
HAL Id: hal-00164735
https://hal.archives-ouvertes.fr/hal-00164735v2

Preprint submitted on 28 Jan 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Consistency of the group Lasso and multiple kernel
learning

Francis Bach

To cite this version:

Francis Bach. Consistency of the group Lasso and multiple kernel learning. 2008. �hal-00164735v2�

https://hal.archives-ouvertes.fr/hal-00164735v2
https://hal.archives-ouvertes.fr


ha
l-0

01
64

73
5,

 v
er

si
on

 2
 -

 2
8 

Ja
n 

20
08

Consistency of the Group Lasso
and Multiple Kernel Learning

Francis R. Bach FRANCIS.BACH@MINES.ORG

INRIA - Willow project
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Abstract
We consider the least-square regression problem with regularization by a blockℓ1-norm, i.e., a

sum of Euclidean norms over spaces of dimensions larger thanone. This problem, referred to as
the group Lasso, extends the usual regularization by theℓ1-norm where all spaces have dimension
one, where it is commonly referred to as the Lasso. In this paper, we study the asymptotic model
consistency of the group Lasso. We derive necessary and sufficient conditions for the consistency
of group Lasso under practical assumptions, such as model misspecification. When the linear
predictors and Euclidean norms are replaced by functions and reproducing kernel Hilbert norms,
the problem is usually referred to as multiple kernel learning and is commonly used for learning
from heterogeneous data sources and for non linear variableselection. Using tools from functional
analysis, and in particular covariance operators, we extend the consistency results to this infinite
dimensional case and also propose an adaptive scheme to obtain a consistent model estimate, even
when the necessary condition required for the non adaptive scheme is not satisfied.
Keywords: Sparsity, regularization, consistency, convex optimization, covariance operators

1. Introduction

Regularization has emerged as a dominant theme in machine learning and statistics. It provides an
intuitive and principled tool for learning from high-dimensional data. Regularization by squared
Euclidean norms or squared Hilbertian norms has been thoroughly studied in various settings, from
approximation theory to statistics, leading to efficient practical algorithms based on linear algebra
and very general theoretical consistency results (Tikhonov and Arsenin, 1997, Wahba, 1990, Hastie
et al., 2001, Steinwart, 2001, Cucker and Smale, 2002).

In recent years, regularization by non Hilbertian norms hasgenerated considerable interest in
linear supervised learning, where the goal is to predict a response as a linear function of covariates;
in particular, regularization by theℓ1-norm (equal to the sum of absolute values), a method com-
monly referred to as theLasso(Tibshirani, 1994, Osborne et al., 2000), allows to performvariable
selection. However, regularization by non Hilbertian norms cannot be solved empirically by simple
linear algebra and instead leads to general convex optimization problems and much of the early
effort has been dedicated to algorithms to solve the optimization problem efficiently. In particular,
theLars algorithm of Efron et al. (2004) allows to find the entire regularization path (i.e., the set of
solutions for all values of the regularization parameters)at the cost of a single matrix inversion.

As the consequence of the optimality conditions, regularization by theℓ1-norm leads tosparse
solutions, i.e., loading vectors with many zeros. Recent works (Zhao and Yu, 2006, Yuan and
Lin, 2007, Zou, 2006, Wainwright, 2006) have looked precisely at the model consistency of the
Lasso, i.e., if we know that the data were generated from a sparse loading vector, does the Lasso
actually recover it when the number of observed data points grows? In the case of a fixed number
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of covariates, the Lasso does recover the sparsity pattern if and only if a certain simple condition on
the generating covariance matrices is verified (Yuan and Lin, 2007). In particular, in low correlation
settings, the Lasso is indeed consistent. However, in presence of strong correlations, the Lasso
cannot be consistent, shedding light on potential problemsof such procedures for variable selection.
Adaptive versions where data-dependent weights are added to theℓ1-norm then allow to keep the
consistency in all situations (Zou, 2006).

A related Lasso-type procedure is thegroup Lasso, where the covariates are assumed to be
clustered in groups, and instead of summing the absolute values of each individual loading, the
sum of Euclidean norms of the loadings in each group is used. Intuitively, this should drive all the
weights in one group to zerotogether, and thus lead to group selection (Yuan and Lin, 2006). In
Section 2, we extend the consistency results of the Lasso to the group Lasso, showing that similar
correlation conditions are necessary and sufficient conditions for consistency. The passage from
groups of size one to groups of larger sizes leads however to aslightly weaker result as we can
not get a single necessary and sufficient condition (in Section 2.4, we show that the stronger result
similar to the Lasso is not true as soon as one group has dimension larger than one). Also, in our
proofs, we relax the assumptions usually made for such consistency results, i.e., that the model is
completely well-specified (conditional expectation of theresponse which is linear in the covariates
and constant conditional variance). In the context ofmisspecification, which is a common situation
when applying methods such as the ones presented in this paper, we simply prove convergence
to the best linear predictor (which is assumed to be sparse),both in terms of loading vectors and
sparsity patterns.

The group Lasso essentially replaces groups of size one by groups of size larger than one. It
is natural in this context to allow the size of each group to grow unbounded, i.e., to replace the
sum of Euclidean norms by a sum of appropriate Hilbertian norms. When the Hilbert spaces are
reproducing kernel Hilbert spaces (RKHS), this procedure turns out to be equivalent to learn the
best convex combination of a set of basis kernels, where eachkernel corresponds to one Hilbertian
norm used for regularization (Bach et al., 2004a). This framework, referred to asmultiple kernel
learning (Bach et al., 2004a), has applications in kernel selection,data fusion from heterogeneous
data sources and non linear variable selection (Lanckriet et al., 2004a). In this latter case, multiple
kernel learning can exactly be seen as variable selection ina generalized additive model(Hastie
and Tibshirani, 1990). We extend the consistency results ofthe group Lasso to this non parametric
case, by using covariance operators and appropriate notions of functional analysis. These notions
allow to carry out the analysis entirely in“primal/input” space, while the algorithm has to work
in “dual/feature” space to avoid infinite dimensional optimization. Throughout the paper, we will
always go back and forth between primal and dual formulations, primal formulation for analysis
and dual formulation for algorithms.

The paper is organized as follows: in Section 2, we present the consistency results for the group
Lasso, while in Section 3, we extend these to Hilbert spaces.Finally, we present the adaptive
schemes in Section 4 and illustrate our set of results with simulations on synthetic examples in
Section 5.

2. Consistency of the Group Lasso

We consider the problem of predicting a responseY ∈ R from covariatesX ∈ R
p, whereX has

a block structure withm blocks, i.e.,X = (X⊤
1 , . . . ,X⊤

m)⊤ with eachXj ∈ R
pj , j = 1, . . . , 1m,
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and
∑m

j=1 pj = p. Unless otherwise specified,‖X‖ will denote the Euclidean norm of a vectorX.
The only assumptions that we make on the joint distributionPXY of (X,Y ) are the following:

(A1) X andY have finite fourth order moments:E‖X‖4 < ∞ andE‖Y ‖4 < ∞.

