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There is an increasing need for real-time implementation of 3D image analysis processes,
especially in the context of image-guided surgery. Among the various image analysis
tasks, non-rigid image registration is particularly needed and is also computationally

prohibitive. This paper presents a GPU (Graphical Processing Unit) implementation of
the popular Demons algorithm using a Gaussian recursive filtering. Acceleration of the
classical method is mainly achieved by a new filtering scheme on GPU which could be

reused in or extended to other applications and denotes a significant contribution to
the GPU-based image processing domain. This implementation was able to perform a
non-rigid registration of 3D MR volumes in less than one minute, which corresponds to
an acceleration factor of 10 compared to the corresponding CPU implementation. This

demonstrated the usefulness of such method in an intra-operative context.

Keywords: Non-rigid registration ; 3D image processing ; GPU implementation.

1. Introduction

In the last decade, it has become increasingly common to use image-guided navi-

gating systems to assist surgical procedures 3. The reported benefits are improved

accuracy, reduced intervention time, improved quality of life, reduced morbidity, re-

duced intensive care and reduced hospital costs. Image-guided systems can help the

surgeon plan the operation and provide accurate information about the patient’s

anatomy during the intervention. Image-guided systems are also useful for mini-

mally invasive surgery, since the intraoperative images can be used interactively as

a guide.

1
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Current surgical procedures rely on complex preoperative planning, including

various multimodal examinations: anatomical, vascular, functional explorations for

brain surgery. Once all the information has been gathered and fused, it can be used

for navigation in the operating room (OR) using image-guided surgery systems. To

do so, a rigid registration of the patient’s body with the preoperative data must

first be performed . With an optical tracking system, and Light Emitting Diodes

(LED), it is possible to track the patient’s body, the microscope and the surgical

instruments in real time. The matching of preoperative and intraoperative data

is performed by identifying corresponding features (points or surfaces) in the two

scenes.

Unfortunately, the assumption of a rigid registration between the patient’s body

and the preoperative images only holds at the beginning of the procedure. This is

because soft tissues tend to deform during the intervention. This is a common

problem in many image-guided interventions, the particular case of neurosurgical

procedures can be considered as a representative case. When dealing with neuro-

surgery, this phenomenon is called “brain shift”.

The magnitude of soft tissue deformation shows striking differences at each

stage of surgery. Brain shift must be considered as a spatio-temporal phenomenon,

and should be continuously estimated , or at least at key moments, to update the

preoperative planning. To do so, intraoperative images (like intraoperative Magnetic

Resonance Images or 3D ultrasound images) are acquired during surgery and can be

used to estimate the deformation of soft tissues. Non-rigid image registration is then

needed. Generally, a mono-modal registration method is preferred (i.e., registering

a sequence of images of the same modality) since this problem is methodologically

simpler.

There is a great amount of literature on non-rigid image registration, we thus

refer the reader to comprehensive surveys on this domain 12,15,24. Methods can be

broadly classified according to the similarity measure that measures the discrepancy

between the images to be registered and the type of regularization (the regularity of

the estimated deformation field). Published methods are generally computationally

expensive. Reported computation times vary between several minutes and several

hours 16 and are in all cases incompatible with an application in the operating

room.

This paper proposes a fast non-rigid registration method implemented on GPU

and compatible with the image-guided surgery requirements. The contribution of

the paper is twofold: firstly, 3D image processing is expressed as operations on 2D

textures. Secondly, we propose an efficient recursive filtering scheme implemented

on GPU that is shown to be 15 times more efficient than the software implemented

version. The paper is organized as follow: after a short presentation of previous work

on using the GPU in general purpose applications (section 2), we briefly recall some

theoretical background on the used registration method (section 3), then our GPU

implementation is proposed (section 4) along with some results (section 5) and a

conclusion.
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2. Related Work

Though first designed for the computer graphics industry, over the last few years

graphics processing units have proven to be high performance computing platforms

at low cost. With their increased programmability, it is now possible to consider

execution of non-graphic applications on such boards. The principles of computation

using a GPU exploit the capacities of the graphics pipeline that allow to transform

geometric primitives like triangles into a collection of pixels (or fragments). This

transformation can be parameterized through simple programs (also called fragment

programs or shaders) that are executed on the GPU for every fragments of the

primitive. Depending on the numbers of pipeline on the board, several fragments

can be processed at the same time, leading to an implicit parallel execution of

the transformation. In the context of non-graphics computation, it is thus possible

to benefit from this implicit parallelism by defining a correct mapping between the

problem and the geometric pipeline. Finally, since the data handled by the GPU are

by nature four components vectors (Red/Green/Blue/Alpha), another opportunity

for parallel execution of the program is given.

