computation of N
11: return [seq (subs(u = v,AδSZ + BδS ), v ∈ V )];

3.1.2 Numerical Computations

One can rewrite the determining system (37) and (38) in
matricial form N tU = 0 where N is a (m − 1) × (m + 1) m
matrix with coefficients in K[Z] and U is an unknown list
of (m + 1) m elements composing AδS and BδS . As this
system is under-determined, several specialisations of the
coordinates Z to random values in K, are necessary to ob-
tain at most (m + 1) m linear equations. The kernel in K

of the resulting purely numerical system gives the K-vector-
space V of affine infinitesimal generators that are solutions
of the considered determining system. This kernel is com-
puted using any classical numerical method. This strategy
is summarised in Algorithm 1 using a maple like syntax.

The considerations presented in this section allow to com-
pute the infinitesimal generators encoding the symmetries
of the dynamical systems considered in a large set of ap-
plications. The rest of this note is devoted to expose the
strategies used in our implementation to handle the reduc-
tion process. But before doing so, the next section presents
some necessary definitions.

3.2 Intermezzo: Moving Frame Based Invari-
ant Computation

3.2.1 Cross-section

Definition 23. Given an s-dimensional group of trans-
formation S acting regularly on K

m, a cross-section H1 of
dimension m − s is a variety of K

m that locally intersects
transversely (i.e. δSH 6= 0) the orbits of S at least in one
point (see [2, 4] and the references therein).

Remark 24. In our implementation, the group of trans-
formation S is of dimension 1 and is associated to the in-
finitesimal generator δS . Furthermore, we choose a linear—
w.r.t. the variables Z—cross-section H of dimension m − 1.

3.2.2 An Artless Presentation of Moving Frames

Given a group of transformation S acting regularly on K
m

and one of its cross-section H, we are going to define the
notion of moving frame in a very restricted framework by
considering a compatible projection π : K

m → H (see [2] for

1Same letters denote cross-sections and their equations.

a general definition). With this projection, a point Z in K
m

is sent to a base point ZH := π(Z) in the cross-section H
through the orbits of S (see Figure 3).

Definition 25. Let us consider a continuous dynamical
system S acting regularly on K

m, H one of its cross-section;
let Z be a point in K

m and OrbZ the orbit of S passing by
this point. Let ZH be a base point associated to Z i.e. the
intersection of H and OrbZ . The smooth map ρ : K

m → G is
a moving frame if it satisfies the relation S (ρ (Z), Z) = ZH.

In order to explicit the relationship of this definition and the
rectification process, let us remark that a moving frame ρ is
a G-equivariant map (see [2]); this means that the following
relation holds in G:

∀(Z, ν) ∈ K
m× G, ν ⋆ ρ (Z) = ρ

`

S (ν, Z)
´

. (39)

Thus, the equivariance of ρ implies the commutation prop-
erty of Figure 2. The following lemma explicit a relationship

K
m

K
m

S(ν, ·)

G

G
ρ(·)

ρ(·)

ν ⋆ ·

Figure 2: G-equivariance of the moving frame ρ.

between moving frames of a continuous dynamical system S
and its principal elements.

Lemma 26. Let ρ : K
m → G be a moving frame associated

to continuous dynamical system S and to its infinitesimal
generator δS . The moving frame ρ is a principal element
of δS i.e. the relation δSρ = 1 holds.

Proof. The definition (39) of equivariance of ρ in G in-
duces the following one in K

m:

S
“

ǫ,S
`

ρ (Z), Z
´

”

= S
“

ρ
`

S (ǫ, Z)
´

, Z
”

. (40)

Again, we are going to consider the linearisation of this re-
lation. The right hand side of relation (40) is equal to:

S

„

ρ
“

Z + ǫδSZ + O
`

ǫ2
´

”

, Z

«

,

S
“

ρ (Z) + ǫ ∂ρ

∂Z
(Z)δSZ + O

`

ǫ2
´

, Z
”

,

S
`

ρ (Z), Z
´

+ ǫ ∂ρ

∂Z
(Z)δSZδSS

`

ρ (Z), Z
´

+ O
`

ǫ2
´

.

(41)

Moreover, the left hand side of the relation (40) is equal
to: S(ρ (Z), Z) + ǫδSS(ρ (Z), Z) + O

`

ǫ2
´

. The equality of
this expression with the expression (41) implies the following
relation ∂ρ/∂ZδSZ = 1, that is the relation δSρ = 1.

In the next section, we recall that the invariants of S may
be computed by a normalisation method based on moving
frames and presented in [2]. The key point for our purposes
is that this method does not require the resolution of a PDE
system when a moving frame is known.