(A2) The joint covariance matrixΣXX = EXX⊤ − (EX)(EX)⊤ ∈ R
p×p is invertible.

(A3) We let (w,b) ∈ R
p × R denote any minimizer ofE(Y − X⊤w − b)2. We assume that

E((Y −w⊤X −b)2|X) is almost surely greater thanσ2
min > 0. We let denoteJ = {j,wj 6=

0} the sparsity pattern ofw.1

The assumption (A3) does not state thatE(Y |X) is an affine function ofX and that the conditional
variance is constant, as it is commonly done in most works dealing with consistency for linear
supervised learning. We simply assume that given the best affine predictor ofY givenX (defined
by w ∈ R

p and b ∈ R), there is still a strictly positive amount of variance inY . If (A2) is
satisfied, then the full loading vectorw is uniquely defined and is equal tow = (Σ⊤

XX)−1ΣXY ,
whereΣXY = E(XY ) − (EX)(EY ) ∈ R

p. Note that throughout this paper, we do include a non
regularized constant termb but since we use a square loss it will optimized out in closed form by
centering the data. Thus all our consistency statements will be stated only for the loading vectorw;
corresponding results forb then immediately follow.

We often use the notationε = Y −w⊤X −b. In terms of covariance matrices, our assumption
(A3) leads to:Σεε|X = E(εε|X) > σ2

min andΣεX = 0 (but ε might not in general be independent
from X).

Applications of grouped variables In this paper, we assume that the groupings of the univariate
variables is known and fixed, i.e., the group structure is given and we wish to achieve sparsity at the
level of groups. This has numerous applications, e.g., in speech and signal processing, where groups
may represent different frequency bands (McAuley et al., 2005), or bioinformatics (Lanckriet et al.,
2004a) and computer vision (Varma and Ray, 2007, Harchaoui and Bach, 2007) where each group
may correspond to different data sources or data types. Notethat those different data sources are
sometimes referred to asviews(see, e.g., Zhou and Burges, 2007).

Moreover, we always assume that the numberm of groups is fixed and finite. Considering cases
wherem is allowed to grow with the number of observed data points, inthe line of Meinshausen
and Yu (2006), is outside the scope of this paper.

Notations Throughout this paper, we consider the block covariance matrix ΣXX with m2 blocks
ΣXiXj , i, j = 1, . . . ,m. We refer to the submatrix composed of all blocks indexed by setsI, J as
ΣXIXJ

. Similarly, our loadings are vectors defined following block structure,w = (w⊤
1 , . . . , w⊤

m)⊤

and we denotewI the elements indexed byI. Moreover we denote1q the vector inRq with constant
components equal to one, andIq the identity matrix of sizeq.

2.1 Group Lasso

We considerindependent and identically distributed(i.i.d.) data(xi, yi) ∈ R
p × R, i = 1, . . . , n,

sampled fromPXY and the data are given in the form of matricesȲ ∈ R
n andX̄ ∈ R

n×p and
we writeX̄ = (X̄1, . . . , X̄m) where eachX̄j ∈ R

n×pj represents the data associated with groupj.

1. Note that throughout this paper, we use boldface fonts forpopulation quantities.
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Throughout this paper, we make the same i.i.d. assumption; dealing with non identically distributed
or dependent data and extending our results in those situations are left for future research.

We consider the following optimization problem:

min
w∈Rp, b∈R

1

2n
‖Ȳ − X̄w − b1n‖

2 + λn

m
∑

j=1

dj‖wj‖,

whered ∈ R
m is a vector of strictly positive fixed weights. Note that considering weights in

the blockℓ1-norm is important in practice as those have an influence regarding the consistency of
the estimator (see Section 4 for further details). Sinceb is not regularized, we can minimize in
closed form with respect tob, by settingb = 1

n1⊤n (Ȳ − X̄w). This leads to the following reduced
optimization problem inw:

min
w∈Rp

1

2
Σ̂Y Y − Σ̂⊤

XY w +
1

2
w⊤Σ̂XXw + λn

m
∑

j=1

dj‖wj‖, (1)

whereΣ̂Y Y = 1
n Ȳ ⊤ΠnȲ , Σ̂XY = 1

nX̄⊤ΠnȲ andΣ̂XX = 1
nX̄⊤ΠnX̄ are empirical covariance

matrices (with the centering matrixΠn defined asΠn = In −
1
n1n1⊤n ). We denoteŵ any minimizer

of Eq. (1). We refer tôw as thegroup Lassoestimate2. Note that with probability tending to one, if
(A2) is satisfied (i.e., ifΣXX is invertible), there is a unique minimum.

Problem (1) is a non-differentiable convex optimization problem, for which classical tools from
convex optimization (Boyd and Vandenberghe, 2003) lead to the following optimality conditions
(see proof by Yuan and Lin (2006) and in Appendix A.1):

Proposition 1 A vectorw ∈ R
p with sparsity patternJ = J(w) = {j, wj 6= 0} is optimal for

problem (1) if and only if

∀j ∈ Jc,
∥

∥

∥
Σ̂XjXw − Σ̂XjY

∥

∥

∥
6 λndj , (2)

∀j ∈ J, Σ̂XjXw − Σ̂XjY = −wj
λndj

‖wj‖
. (3)

2.2 Algorithms

Efficient exactalgorithms exist for the regular Lasso, i.e., for the case where all group dimensions
pj are equal to one. They are based on the piecewise linearity ofthe set of solutions as a function
of the regularization parameterλn (Efron et al., 2004). For the group Lasso, however, the path is
only piecewise differentiable, and following such a path isnot as efficient as for the Lasso. Other
algorithms have been designed to solve problem (1) for a single value ofλn, in the original group
Lasso setting (Yuan and Lin, 2006) and in the multiple kernelsetting (Bach et al., 2004a,b, Son-
nenburg et al., 2006, Rakotomamonjy et al., 2007). In this paper, we study path consistency of the
group Lasso and of multiple kernel learning, and in simulations we use the publicly available code
for the algorithm of Bach et al. (2004b), that computes an approximate but entire path, by following
the piecewise smooth path with predictor-corrector methods.

2. We use the convention that all “hat” notations correspondto data-dependent and thusn-dependent quantities, so we
do not need the explicit dependence onn.
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2.3 Consistency Results

We consider the following two conditions:

max
i∈Jc

1

di

∥

∥

∥ΣXiXJ
Σ−1

XJXJ
Diag(dj/‖wj‖)wJ

∥

∥

∥ < 1, (4)

max
i∈Jc

1

di

∥

∥

∥ΣXiXJ
Σ−1

XJXJ
Diag(dj/‖wj‖)wJ

∥

∥

∥ 6 1, (5)

whereDiag(dj/‖wj‖) denotes the block-diagonal matrix (with block sizespj) in which each di-

agonal block is equal to dj

‖wj‖
Ipj (with Ipj the identity matrix of sizepj), andwJ denotes the

concatenation of the loading vectors indexed byJ. Note that the conditions involve the covariance
between all active groupsXj, j ∈ J and all non active groupsXi, i ∈ Jc.