Several groups have explored these possibilities for a wide variety of computa-

tionally expensive problems (see 5 for a survey). Considering computer vision and

image processing algorithms, it has been shown that GPU could speed up most

of the classical filtering operations (convolution with simple filters like, for exam-

ple, edge detectors) as well as compounded operations that require several filtering

steps (motion estimation 21 for instance). This has lead to the development of sev-

eral open source libraries like OpenVIDIA 4. Let us note that in most of these

implementations, filter kernels are relatively small (3×3 or 5×5). The overall GPU

optimizations have been shown to decrease with the size of kernel because of the

costly nature of the texture fetching operation (which is frequently the base for

direct implementations of GPU image filtering).

Considering 3D image processing, some work has been done on visualiza-

tion 10,11, segmentation 17, and filtering 9. The use of graphics boards to speed-up

medical applications has also drawn attention in the domain of tomography 23. Re-

garding non-rigid registration methods, an approach using regularized gradient flow

has been developed in 20 for the 2D case. In the case of volume registration, a non-

linear warping of volumes with thin-plate splines have been exposed in 13 and the

hardware acceleration through the use of 3D Bézier functions has been published

in 18,19,7. To our knowledge, our work constitutes the only attempt to implement a

non-linear registration like the demons on commodity PC graphics boards. Among

other, our recursive filtering method constitutes an efficient approach to volume

processing on GPU, and exhibits better results for complete registration of 3D

medical volumes.
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3. 3D non-rigid registration method

3.1. Overview

We have chosen to use the Demon’s method for its proved effectiveness and compu-

tational efficiency. In particular, this method has been shown to efficiently register

an atlas toward a subject 1 and to register brains of different subjects 8. The

Demon’s method was originally proposed by Thirion 22. At each demon’s location

(usually the grid of demons is dense, i.e. every voxel is a demon), force are computed

so as to repulse the model toward the data. The force depends on the polarity of

the point (inside or outside the model), the image difference and gradients. Thirion

has proposed the following expression for the deformation field:

u(s) =
(I1(s) − I2(s))∇I2(s)

||∇I2(s)||2 + (I1(s) − I2(s))2

This amounts to a minmax problem: maximization of similarity and regularization

of solution. For small displacements, it has been shown that the demon’s method

and optical flow are equivalent. The method alternates between the computation

of forces and the regularization of the deformation field until convergence. Here is

a synopsis of the algorithm:

DO

1. Compute spatial and temporal gradients

2. Compute dense grid of demons

3. Regularize incremental deformation field

using Gaussian filtering

4. Update deformation field

5. Interpolate deformed image

UNTIL CONVERGENCE

The convergence condition can be expressed according to the mean square er-

ror (MSE) between the reconstructed volume and the source volume. When the

MSE decreases between two steps is less than a specified threshold, convergence is

reached. In this paper, the five steps described above are implemented using GPU

which leads to efficient implementation.

Computationally, the most costly steps are the computation of spatial gradients

and the regularization of the deformation fields. These two operations basically

consist in a convolution with a Gaussian filter for the regularization and with the

first derivative of the Gaussian for the computation of spatial gradient. To optimize

these two steps, we have chosen the recursive implementation of the Gaussian filter

as proposed in 2.

3.2. Recursive filtering

The recursive Gaussian filtering makes it possible to compute infinite impulse filters

with a bounded complexity. Deriche 2 proposes to approximate the Gaussian filter
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with 4th order cosines-exponential functions as:

ha(n) = (a0 cos(
ω0

σ
n) + a1 sin(

ω0

σ
n))e−

b0

σ
n + (c0 cos(

ω1

σ
n) + c1 sin(

ω1

σ
n))e−

b1

σ
n

It is shown that the approximation is fair for Gaussian filters with a standard

deviation lower than 10 2. Separability is one of the most attractive features of the

Gaussian filtering. Therefore, the three components of the deformation field will be

processed successively. For a 1D signal x, the causal and anti-causal parts of the

filtered signal y are expressed as:

y(i) =
k=3
∑

k=0

bkx(i − k) −
k=4
∑

k=1

aky(i − k).