3.2.3 Moving based Invariant Computation

We refer to [2, 4] for a complete presentation of the moving
based invariant computation process and we just recall it



there using the Example 19. To do so, let us consider the
symmetry with infinitesimal generator δS given in (30). The
explicit form of the associated transformation group S is

(St,Sx,Sy) := S(ν, (t, x, y)) = (t exp ν, x exp ν, y), (42)

where ν is the group parameter of G ≃ R. We arbitrarily
choose to work with the cross-section H defined by the hy-
perplane of equation x − 1 = 0. In this situation, the moving
frame ρ send the point (t, x, y) to − log x in G if x is posi-
tive. This moving frame is obtained by solving the normali-
sation equation Sx(ρ(ν), (t, x, y)) − 1 = 0 with respect to ν.
A set of independent invariants is found by substituting this
moving frame into the transformation group. Hence, the
invariant T of S is equal to St(− log x, (t, x, y)) that is t/x.

From a naive geometrical standpoint, the moving frame
associated to a cross-section H is a function ρ(Z) such that
the generic point Z := (t, x, y) is projected by the applica-

tion S(ρ(·), ·) on H and the invariants eZ of S are the coordi-

nates induced by this projection on H i.e. eZ = S(ρ(Z), Z).
Using notations of Theorem 17, H is a covering variety

of the quotient space K
m/G and the projection π is given

by the map S(ρ(·), ·). Our implementation follows exactly
this strategy and the next section is devoted to precise this
point. An interesting fact presented below is that, in the
case of a continuous dynamical system, the moving frame
method leads to a reduction process for which, neither the
moving frame, nor the invariants need to be computed.

3.3 Moving Frame Based Reduction Process
Let D be a dynamical system considered as an input of
our reduction process (see Remark 20) and suppose that we
know S one of its symmetries (computed for example using
the method presented in Section 3.1). We present in this
section the reduction process whose output is the reduced

system eD in which a variable z (which is not a constant
of δS) was eliminated (see examples below); this process
uses a cross-section H and the associated moving frame ρ.
It is based on the following relation:

∀Z ∈ H, eD(·, Z) = S
“

ρ
`

D(·, Z)
´

,D(·, Z)
”

, (43)

which is illustrated by the Figure 3 and is similar to the
invariant computation described in Section 3.2.3. Several
situations could be considered to illustrate this point.

H
Z

D(t, Z)

ZH

D

S(ρ (·), ·)

D̃

Figure 3: Moving frame based reduction process.

3.3.1 Elimination of z if δDz is equal to 0

In this situation2 z is a constant of D i.e. Dz(ν, Z) is equal
to z for all ν in G and z is supposed to be a parameter of D.
2Remark that D (resp. δD) could be continuous (resp. a
derivation) or discrete (resp. a pseudo-derivation).

Hence, given any cross-section H of S verifying δDH = 0
and ∂H/∂z 6= 0, the flow of D maps any point of H to an-
other point of this cross-section. Furthermore, the reduction
process is a simple specialisation if H is linear w.r.t. z.

In fact, relation (43) shows that the corresponding re-

duced ODS/ORS denoted by eD is the image of D by the
compatible projection S(ρ(·), ·) already considered in Sec-
tion 3.2.3. The following example illustrate this process:

Example 27. The Verhulst’s model (1) presented in Ex-
ample 2 presents a symmetry S with infinitesimal generator:

δS = b
∂

∂b
− x

∂

∂x
. (44)

In order to eliminate the parameter b, we choose arbitrarily
the hyperplane of equation b = 1 but we do not compute ex-
plicitly the projection map S(ρ(·), ·) except for b whose im-
age is 1 by definition. In fact, as S is a symmetry of D,
the commutation properties and relation (43) show that the

map eD(·, Z) is equal to D(·,S(ρ(Z), Z)). The implicit ex-

pressions S(ρ(Z), Z) are renamed as eZ. Hence, we just have
to specialise b to 1 in relation (1) to obtain:

eΣ :
det

dt
= 1,

dex

dt
= (ea − ex) ex,

dea

dt
= 0. (45)

The data (45) and (44) are the outputs of the reduction pro-
cess: the first one is the reduced dynamic and the second

one encodes the fibre of the map S(·, eZ) that allows to re-
trieve orbits of the original dynamical system from orbits of
the reduced one. In Example 27, the derivation (44) is asso-
ciated to a differential systems that is an implicit definition
of the fibre ex = bx, et = t and ea = a that allows to express
the original problem from the reduced one.

Hence, the moving frame method allows to avoid the dif-
ficult computations (explicit computation of the fibre a.k.a.
invariant computations) and to perform the reduction pro-
cess using only implicit representations (the infinitesimal
generator of the symmetry a.k.a. the map the original prob-
lem to the reduced one) that could be numerically exploited.

In next section, we show that the strategies sketched above
could be extended to more complicated situations.

3.3.2 Elimination of z if δDz is different from 0

Given an input dynamical system D, one of its symme-
tries S and any cross-section H of S verifying δDH = 0
and ∂H/∂z 6= 0, we consider now the case when the or-
bit of D associated to a point Z in H does not stay in H
i.e. δDH 6= 0 as shown in the Figure 3.

First, we must precise that we were not able to avoid
the computation of invariants in all cases. Hence, the first
paragraph of this section states that we failed to obtain a
low complexity algorithm for the reduction of ORS. Hence,
this part of our code requires explicit integration, invariant
computation and elimination methods.