These are conditions on both the input (through the joint covariance matrixΣXX) and on the
weight vectorw. Note that, when all blocks have size 1, this corresponds to the conditions derived
for the Lasso (Zhao and Yu, 2006, Yuan and Lin, 2007, Zou, 2006). Note also the difference between
thestrong condition(4) and theweak condition(5). For the Lasso, with our assumptions, Yuan and
Lin (2007) has shown that the strong condition (4) is necessary and sufficient for path consistency
of the Lasso; i.e., the path of solutions consistently contains an estimate which is both consistent for
the2-norm (regular consistency) and theℓ0-norm (consistency of patterns), if and only if condition
(4) is satisfied.

In the case of the group Lasso, even with a finite fixed number ofgroups, our results are not as
strong, as we can only get the strict condition as sufficient and the weak condition as necessary. In
Section 2.4, we show that this cannot be improved in general.More precisely the following theorem,
proved in Appendix B.1, shows that if the condition (4) is satisfied, any regularization parameter
that satisfies a certain decay conditions will lead to a consistent estimator; thus the strong condition
(4) is sufficient for path consistency:

Theorem 2 Assume (A1-3). If condition (4) is satisfied, then for any sequenceλn such thatλn → 0
and λnn1/2 → +∞, then the group Lasso estimatêw defined in Eq. (1) converges in probability
to w and the group sparsity patternJ(ŵ) = {j, ŵj 6= 0} converges in probability toJ (i.e.,
P(J(ŵ) = J) → 1).

The following theorem, proved in Appendix B.2, states that if there is a consistent solution on
the path, then the weak condition (5) must be satisfied.

Theorem 3 Assume (A1-3). If there exists a (possibly data-dependent) sequenceλn such thatŵ
converges tow andJ(ŵ) converges toJ in probability, then condition (5) is satisfied.

On the one hand, Theorem 2 states that under the “low correlation between variables inJ and
variables inJc” condition (4), the group Lasso is indeed consistent. On theother hand, the re-
sult (and the similar one for the Lasso) is rather disappointing regarding the applicability of the
group Lasso as a practical group selection method, as Theorem 3 states that if the weak correlation
condition (5) is not satisfied, we cannot have consistency.

Moreover, this is to be contrasted with a thresholding procedure of the joint least-square esti-
mator, which is also consistent with no conditions (but the invertibility of ΣXX), if the threshold is
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properly chosen (smaller than the smallest norm‖wj‖ for j ∈ J or with appropriate decay condi-
tions). However, the Lasso and group Lasso do not have to set such a threshold; moreover, further
analysis show that the Lasso has additional advantages overregular regularized least-square pro-
cedure (Meinshausen and Yu, 2006), and empirical evidence shows that in the finite sample case,
they do perform better (Tibshirani, 1994), in particular inthe case where the numberm of groups
is allowed to grow. In this paper we focus on the extension from uni-dimensional groups to multi-
dimensional groups for finite number of groupsm and leave the possibility of lettingm grow with
n for future research.

Finally, by looking carefully at condition (4) and (5), we can see that if we were to increase
the weightdj for j ∈ Jc and decrease the weights otherwise, we could always be consistent: this
however requires the (potentially empirical) knowledge ofJ and this is exactly the idea behind the
adaptive scheme that we present in Section 4. Before lookingat these extensions, we discuss in the
next Section, qualitative differences between our resultsand the corresponding ones for the Lasso.

2.4 Refinements of Consistency Conditions

Our current results state that the strict condition (4) is sufficient for joint consistency of the group
Lasso, while the weak condition (5) is only necessary. When all groups have dimension one, then
the strict condition turns out to be also necessary (Yuan andLin, 2007).

The main technical reason for those differences is that in dimension one, the set of vectors
of unit norm is finite (two possible values), and thus regularsquared norm consistency leads to
estimates of the signs of the loadings (i.e., their normalized versionŝwj/‖ŵj‖) which are ultimately
constant. When groups have size larger than one, thenŵj/‖ŵj‖ will not be ultimately constant (just
consistent) and this added dependence on data leads to the following refinement of Theorem 2 (see
proof in Appendix B.3):

Theorem 4 Assume (A1-3). Assume the weak condition (5) is satisfied and that for alli ∈ Jc such

that 1
di

∥

∥

∥
ΣXiXJ

Σ−1
XJXJ

Diag(dj/‖wj‖)wJ

∥

∥

∥
= 1, we have

∆⊤ΣXJXiΣXiXJ
Σ−1

XJXJ
Diag

[

dj/‖wj‖

(

Ipj −
wjw

⊤
j

w⊤
j wj

)]

∆ > 0, (6)

with∆ = −Σ−1
XJXJ

Diag(dj/‖wj‖)wJ. Then for any sequenceλn such thatλn → 0 andλnn1/4 →
+∞, then the group Lasso estimatêw defined in Eq. (1) converges in probability tow and the group
sparsity patternJ(ŵ) = {j, ŵj 6= 0} converges in probability toJ.

This theorem is of lower practical significance than Theorem2 and Theorem 3. It merely shows
that the link between strict/weak conditions and sufficient/necessary conditions are in a sense tight
(as soon as there existsj ∈ J such thatpj > 1, it is easy to exhibit examples where Eq. (6) is or is
not satisfied). The previous theorem does not contradict thefact that condition (4) is necessary for

path-consistency in the Lasso case: indeed, ifwj has dimension one, thenIpj −
wjw

⊤
j

w⊤
j wj

is always

equal to zero, and thus Eq. (6) is never satisfied. Note that when condition (6) is an equality, we
could still refine the condition by using higher orders in theasymptotic expansions presented in
Appendix B.3.

We can also further refined thenecessarycondition results in Theorem 3: as stated in Theorem 3,
the group Lasso estimator may be both consistent in terms of norm and sparsity patterns only if the
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condition (5) is satisfied. However, if we require only the consistent sparsity pattern estimation,
then we may allow the convergence of the regularization parameterλn to a strictly positive limitλ0.
In this situation, we may consider the following populationproblem:

min
w∈Rp

1

2
(w − w)⊤ΣXX(w − w) + λ0

m
∑

j=1

dj‖wj‖. (7)

If there existsλ0 > 0 such that the solution has the correct sparsity pattern, then the group Lasso
estimate withλn → λ0, will have a consistent sparsity pattern. The following proposition, which
can be proved with standard M-estimation arguments, make this precise:

Proposition 5 Assume (A1-3). If λn tends toλ0 > 0, then the group Lasso estimatêw is sparsity-
consistent if and only if the solution of Eq. (7) has the correct sparsity pattern.