Numeric coefficients ak and bk are given in 2 for the Gaussian filter and its

derivatives. In addition to 2, we propose in appendix the correct normalization of

the filter.

The main advantage of recursive filtering is that the number of operations is

bounded and independent of the standard deviation of the Gaussian filter. The

latter is particularly appealing when filtering 3D images since a classical imple-

mentation is computationally expensive for large standard deviation. Let us finally

note that this method allows one to minimize the number of texture fetching within

the fragment program responsible for the filtering (which is one of the most time-

consuming operations on the GPU).

4. Implementation

In this section, we present an original and efficient implementation of Thirion De-

mon’s algorithm 22. As presented in section 3.1, one iteration of convergence loop

can be divided into five main operations. In our implementation, we factorized the

two first steps (computation of temporal and spatial gradients and computation of

demons in each voxel) in a unique step, followed by the regularization of the field

(Gaussian filtering of the three field components) and finally the reconstruction

of a final volume thanks to a trilinear interpolation of the current volume. The

entire process is thus performed using GPU computation. We first concentrate on

the representation of the volume in section 4.1. We then explain how to implement

demons computations and trilinear interpolation on the GPU in section 4.2, and

finally the recursive filtering scheme is described in section 4.3.

4.1. Mapping the 3D volume on a 2D texture

In our implementation, the data volume is not represented as a 3D texture, but in-

stead as a big texture containing all the slices from the volume. This technique can

be refered to as flat 3D texture, as first introduced by Harris 6. There are several

ways to decompose the data volume onto a plane. Figure 1 is an illustration of the
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X
Y

Z

Data Volume

+X-aligned +Z-aligned+Y-aligned

Possible decompositions

Figure 1. Possible decompositions of a 3D volume along three orthogonal axis. For each axis, two

decompositions are possible if axial symetry is considered.

different possible decompositions along the three axes. Those different decomposi-

tions and the transformation operations from one to another will be considered in

the filtering process for efficiency purposes.

There are two major advantages to such a decomposition: first of all, it is pos-

sible to process the entire volume in a single rendering pass, and a render-to-3D-

texture extension is no longer needed. Once the whole volume has been uploaded

to the graphics board memory, several processes can be performed without costly
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exchanges with the CPU memory (this assumption is true under the hypothesis

that the volume can be contained entirely inside the board’s memory, which is not

often true, cf. discussion at the end of the paper). Secondly, accessing 2D textures

in the video memory has been shown to be a much faster operation than accessing

to 3D textures 6.

Nevertheless, this transformation is not straightforward. Two major problems

arise: texture size limitation (4096 × 4096 for the current generation of graphic

boards) and unicity of such a decomposition. Let us investigate the possible de-

composition for a volume containing Dx ×Dy ×Dz voxels, where Dk is the volume

dimension along axis k. This 3D data should be mapped onto a 2D texture of size

Ni×Nj , under the constraint that Ni ≤ 212 and Nj ≤ 212 (this technical constraint

will probably disappear in the future). Such a mapping might not be feasible, let

us find the conditions under which it can be performed:

Let us first assume that the image planes are square dyadic images, i.e:

∃p ∈ N such that Dx = Dy = 2p.

This assumption is not very restrictive when considering medical images, since this

is very standard with actual scanners.

A solution to this problem can be seen as finding n ∈ [1, p − 1] such that:

Nj = Dz × 2p−n and Ni = 2p+n

under the constraint Ni ≤ 212and Nj ≤ 212. Dz can be bounded as: ∃k ∈

N such that 2k−1 < Dz ≤ 2k, what leads to:

p − n + k ≤ 12 and p + n ≤ 12

Therefore, adding and subtracting the two equations gives:

k ≤ 24 − 2p and n ≤
k

2

Since n ∈ [1, p − 1], the mapping can be performed if Dz ≤ 224−2p. For instance, if

p = 8 (i.e., Dx = Dy = 256), this amount to Dz ≤ 256. Practically, this mapping is

therefore feasible in most cases. From there, it is possible to access the whole volume

in fragment programs by using a correct look-up function (given in Appendix B).