Ordinary Recurrence Systems. The part of our code
that allows to eliminate a variable of an ORS follows exactly
the strategy explained in the section 3.2.3 and computes
local invariants as proposed in [2] and implemented in [3].

We illustrate this point by explaining how our code treats
the Example 18. The input of the reduction process is the
recurrence endomorphism defined by the ORS (4). Follow-
ing the strategy presented in Section 3.1, the user must pro-
vide S the group action defined by δS the infinitesimal gener-
ator (26) explicitly and not only this infinitesimal generator



as in the other cases. Necessary elimination tools, that han-
dle computations similar to those described in section 2.3,
are already implemented in maple and thus, we just use
them in our implementation; we gives below a short maple

code using aida (see [3]) that illustrates theses points:

# cs_rat_inv & rewrite are 2 procedures of aida

> z := [n,x,y,c]: # coordinates set

> lambda := [p,q]: # group parameters

> G := [p*q-1]: # Rabinowitz’ trick i.e. p<>0

> sigma := [n+1,c*x,y+x,c]: # recurrence operator

> Symmetry := [n,x*p,y*p,c]: # its used symmetry

# invariants computation with cross-section x-1

> inv := cs_rat_inv(G,Symmetry,[x-1],z,lambda,r):

# change data-structure

> map2(subs,zip(‘=‘,z,sigma),map(rhs,inv[1])):

# elimination producing the reduced recurrence

> lprint(map(rhs,map(rewrite,%,z,inv)));

[1+r1, r2, (1+r3)/r2] # where r1=n, r2=c and r3=Y

Some application could not be handled following this strat-
egy because, as mentioned in the Remark 10, in some cases
we do not know how to compute the group action induced
by the symmetries found by our implementation. Further-
more, the high complexity of the elimination step becomes
a real concern when dealing with large applications.

Fortunately, the situation is completely different when
dealing with ODS; in that case, the reduction process could
be done without computing any explicit group action, mov-
ing frame or invariant.

Ordinary Differential Systems. We are going in this sec-
tion to use the relation (43) expressing the searched reduced

continuous dynamical system eD w.r.t. the original one D.
But this time, we are interested in an infinitesimal expres-
sion of this relation in order to determine the infinitesimal
generator δ

eD
encoding eD.

First, remark that any point Z in H satisfies the rela-
tions H(Z) = 0 and S(ρ (Z), Z) = Z. Furthermore, for any ǫ
in the neighbourhood of 0 in R, the following relation holds:

H

„

S
“

ρ
`

D(ǫ, Z)
´

,D(ǫ, Z)
”

«

= 0. (46)

Keeping in mind that S is a symmetry of D (i.e. these evo-
lution functions commute) and the properties (10) & (11),
the right hand side of relation (46) is equal to:

H
`

D
`

ǫ,S (ρ (D(ǫ, Z)), Z)
´´

,

H
`

D
`

ǫ,S
`

ρ (Z) + ǫ ∂ρ

∂Z
(Z) δDZ + O

`

ǫ2
´

, Z
´´´

,

H
`

D
`

ǫ, Z + ǫ ∂ρ

∂Z
(Z) δDZ δSZ + O

`

ǫ2
´´´

,

H
`

Z + ǫ ∂ρ

∂Z
(Z) δDZ δSZ + ǫδDZ + O

`

ǫ2
´´

,

H(Z) + ǫ ∂H

∂Z
(Z)

`

∂ρ

∂Z
(Z) δDZ δSZ + δDZ

´

+ O
`

ǫ2
´

.

(47)

As H(Z) is equal to 0, the reduced continuous dynamical

system eD has δD + µδS as infinitesimal generator, where µ
is equal to δDρ (Z) which is unknown. This shows that z, H
and µ must verify the following conditions:

(δD + µδS) z = 0, (δD + µδS)H = 0. (48)

The first condition just states that the variable z was chosen
to be eliminated from δD. Thus µ is equal to −δDz/δSz. The

second above condition states that eD maps a point of H
to another point of this variety. In order to illustrate this
reduction process, let us consider again the Example 19:

Example 28. If we choose to eliminate the variable x,
then µ is equal to −y/x and δ

eD
is equal to:

„

1 −
ty

x

«

∂

∂t
+

y

x

∂

∂y
. (49)

Now if we choose the cross-section x = 1 of S, we just have
to substitute x by 1 in order to retrieve the reduced infinites-
imal generator (34). Capital letters Y and T stand for ap-
plications Sy(ρ(Z), Z) and St(ρ(Z), Z) where Z = (t, x, y).
They are invariants of S but remain implicit in our work
and were not computed.

Thus, in actual case we could perform the reduction process
without explicitly computing the invariants of S. Neverthe-
less, these invariants encode the fibre that allows to retrieve
orbits of the original dynamical system from orbits of the
reduced one; this fibre is implicitly encoded in the differ-
ential equation associated to δS and could be numerically
computed.
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