Thus, even when condition (5) is not satisfied, we may have consistent estimation of the sparsity
pattern but inconsistent estimation of the loading vectors. We provide in Section 5 such examples.

2.5 Probability of Correct Pattern Selection

In this section, we focus on regularization parameters thattend to zero, at the raten−1/2, i.e.,
λn = λ0n

−1/2 with λ0 > 0. For this particular setting, we can actually compute the limit of the
probability of correct pattern selection (proposition proved in Appendix B.4). Note that in order to
obtain a simpler result, we assume constant conditional variance ofY givenw⊤X:

Proposition 6 Assume (A1-3) and var(Y |w⊤x) = σ2 almost surely. Assume moreoverλn =
λ0n

−1/2 with λ0 > 0. Then, the group Lassôw converges in probability tow and the probability
of correct sparsity pattern selection has the following limit:

P

(

max
i∈Jc

1

di

∥

∥

∥

∥

σ

λ0
ti − ΣXiXJ

Σ−1
XJXJ

Diag(
dj

‖wj‖
)wJ

∥

∥

∥

∥

6 1

)

, (8)

wheret is normally distributed with mean zero and covariance matrix ΣXJcXJc |XJ
= ΣXJcXJc −

ΣXJcXJ
Σ−1

XJXJ
ΣXJXJc (which is the conditional covariance matrix ofXJc givenXJ).

The previous theorem states that the probability of correctselection tends to the mass under a non
degenerate multivariate distribution of the intersectionof cylinders. Under our assumptions, this
set is never empty and thus the limiting probability is strictly positive, i.e., there is (asymptotically)
always a positive probability of estimating the correct pattern of groups.

Moreover, additional insights may be gained from Proposition 6, namely in terms of the depen-
dence onσ, λ0 and the tightness of the consistency conditions. First, when λ0 tends to infinity, then
the limit defined in Eq. (8) tends to one if the strict consistency condition (4) is satisfied, and tends
to zero if one of the conditions is strictly not met. This corroborates the results of Theorem 2 and 3.
Note however, that only an extension of Proposition 6 toλn that may deviate from an−1/2 would
actually lead to a proof of Theorem 2, which is a subject of ongoing research.

Finally, Eq. (8) shows thatσ has a smoothing effect on the probability of correct patternse-
lection, i.e., if condition (4) is satisfied, then this probability is a decreasing function ofσ (and an
increasing function ofλ0). Finally, the stricter the inequality in Eq. (4), the larger the probability of
correct rank selection, which is illustrated in Section 5 onsynthetic examples.
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2.6 Loading Independent Sufficient Condition

Condition (4) depends on the loading vectorw and on the sparsity patternJ, which are both a priori
unknown. In this section, we consider sufficient conditionsthat do not depend on the loading vector,
but only on the sparsity patternJ and of course on the covariance matrices. The following condition
is sufficient for consistency of the group Lasso, for all possible loading vectorsw with sparsity
patternJ:

C(ΣXX , d,J) = max
i∈Jc

max
∀j∈J, ‖uj‖=1

∥

∥

∥

∥

1

di
ΣXiXJ

Σ−1
XJXJ

Diag(dj)uJ

∥

∥

∥

∥

< 1. (9)

As opposed to the Lasso case,C(ΣXX , d,J) cannot be readily computed in closed form, but
we have the following upper bound:

C(ΣXX , d,J) 6 max
i∈Jc

1

di

∑

j∈J

dj

∥

∥

∥

∥

∥

∑

k∈J

ΣXiXk

(

Σ−1
XJXJ

)

kj

∥

∥

∥

∥

∥

,

where for a matrixM , ‖M‖ denotes its maximal singular value (also known as its spectral norm).
This leads to the following sufficient condition for consistency of the group Lasso (which extends
the condition of Yuan and Lin, 2007):

max
i∈Jc

1

di

∑

j∈J

dj

∥

∥

∥

∥

∥

∑

k∈J

ΣXiXk

(

Σ−1
XJXJ

)

kj

∥

∥

∥

∥

∥

< 1. (10)

Given a set of weightsd, better sufficient conditions than Eq. (10) may be obtained by solving a
semidefinite programming problem (Boyd and Vandenberghe, 2003):

Proposition 7 The quantity max
∀j∈J, ‖uj‖=1

∥

∥

∥ΣXiXJ
Σ−1

XJXJ
Diag(dj)uJ

∥

∥

∥

2
is upperbounded by

max
M<0, trMii=1

trM
(

Diag(dj)Σ
−1
XJXJ

ΣXJXiΣXiXJ
Σ−1

XJXJ
Diag(dj)

)

, (11)

whereM is a matrix defined by blocks following the block structure ofΣXJXJ
. Moreover, the bound

is also equal to

min
λ∈Rm, Diag(dj)Σ

−1

XJXJ
ΣX

J
Xi

ΣXiX
J
Σ−1

XJXJ
Diag(dj)4Diag(λ)

m
∑

j=1

λj .

Proof We let denoteM = uu⊤ < 0. Then if alluj for j ∈ J have norm 1, then we havetrMjj = 1
for all j ∈ J. This implies the convex relaxation. The second problem is easily obtained as the
convex dual of the first problem (Boyd and Vandenberghe, 2003).

Note that for the Lasso, the convex bound in Eq. (11) is tight and leads to the bound given above
in Eq. (10) (Yuan and Lin, 2007, Wainwright, 2006). For the Lasso, Zhao and Yu (2006) consider
several particular patterns of dependencies using Eq. (10). Note that this condition (and not the
condition in Eq. (9)) is independent from the dimension and thus does not readily lead to rules of
thumbs allowing to set the weightdj as a function of the dimensionpj ; several rules of thumbs have
been suggested, that loosely depend on the dimension on the blocks, in the context of the linear
group Lasso (Yuan and Lin, 2006) or multiple kernel learning(Bach et al., 2004b); we argue in this
paper, that weights should also depend on the response as well (see Section 4).

8



2.7 Alternative Formulation of the Group Lasso

Following Bach et al. (2004a), we can instead consider regularization by the square of the block
ℓ1-norm:

min
w∈Rp, b∈R

1

2n
‖Ȳ − X̄w − b1n‖

2 +
1

2
µn





m
∑

j=1

dj‖wj‖





2

.