4.2. Initialization and computation of demons

The first step in the demon’s algorithm implemented on a GPU consists in upload-

ing the source volume and the destination volume decomposed along a particular

axis. These two volumes are encoded in a unique texture (their elements are re-

spectively stored in the red and green components of the texture elements, which

limits texture fetching). Then the minimization loop is started until convergence

(keeping in mind that the convergence is based on the MSE differential decrease to

less than a threshold). The first step of this loop is the computation of ”demons”.

They are expressed as a combination of the spatial and temporal gradients. It is
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hence possible to design a simple fragment program that computes spatial gradients

and temporal gradients with finite differences and that will be executed on each

element of the volume. This program is given as a reference in cg-like code in B.1.

The execution of this program on our volume outputs a texture containing an

incremental displacement field. Two options are possible for regularization: either

the incremental field is smoothed leading to a fluid regularization, or the total field

is smooothed leading to an elastic regularization. This regularization is performed

through the convolution of the displacement field with a Gaussian kernel. The GPU

implementation of the recursive formulation of this filtering operation is detailed in

the following paragraph.

4.3. Recursive volume filtering on GPU

The regularization of the field is the most critical part in the registration loop

in terms of computational load. It consists of the Gaussian filtering of the three

components of the deformation field. In order to speed up this process, the recursive

filtering scheme presented in section 3.2 was implemented on the GPU. As stated

previously, for each axis a causal and an anti-causal part has to be computed, which

sums up to parsing the volume in one direction and then in the other direction.

In order to factorize these two steps, the volume is transferred to the graphics

board memory as a texture containing slices of two decompositions of the volume

conduced along one axis and its opposite (on the red and green components of the

texture), which allows for the handling of the causal and anti-causal parts at the

same time.

To simulate the traversal process, we simply set up the view frustum to process

one slice in a rendering pass. This process in then repeated for each slices along the

given direction (which is equivalent to a full sweep of the volume). This amounts

to the rendering of N rectangular quads where N is the number of slices in the

considered direction. This fragment program can be found in B.2.

Figure 2 presents this transformation process for a given slice of the volume.

Let us note that this method provides the interesting property of maximizing cache

coherency along the volume sweeping (i.e. there is a greater probability that the

needed volume element has already been accessed in the previous iteration and thus

is present in the memory cache) .

This process outputs a texture containing both causal and anti-causal parts for

a given axis. Since the process must be repeated in turn for the x, y and z axis, the

volume needs to go through the two steps:

• addition of causal and anti-causal parts,

• re-orientation of the volume along the next axis

This step is done through a one-step rendering pass of the entire volume (i.e.

rendering of a quad of the size of the texture containing the volume orientated

along a given axis) with another fragment program (available in B.3).
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Figure 2. Sweeping the volume. To maximize computational efficiency, both causal and
anti-causal parts are computed at the same time.

In this program, fromVolumetoUVInvert specifically allows one to get the anti-causal

part from the volume. The whole process is described in Figure 3 which sums up the

different parts of the filtering. Let us finally note that at the end of the third axis

processing, a last addition/orientation step has to be performed to gather the final

causal and anti-causal parts and transform the whole volume back in its original

configuration. This ends the filtering process for one component of the displacement

field.

Filtering along 

X axis

Addition +

Reorientation

Filtering along 

Y axis

Addition +

Reorientation

Filtering along 

Z axis

Reconstruction

Initial 

Volume

Filtered 

Volume

Texture

uploading or

already in 

video memory

Texture downloading

or processed on GPU

Figure 3. Different steps in the recursive filtering process. Boxes correspond to fragment
shaders
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4.4. Trilinear interpolation

Once the regularization has been done on the three axis, the initial volume is

warped according to the computed displacement field before the next registration

step. This corresponds to a Gauss-Newton resolution scheme where an incremental

solution refines the previous one. This operation is performed through trilinear

interpolation with a backward scheme. A simple fragment program is used to do

all the computations (see B.4 for details).

The final volume is then reconstructed on the CPU. This last operation termi-

nates an iteration of the demon algorithm.

5. Results

The registration method was tested on 3D magnetic resonance (MR) T1 images pre-

sented in Figure 4. The computer used for tests was an Athlon XP 2500+ equipped

with a PCI-Express Quadro FX 1400 with 256 Mb of video memory. Because of

the memory limitation, it was not possible to store all the data needed for the

registration into video memory. Hence, the volumes were downsampled to a lower

resolution, resulting in volumes of size 1283 (the voxel resolution is 2mm isotropic).

The volumes were first rigidly registered by maximization of mutual information
14.

Figure 4. MR images used in the experiments. From left to right: the source volume, the target
volume and the initial centered difference image. These images are 2D slices of 1283 3D data.

The registration method was tested with various regularization factors. Results

of convergence and computation time are presented in Figures 5 and 6. The registra-

tion with a low regularization (σ = 2) was trapped in a local minimum, as assessed

by the convergence rate of figure 5. As expected, increasing σ lead to smoother

deformations and higher final discrepancy. This can be assessed visually in Figure

6 where final difference images are presented. Thanks to the recursive Gaussian fil-

tering, the time per iteration does not depend on the standard deviation parameter

and equals 2.2 seconds.
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Figure 5. Convergence results: the figure plots the evolution of the Mean Square Error over it-
erations. The Mean Square Error decreases in all cases until convergence. The experiments were

conducted for various regularizations. The experiment with a low regularization (σ = 2) con-
verged to a local minimum. In all experiments the average time per iteration was 2.2 seconds,
which clearly shows that the time per iteration is independent of the standard deviation of the
filter

6. Conclusion

This paper presented a GPU implementation of a non-rigid 3D image registration

method. To do so, 3D image processing tasks are expressed as operations on 2D

textures and an efficient recursive filtering scheme implemented on GPU was used.

The recursive filtering scheme is generic and can be used in many other applications

such as image filtering, computation of image features (gradients, curvature, etc).

Results obtained on 1283 volumes indicate that the GPU implementation is 10

times faster in average for comparable implementations and parameter tuning: we

demonstrated that it is possible to perform a non-rigid registration in less than

one minute. For a comparison, Noblet et al.
16 reported a computation time of 80

minutes for 50 iterations of the ITK demons method applied to 2563 data. These

results demonstrate the applicability of such methods in an image-guided surgery

context.

In our implementation, the size of the volume remains a critical aspect, in that
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it was not possible to store all the data needed to process a 2563 volume in video

memory. We expect future generation boards to provide a sufficient amount of

memory (512 Mo) to cope with this difficulty. It is also possible to decompose the

input volume into smaller volumes that can be processed entirely on the GPU,

thus still preserving acceleration from our method. This method would allow to

efficiently treat larger next generation volumes (such as 5123 or either 10243), and

the evaluation of its performances is left as benchmarking perspectives for this work.

Let us finally note that we expect a larger amount of pipelines to improve in a very

significant way our algorithm.
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Appendix A. Normalization of Gaussian recursive filter

For this filter to be normalized, one has to compute:

∞
∑

n=−∞

ha(n)

In 2, the following result is given:

∞
∑

n=−∞

ha(n) = −a0

(

e
2b0

σ − 1
)(

2 cos(
ω0

σ
)e

b0

σ − 1 − e
2b0

σ

)−1

However, this needs to be corrected. Let us compute the sum on R
+. Since the

filter is symmetric, the final results will be obtained easily.

a cos
(ωn

σ

)

+ b sin
(ωn

σ

)

=
√

a2 + b2
[

cos
(ωn

σ

)

sin(θ) + sin
(ωn

σ

)

cos(θ)
]

=
√

a2 + b2 sin
(

θ +
ωn

σ

)

with sin(θ) = a√
a2+b2

and cos(θ) = b√
a2+b2

Thus:

∞
∑

n=0

(

a cos
(ωn

σ

)

+ b sin
(ωn

σ

))

e−
cn

σ =
√

a2 + b2Im

(

∞
∑

n=0

ei(θ+ ωn

σ
)e−

cn

σ

)

=
√

a2 + b2Im

(

eiθ

∞
∑

n=0

e−
cn

σ
+i ωn

σ

)

=
√

a2 + b2Im

(

eiθ

∞
∑

n=0

zn

)

With z = ei ωn

σ e−
cn

σ . zn modulus goes to 0, which leads to:

∞
∑

n=0

(

a cos
(ωn

σ

)

+ b sin
(ωn

σ

))

e−
cn

σ =
√

a2 + b2Im

(

eiθ

1 − z

)

=
√

a2 + b2Im

(

eiθ

1 − e−
cn

σ
+i ωn

σ

)