This leads to the same path of solutions, but it is better behaved because each variable which is not
zero is still regularized by the squared norm. The alternative version has also two advantages: (a) it
has very close links to more general frameworks for learningthe kernel matrix from data (Lanckriet
et al., 2004b), and (b) it is essential in our proof of consistency in the functional case. We also get
the equivalent formulation to Eq. (1), by minimizing in closed form with respect tob, to obtain:

min
w∈Rp

1

2
Σ̂Y Y − Σ̂Y Xw +

1

2
w⊤Σ̂XXw +

1

2
µn





m
∑

j=1

dj‖wj‖





2

. (12)

The following proposition gives the optimality conditionsfor the convex optimization problem de-
fined in Eq. (12) (see proof in Appendix A.2):

Proposition 8 A vectorw ∈ R
p with sparsity patternJ = {j, wj 6= 0} is optimal for problem (12)

if and only if

∀j ∈ Jc,
∥

∥

∥
Σ̂XjXw − Σ̂XjY

∥

∥

∥
6 µndj (

∑n
i=1 di‖wi‖) , (13)

∀j ∈ J, Σ̂XjXw − Σ̂XjY = −µn (
∑n

i=1 di‖wi‖)
djwj

‖wj‖
. (14)

Note the correspondence at the optimum between optimal solutions of the two optimization prob-
lems in Eq. (1) and Eq. (12) throughλn = µn (

∑n
i=1 di‖wi‖). As far as consistency results are

concerned, Theorem 3 immediately applies to the alternative formulation because the regularization
paths are the same. For Theorem 2, it does not readily apply. But since the relationship between
λn andµn at optimum isλn = µn (

∑n
i=1 di‖wi‖) and that

∑n
i=1 di‖ŵi‖ converges to a constant

wheneverŵ is consistent, it does apply as well with minor modifications(in particular, to deal with
the case whereJ is empty, which requiresµn = ∞).

3. Covariance Operators and Multiple Kernel Learning

We now extend the previous consistency results to the case ofnon-parametric estimation, where each
group is a potentially infinite dimensional space of functions. Namely, the non parametric group
Lasso aims at estimating a sparse linear combination of functions of separate random variables,
and can then be seen as a variable selection method in a generalized additive model (Hastie and
Tibshirani, 1990). Moreover, as shown in Section 3.5, the non-parametric group Lasso may also be
seen as equivalent to learning a convex combination of kernels, a framework referred to as multiple
kernel learning (MKL). In this context it is customary to have a single input space with several
kernels (and hence Hilbert spaces) defined on the same input space (Lanckriet et al., 2004b, Bach
et al., 2004a). Our framework accomodates this case as well,but our assumption (A5) regarding the

9



invertibility of the joint correlation operator states that the kernels cannot span Hilbert spaces which
intersect.

In this nonparametric context, covariance operators constitute appropriate tools for the statistical
analysis and are becoming standard in the theoretical analysis of kernel methods (Fukumizu et al.,
2004, Gretton et al., 2005, Fukumizu et al., 2007, Caponnetto and de Vito, 2005). The following
section reviews important concepts. For more details, see Baker (1973) and Fukumizu et al. (2004).

3.1 Review of Covariance Operator Theory

In this section, we first consider a single setX and a positive definite kernelk : X × X → R,
associated with the reproducing kernel Hilbert space (RKHS) F of functions fromX to R (see,
e.g., Schölkopf and Smola (2001) or Berlinet and Thomas-Agnan (2003) for an introduction to
RKHS theory). The Hilbert space and its dot product〈·, ·〉F are such that for allx ∈ X , then
k(·, x) ∈ F and for allf ∈ F , 〈k(·, x), f〉F = f(x), which leads to thereproducing property
〈k(·, x), k(·, y)〉F = k(x, y) for any(x, y) ∈ X × X .

Covariance operator and norms Given a random variableX onX with bounded second order
moment, i.e., such thatEk(X,X) < ∞, we can define the covariance operator as the bounded
linear operatorΣXX from F toF such that for all(f, g) ∈ F × F ,

〈f,ΣXXg〉F = cov(f(X), g(X)) = E(f(X)g(X)) − (Ef(X))(Eg(X)).

The operatorΣXX isauto-adjoint, non-negativeandHilbert-Schmidt, i.e., for any orthonormal basis
(ep)p>1 of F , then

∑∞
p=1 ‖ΣXXep‖

2
F is finite; in this case, the value does not depend on the chosen

basis and is referred to as the square of the Hilbert-Schmidtnorm. The norm that we use by default
in this paper is the operator norm‖ΣXX‖F = supf∈F , ‖f‖F=1 ‖ΣXXf‖F , which is dominated by
the Hilbert-Schmidt norm. Note that in the finite dimensional case whereX = R

p, p > 0 and the
kernel is linear, the covariance operator is exactly the covariance matrix, and the Hilbert-Schmidt
norm is the Frobenius norm, while the operator norm is the maximum singular value (also referred
to as the spectral norm).

The null space of the covariance operator is the space of functionsf ∈ F such thatvar f(X) =
0, i.e., such thatf is constant on the support ofX.

Empirical estimators Given dataxi ∈ X , i = 1, . . . , n sampled i.i.d. fromPX , then the empir-
ical estimateΣ̂XX of ΣXX is defined such that〈f, Σ̂XXg〉F is the empirical covariance between
f(X) andg(X), which leads to:

Σ̂XX =
1

n

n
∑

i=1

k(·, xi) ⊗ k(·, xi) −
1

n

n
∑

i=1

k(·, xi) ⊗
1

n

n
∑

i=1

k(·, xi),

whereu⊗v is the operator defined by〈f, (u⊗v)g〉F = 〈f, u〉F 〈g, v〉F . If we further assume that the
fourth order moment is finite, i.e.,Ek(X,X)2 < ∞, then the estimate is uniformly consistent i.e.,
‖Σ̂XX −ΣXX‖F = Op(n

−1/2) (see Fukumizu et al. (2007) and Appendix C.1), which generalizes
the usual result of finite dimension.3

3. A random variableZn is said to be of orderOp(an) if for any η > 0, there existsM > 0 such thatsupn P(|Zn| >

Man) < η. See Van der Vaart (1998) for further definitions and properties of asymptotics in probability.
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Cross-covariance and joint covariance operators Covariance operator theory can be extended
to cases with more than one random variables (Baker, 1973). In our situation, we havem input
spacesX1, . . . ,Xm andm random variablesX = (X1, . . . ,Xm) andm RKHSF1, . . . ,Fm asso-
ciated withm kernelsk1, . . . , km.

If we assume thatEkj(Xj ,Xj) < ∞, for all j = 1, . . . ,m, then we can naturally define the
cross-covariance operatorsΣXiXj from Fj to Fi such that∀(fi, fj) ∈ Fi ×Fj,

〈fi,ΣXiXjfj〉Fi = cov(fi(Xi), fj(Xj)) = E(fi(Xi)fj(Xj)) − (Efi(Xi))(Efj(Xj)).

These are also Hilbert-Schmidt operators, and if we furtherassume thatEkj(Xj ,Xj)
2 < ∞, for

all j = 1, . . . ,m, then the natural empirical estimators converges to the population quantities in
Hilbert-Schmidt and operator norms at rateOp(n

−1/2). We can now define a joint block covariance
operator onF = F1 × · · · × Fm following the block structure of covariance matrices in Section 2.
As in the finite dimensional case, it leads to a joint covariance operatorΣXX and we can refer to
sub-blocks asΣXIXJ

for the blocks indexed byI andJ .
Moreover, we can define the bounded (i.e., with finite operator norm) correlation operators

throughΣXiXj = Σ
1/2
XiXi

CXiXjΣ
1/2
XjXj

(Baker, 1973). Throughout this paper we will make the as-
sumption that those operatorsCXiXj arecompactfor i 6= j: compact operators can be characterized
as limits of finite rank operators or as operators that can be diagonalized on a countable basis with
spectrum composed of a sequence tending to zero (see, e.g., Brezis, 1980). This implies that the
joint operatorCXX , naturally defined onF = F1 × · · · × Fm, is of the form “identity plus com-
pact”. It thus has a minimum and a maximum eigenvalue which are both between0 and1 (Brezis,
1980). If those eigenvalues are strictly greater than zero,then the operator is invertible, as are all the
square sub-blocks. Moreover, the joint correlation operator is lower-bounded by a strictly positive
constant times the identity operator.

Translation invariant kernels A particularly interesting ensemble of RKHS in the context of
nonparametric estimation is the set of translation invariant kernels defined overX = R

p, where
p > 1, of the formk(x, x′) = q(x′ − x) whereq is a function onRp with pointwise nonnegative
integrable Fourier transform (which implies thatq is continuous). In this case, the associated RKHS
is F = {q1/2 ∗ g, g ∈ L2(Rp)}, whereq1/2 denotes the inverse Fourier transform of the square
root of the Fourier transform ofq and∗ denotes the convolution operation, andL2(Rp) denotes the
space of square integrable functions. The norm is thenequalto

‖f‖2
F =

∫

|F (ω)|2

Q(ω)
dω,

whereF andQ are the Fourier transforms off andq (Wahba, 1990, Schölkopf and Smola, 2001).
Functions in the RKHS are functions with appropriately integrable derivatives. In this paper, when
using infinite dimensional kernels, we use the Gaussian kernel k(x, x′) = q(x−x′) = exp(−b‖x−
x′‖2).

One-dimensional Hilbert spaces In this paper, we also consider real random variablesY andε
embedded in the natural Euclidean structure of real numbers(i.e., we consider the linear kernel on
R). In this setting the covariance operatorΣXjY from R to Fj can be canonically identified as an
element ofFj . Throughout this paper, we always use this identification.
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3.2 Problem Formulation

We assume in this section and in the remaining of the paper that for eachj = 1, . . . ,m, Xj ∈ Xj

whereXj is any set on which we have a reproducible kernel Hilbert spacesFj , associated with the
positive kernelkj : Xj × Xj → R. We now make the following assumptions, that extends the
assumptions (A1), (A2) and (A3). For each of them, we detail the main implications as well as
common natural sufficient conditions. The first two conditions (A4) and (A5) depend solely on the
input variables, while the two other ones, (A6) and (A7) consider the relationship betweenX and
Y .

(A4) For eachj = 1 . . . ,m, Fj is a separable reproducing kernel Hilbert space associatedwith
kernelkj , and the random variableskj(·,Xj) are not constant and have finite fourth-order
moments, i.e.,Ekj(Xj ,Xj)

2 < ∞.

This is a non restrictive assumption in many situations; forexample, when (a)Xj = R
pj and

the kernel function (such as the Gaussian kernel) is bounded, or when (b)Xj is a compact subset of
R

pj and the kernel is any continuous function such as linear or polynomial. This implies notably,
as shown in Section 3.1, that we can define covariance, cross-covariance and correlation operators
that are all Hilbert-Schmidt (Baker, 1973, Fukumizu et al.,2007) and can all be estimated at rate
Op(n

−1/2) in operator norm.

(A5) All cross-correlation operators are compact and the jointcorrelation operatorCXX is invert-
ible.

This is also a condition uniquely on the input spaces and not on Y . Following Fukumizu et al.
(2007), a simple sufficient condition is that we have measurable spaces and distributions with joint
densitypX (and marginal distributionspXi(xi) andpXiXj(xi, xj)) and that themean square con-
tingencybetween all pairs of variables is finite, i.e.

E

{

pXiXj(xi, xj)

pXi(xi)pXj (xj)
− 1

}

< ∞.

The contingency is a measure of statistical dependency (Renyi, 1959), and thus this sufficient con-
dition simply states that two variablesXi andXj cannot be too dependent. In the context of mul-
tiple kernel learning for heterogeneous data fusion, this corresponds to having sources which are
heterogeneous enough. On top of compacity we impose the invertibility of the joint correlation
operator; we use this assumption to make sure that the functions f1, . . . , fm are unique. This en-
sures the non existence of any set of functionsf1, . . . , fm in the closures ofF1, . . . ,Fm, such that
var fj(Xj) > 0 and a linear combination is constant on the support of the random variables. In the
context of generalized additive models, this assumption isreferred to as the emptyconcurvity space
assumption (Hastie and Tibshirani, 1990).

(A6) There exists functionsf = (f1, . . . , fm) ∈ F = F1 × · · · × Fm, b ∈ R, and a functionh
of X = (X1, . . . ,Xm) such thatE(Y |X) =

∑m
j=1 fj(Xj) + b + h(X) with Eh(X)2 < ∞,

Eh(X) = 0 andEh(X)fj(Xj) = 0 for all j = 1, . . . ,m andfj ∈ Fj . We assume that
E((Y − f(X) − b)2|X) is almost surely greater thanσ2

min > 0 and smaller thanσ2
max < ∞.

We let denoteJ = {j, fj 6= 0} the sparsity pattern off .
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This assumption on the conditional expectation ofY givenX is not the most general and follows
common assumptions in approximation theory (see, e.g., Caponnetto and de Vito (2005), Cucker
and Smale (2002) and references therein). It allows misspecification, but it essentially requires that
the conditional expectation ofY given sums of measurable functions ofXj is attained at functions
in the RKHS, and not merely measurable functions. Dealing with more general assumptions in the
line of Ravikumar et al. (2008) requires to consider consistency for norms weaker than the RKHS
norms (Caponnetto and de Vito, 2005, Steinwart, 2001), and is left for future research. Note also,
that to simplify proofs, we assume a finite upper-boundσ2

max on the residual variance.

(A7) For all j ∈ {1, . . . ,m}, there existsgj ∈ Fj such thatfj = Σ
1/2
XjXj

gj, i.e., eachfj is in the

range ofΣ1/2
XjXj

.