=
√

a2 + b2Im

(

cos(θ) + i sin(θ)

1 − e−
c

σ cos(ω
σ
) − i sin(ω

σ
)e−

c

σ

)

=
√

a2 + b2Im

(

(cos(θ) + i sin(θ))
(

1 − e−
c

σ cos(ω
σ
) + i sin(ω

σ
)e−

c

σ

)

(

1 − e−
c

σ cos(ω
σ
)
)2

+ sin(ω
σ
e−

c

σ )2

)
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=
a
(

1 − e−
c

σ cos(ω
σ
)
)

+ b
(

e−
c

σ sin(ω
σ
)
)

(

1 − e−
c

σ cos(ω
σ
)
)2

+
(

sin(ω
σ
)e−

c

σ

)2

Finally,

∞
∑

n=0

ha(n) =
a0

(

1 − e−
b0

σ cos(ω0

σ
)
)

+ a1

(

e−
b0

σ sin(ω0

σ
)
)

(

1 − e−
b0

σ cos(ω0

σ
)
)2

+
(

sin(ω0

σ
)e−

b0

σ

)2

+
c0

(

1 − e−
b1

σ cos(ω1

σ
)
)

+ c1

(

e−
b1

σ sin(ω1

σ
)
)

(

1 − e−
b1

σ cos(ω1

σ
)
)2

+
(

sin(ω1

σ
)e−

b1

σ

)2

Appendix B. CG-like code for the different fragment programs

We give as examples in this appendix the fragment programs that were used in

this paper. The syntax is a cg-like syntax. We first begin by giving two look-up

functions defined wrt. a decomposition along a given axis. The extension to other

decompositions should be straightforward. Let us note Zx = p− n and Zy = p + n

where p and n are defined in section 4.1. The look-up functions are given by:
float2 fromVolumeToUV(float3 coord){

float X = fmod (coord.y,Zx);
float Y = (coord.y - X)/Zx;
return float2(X*Dx+coord.x+0.5,

Y*Dy+coord.z+0.5);}

float3 fromUVtoVolume(float2 uv){
float x = fmod (uv.x,Dx);
float z = fmod (uv.y,Dy);
return float3(x, (uv.x-x)/Dx

+(uv.y-z)/Zy, z) ;}

B.1. Demons computation

Algorithm 1 Fragment program for computing demons
fragout_float main(vf30 In,

uniform texobjRECT source,
uniform float epsilon = 0.01){

fragout_float O;
float2 values = texRECT(source, In.TEX0.xy).xy;

// compute spatial gradient
float3 grad, posVol = fromUVtoVolume(In.TEX0.xy - float2(0.5,0.5));

grad.x = texRECT(source, fromVolumeToUV(float3(posVol.x+1,posVol.y,posVol.z))).x -
texRECT(source, fromVolumeToUV(float3(posVol.x-1,posVol.y,posVol.z))).x;

grad.y = texRECT(source, fromVolumeToUV(float3(posVol.x,posVol.y+1,posVol.z))).x -
texRECT(source, fromVolumeToUV(float3(posVol.x,posVol.y-1,posVol.z))).x;

grad.z = texRECT(source, fromVolumeToUV(float3(posVol.x,posVol.y,posVol.z+1))).x -
texRECT(source, fromVolumeToUV(float3(posVol.x,posVol.y,posVol.z-1))).x;

grad = 0.5 * grad ;
// compute temporal gradient
float diff = values.x - values.y ; // source and target volumes are on the same texture
// normalize
float denom = diff*diff + grad.x*grad.x + grad.y*grad.y + grad.z*grad.z ;
O.col.xyz = (denom<epsilon) ? float3(0,0,0) : grad * diff/denom;
return O;}
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B.2. Recursive filtering

Algorithm 2 Fragment program implementing recursive filtering along a given

volume direction with a kernel given as input
fragout_float main(vf30 In,

uniform texobjRECT source,
uniform texobjRECT dest,
uniform float slice,
const uniform float kernel[16]} // kernel is the filter kernel{

fragout_float O;
float2 s = In.TEX0.xy;