This technical condition, already used by Caponnetto and deVito (2005), which concerns all RKHS
independently, ensures that we obtain consistency for the norm of the RKHS (and not another
weaker norm) for the least-squares estimates. Note also that it implies thatvar fj(Xj) > 0, i.e.,fj

is not constant on the support ofXj .
This assumption might be checked (at least) in two ways; first, if (ep)p>1 is a sequence of

eigenfunctions ofΣXX , associated with strictly positive eigenvaluesλp > 0, thenf is in the range of
ΣXX if and only if f is constant outside the support of the random variableX and

∑

p>1
1
λp
〈f, ep〉

2

is finite (i.e, the decay of the sequence〈f, ep〉
2 is strictly faster thanλp).

We also provide another sufficient condition that sheds additional light on this technical con-
dition which is always true for finite dimensional Hilbert spaces. For the common situation where
Xj = R

pj , PXj (the marginal distribution ofXj) has a densitypXj(xj) with respect to the Lebesgue
measure and the kernel is of the formkj(xj , x

′
j) = qj(xj − x′

j), we have the following proposition
(proved in Appendix D.4):

Proposition 9 AssumeX = R
p andX is a random variable onX with distributionPX that has a

strictly positivedensitypX(x) with respect to the Lebesgue measure. Assumek(x, x′) = q(x − x′)
for a functionq ∈ L2(Rp) has an integrable pointwise positive Fourier transform, with associated
RKHSF . If f can be written asf = q ∗ g (convolution ofq and g) with

∫

Rp g(x)dx = 0 and
∫

Rp
g(x)2

pX(x)dx < ∞, thenf ∈ F is in the range of the square rootΣ
1/2
XX of the covariance operator.

The previous proposition gives natural conditions regarding f and pX . Indeed, the condition
∫ g(x)2

pX(x)dx < ∞ corresponds to a natural support condition, i.e.,f should be zero whereX has
no mass, otherwise, we will not be able to estimatef ; note the similarity with the usual condition
regarding the variance of importance sampling estimation (Brémaud, 1999). Moreover,f should
be even smoother than a regular function in the RKHS (convolution by q instead of the square root
of q). Finally, we provide in Appendix E detailed covariance structures for Gaussian kernels with
Gaussian variables.

Notations Throughout this section, we refer to functionsf = (f1, . . . , fm) ∈ F = F1×· · ·×Fm

and the joint covariance operatorΣXX . In the following, we always use the norms of the RKHS.
When considering operators, we use the operator norm. We also refer to a subset off indexed byJ
throughfJ . Note that the Hilbert norm‖fJ‖FJ

is equal to‖fJ‖FJ
= (
∑

j∈J ‖fj‖Fj )
1/2. Finally,

given a nonnegative auto-adjoint operatorS, we let denoteS1/2 its nonnegative autoadjoint square
root (Baker, 1973).
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3.3 Nonparametric Group Lasso

Given i.i.d data(xij , yi), i = 1, . . . , n, j = 1, . . . ,m, where eachxij ∈ Xj, our goal is to estimate
consistently the functionsfj and which of them are zero. We let denoteȲ ∈ R

n the vector of
responses. We consider the following optimization problem:

min
f∈F , b∈R

1

2n

n
∑

i=1



yi −

m
∑

j=1

fj(xij) − b





2

+
µn

2





m
∑

j=1

dj‖fj‖Fj





2

.

By minimizing with respect tob in closed form, we obtain a similar formulation to Eq. (12), where
empirical covariance matrices are replaced by empirical covariance operators:

min
f∈F

1

2
Σ̂Y Y − 〈f, Σ̂XY 〉F +

1

2
〈f, Σ̂XXf〉F +

µn

2





m
∑

j=1

dj‖fj‖Fj





2

. (15)

We let denotef̂ any minimizer of Eq. (15), and we refer to it as the non parametric group Lasso
estimate, or also the multiple kernel learning estimate. ByProposition 13, the previous problem has
indeed minimizers, and by Proposition 14 this global minimum is unique with probability tending
to one.

Note that formally, the finite and infinite dimensional formulations in Eq. (12) and Eq. (15)
are the same, and this is the main reason why covariance operators are very practical tools for the
analysis. Furthermore, we have the corresponding proposition regarding optimality conditions (see
proof in Appendix A.3):

Proposition 10 A functionf ∈ F with sparsity patternJ = J(f) = {j, fj 6= 0} is optimal for
problem (15) if and only if

∀j ∈ Jc,
∥

∥

∥
Σ̂XjXf − Σ̂XjY

∥

∥

∥

Fj

6 µndj (
∑n

i=1 di‖fi‖Fi) , (16)

∀j ∈ J, Σ̂XjXf − Σ̂XjY = −µn (
∑n

i=1 di‖fi‖Fi)
djfj

‖fj‖Fj

. (17)

A consequence (and in fact the first part of the proof) is that an optimal functionf must be in the
range ofΣ̂XY andΣ̂XX , i.e., an optimalf is supported by the data; that is, eachfj is a linear com-
bination of functionskj(·, xij), i = 1, . . . , n. This is a rather circumvoluted way of presenting the
representer theorem (Wahba, 1990), but this is the easiest for the theoretical analysis of consistency.
However, to actually compute the estimatef̂ from data, we need the usual formulation with dual
parameters (see Section 3.5).

Moreover, one important conclusion is that all our optimization problems in spaces of functions
can be in fact transcribed into finite-dimensional problems. In particular, all notions from multivari-
ate differentiable calculus may be used without particularcare regarding the infinite dimension.

3.4 Consistency Results

We consider the following strict and weak conditions, whichcorrespond to condition (4) and (5) in
the finite dimensional case:

max
i∈Jc

1

di

∥

∥

∥Σ
1/2
XiXi

CXiXJ
C−1

XJXJ
Diag(dj/‖fj‖Fj )gJ

∥

∥

∥

Fi

< 1, (18)
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max
i∈Jc

1

di

∥

∥

∥Σ
1/2
XiXi

CXiXJ
C−1

XJXJ
Diag(dj/‖fj‖Fj )gJ

∥

∥

∥

Fi

6 1, (19)

whereDiag(dj/‖fj‖Fj ) denotes the block-diagonal operator with operatorsdj

‖fj‖Fj
IFj on the diag-

onal. Note that this is well-defined becauseCXX is invertible and that it reduces to Eq. (4) and
Eq. (5) when the input spacesXj, j = 1, . . . ,m are of the formR

pj and the kernels are linear.
The main reason is rewriting the conditions in terms of correlation operators rather than covariance
operators is that correlation operators are invertible by assumption, while covariance operators are
not as soon as the Hilbert spaces have infinite dimensions. The following theorems give necessary
and sufficient conditions for the path consistency of the nonparametric group Lasso (see proofs in
Appendix C.2 and Appendix C.3):

Theorem 11 Assume (A4-7) and thatJ is not empty. If condition (18) is satisfied, then for any
sequenceµn such thatµn → 0 andµnn1/2 → +∞, any sequence of nonparametric group Lasso
estimatesf̂ converges in probability tof and the sparsity patternJ(f̂) = {j, f̂j 6= 0} converges in
probability toJ.