// current: non-modified volume, filtered: already computed values
float2 current = texRECT(source,computeUV(s,slice));
float2 lcurrent = texRECT(source,computeUV(s,slice-1));
float2 llcurrent = texRECT(source,computeUV(s,slice-2));
float2 lllcurrent = texRECT(source,computeUV(s,slice-3));

float2 filtered = texRECT(dest,computeUV(s,slice-1));
float2 lfiltered = texRECT(dest,computeUV(s,slice-2));
float2 llfiltered = texRECT(dest,computeUV(s,slice-3));
float2 lllfiltered = texRECT(dest,computeUV(s,slice-4));

// both causal (O.x) and anti-causal part (O.y) are computed
O.col.x = kernel[0]*current.x + kernel[1]*lcurrent.x +

kernel[2]*llcurrent.x+ kernel[3]*lllcurrent.x -
kernel[4]*filtered.x - kernel[5]*lfiltered.x -
kernel[6]*llfiltered.x - kernel[7]*lllfiltered.x ;

O.col.y = kernel[8]*current.y + kernel[9]*lcurrent.y +
kernel[10]*llcurrent.y+ kernel[11]*lllcurrent.y -
kernel[12]*filtered.y - kernel[13]*lfiltered.y -
kernel[14]*llfiltered.y - kernel[15]*lllfiltered.y ;

return O;}

B.3. Reordering

Algorithm 3 Fragment program that allows to process a volume before a new

traversal
fragout_float main(vf30 In,

uniform texobjRECT source){
fragout_float O;
float3 tmp = fromUVtoVolume (In.TEX0.xy - float2(0.5,0.5));
float2 s = fromVolumetoUV(tmp)+ float2(0.5,0.5);
float2 invs = fromVolumetoUVInvert(tmp) + float2(0.5,0.5);
O.col.x = texRECT(source,s).x + texRECT(source,invs).y; // causal

tmp.y = N_d - tmp.y ; // the opposite, with N_d the number of slices along the axis
s = fromVolumetoUV(tmp)+ float2(0.5,0.5);
invs = fromVolumetoUVInvert(tmp) + float2(0.5,0.5);
O.col.y = texRECT(source,s).x + texRECT(source,invs).y; // anticausal

return O;}

B.4. Trilinear Interpolation
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Algorithm 4 Fragment program that performs trilinear interpolation
// performs tri linear interpolation of the volume
float volumeTrilerp(samplerRECT tex, float3 pos, float3 field){

// we shall take integer value for the displacement
float s1 = pos.x + floor(field.x); float s2 = s1 + 1.0;
float t1 = pos.y + floor(field.y); float t2 = t1 + 1.0;
float u1 = pos.z + floor(field.z); float u2 = u1 + 1.0;

float tex111 = texRECT(tex, fromVolumeToUV(float3(s1,t1,u1)));
float tex121 = texRECT(tex, fromVolumeToUV(float3(s1,t2,u1)));
float tex211 = texRECT(tex, fromVolumeToUV(float3(s2,t1,u1)));
float tex221 = texRECT(tex, fromVolumeToUV(float3(s2,t2,u1)));
float tex112 = texRECT(tex, fromVolumeToUV(float3(s1,t1,u2)));
float tex122 = texRECT(tex, fromVolumeToUV(float3(s1,t2,u2)));
float tex212 = texRECT(tex, fromVolumeToUV(float3(s2,t1,u2)));
float tex222 = texRECT(tex, fromVolumeToUV(float3(s2,t2,u2)));

float tx = field.x - floor(field.x);//interpolating factors
float ty = field.y - floor(field.y);
float tz = field.z - floor(field.z);

float i1 = lerp(lerp(tex111,tex211,tx),lerp(tex121,tex221,tx),ty);
float i2 = lerp(lerp(tex112,tex212,tx),lerp(tex122,tex222,tx),ty);
return lerp(i1,i2,tz);}

fragout_float main(vf30 In,
uniform texobjRECT source){

fragout_float O;
float3 posVol = fromUVtoVolume(In.TEX0.xy-float2(0.5,0.5)); // position in volume
O.col.x = volumeTrilerp(source,posVol,f4texRECT(source,In.TEX0.xy).gba);

return O;}
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Results for σ = 2

Results for σ = 4

Results for σ = 6

Results for σ = 8

Figure 6. Final results of the registration for different regularization factors. Left: registered source

volume to be compared with the target volume. Right: final discrepancy (difference image). The
final discrepancy increases with the regularization. In all cases, volumes were correctly registered.