Theorem 12 Assume (A4-7) and thatJ is not empty. If there exists a (possibly data-dependent)
sequenceµn such f̂ converges tof and Ĵ converges toJ in probability, then condition (19) is
satisfied.

Essentially, the results in finite dimension also hold when groups have infinite dimensions. We
leave the extensions of the refined results in Section 2.4 to future work. Condition (18) might be
hard to check in practice since it involves inversion of correlation operators; see Section 3.6 for an
estimate from data.

3.5 Multiple Kernel Learning Formulation

Proposition 10 does not readily lead to an algorithm for computing the estimatêf . In this sec-
tion, following Bach et al. (2004a), we link the group Lasso to the multiple kernel learning frame-
work (Lanckriet et al., 2004b). Problem (15) is an optimization problem on a potentially infinite
dimensional space of functions. However, the following proposition shows that it reduces to a finite
dimensional problem that we now precise (see proof in Appendix A.4):

Proposition 13 The dual of problem (15) is

max
α∈Rn, α⊤1n=0

{

−
1

2n
‖Ȳ − nµnα‖2 −

1

2µn
max

i=1,...,m

α⊤Kiα

d2
i

}

, (20)

where(Ki)ab = ki(xa, xb) are the kernel matrices inRn×n, for i = 1, . . . ,m. Moreover, the
dual variableα ∈ R

n is optimal if and only ifα⊤1n = 0 and there existsη ∈ R
m
+ such that

∑m
j=1 ηjd

2
j = 1 and





m
∑

j=1

ηjKj + nµnIn



α = Ȳ , (21)

∀j ∈ {1, . . . ,m},
α⊤Kjα

d2
j

< max
i=1,...,m

α⊤Kiα

d2
i

⇒ ηj = 0. (22)
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The optimal function may then be written asfj = ηj
∑n

i=1 αikj(·, xij).

Since the problem in Eq. (20) is strictly convex, there is a unique dual solutionα. Note that Eq. (21)
corresponds to the optimality conditions for the least-square problem:

min
f∈F

1

2
Σ̂Y Y − 〈f, Σ̂XY 〉F +

1

2
〈f, Σ̂XXf〉F +

1

2
µn

∑

j, ηj>0

‖fj‖
2
Fj

ηi
,

whose dual problem is:

max
α∈Rn, α⊤1n=0







−
1

2n
‖Ȳ − nµnα‖2 −

1

2µn
α⊤





m
∑

j=1

ηiKi



α







,

and unique solution isα = (
∑m

j=1 ηjKj + nµnIn)−1Ȳ . That is, the solution of the MKL problem
leads to dual parametersα and set of weightsη > 0 such thatα is the solution to the least-square
problem with kernelK =

∑m
j=1 ηjKj. Bach et al. (2004a) has shown in a very similar con-

text (hinge loss instead of the square loss) that the optimalη in Proposition 13 can be obtained
as the minimizer of the optimal value of the regularized least-square problem with kernel matrix
∑m

j=1 ηjKj , i.e.:

J(η) = max
α∈Rn, α⊤1n=0







−
1

2n
‖Ȳ − nµnα‖2 −

1

2µn
α⊤





m
∑

j=1

ηjKj



α







,

with respect toη > 0 such that
∑m

j=1 ηjd
2
j = 1. This formulation allows to derive probably ap-

proximately correct error bounds (Lanckriet et al., 2004b,Bousquet and Herrmann, 2003). Besides,
this formulation allowsη to be negative, as long as the matrix

∑m
j=1 ηjKj is positive semi-definite.

However, theoretical advantages of such a possibility still remain unclear.
Finally, we state a corollary of Proposition 13 that shows that under our assumptions regarding

the correlation operator, we have a unique solution to the non parametric groups Lasso problem with
probability tending to one (see proof in Appendix A.5):

Proposition 14 Assume (A4-5). The problem (15) has a unique solution with probability tending
to one.

3.6 Estimation of Correlation Condition (18)

Condition (4) is simple to compute while the non parametric condition (18) might be hard to check
even if all densities are known (we provide however in Section 5 a specific example where we
can compute in closed form all covariance operators). The following proposition shows that we

can consistently estimate the quantities
∥

∥

∥
Σ

1/2
XiXi

CXiXJ
C−1

XJXJ
Diag(dj/‖fj‖Fj )gJ

∥

∥

∥

Fi

given an i.i.d.

sample (see proof in Appendix C.4):

Proposition 15 Assume (A4-7), andκn → 0 andκnn1/2 → ∞. Let

α = Πn





∑

j∈J

ΠnKjΠn + nκnIn





−1

ΠnȲ
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andη̂j = 1
dj

(α⊤Kjα)1/2. Then, for alli ∈ Jc, the norm
∥

∥

∥Σ
1/2
XiXi

CXiXJ
C−1

XJXJ
Diag(dj/‖fj‖)gJ

∥

∥

∥

Fi

is consistently estimated by:

∥

∥

∥

∥

∥

∥

(ΠnKiΠn)1/2





∑

j∈J

ΠnKjΠn + nκnIn





−1



∑

j∈J

1

η̂j
ΠnKjΠn



α

∥

∥

∥

∥

∥

∥

. (23)

4. Adaptive Group Lasso and Multiple Kernel Learning

In previous sections, we have shown that specific necessary and sufficient conditions are needed
for path consistency of the group Lasso and multiple kernel learning. The following procedures,
adapted from the adaptive Lasso of Zou (2006), lead to two-step procedures that always achieve
both consistency, with no condition such as Eq. (4) or Eq. (18). As before, results are a bit different
when groups have finite sizes and groups may have infinite sizes.

4.1 Adaptive Group Lasso

The following theorem extends the similar theorem of Zou (2006), and shows that we can get both
Op(n

−1/2) consistency and correct pattern estimation:

Theorem 16 Assume (A1-3) andγ > 0. Let ŵLS = Σ̂−1
XX Σ̂XY denote the (unregularized) least-

square estimate. Let̂wA denote any minimizer of

1

2
Σ̂Y Y − Σ̂Y Xw +

1

2
w⊤Σ̂XXw +

µn

2





m
∑

j=1

‖ŵLS
j ‖−γ‖wj‖





2

.

If n−1/2 ≫ µn ≫ n−1/2−γ/2, thenŵA converges in probability tow, J(ŵA) converges in proba-
bility to J, andn1/2(ŵA

J
− wJ) tends in distribution to a normal distribution with mean zero and

covariance matrixΣ−1
XJXJ

.

This theorem, proved in Appendix D.1, shows that the adaptive group Lasso exhibit all important
asymptotic properties, both in terms of errors and selectedmodels. In the nonparametric case, we
obtain a weaker result.

4.2 Adaptive Multiple Kernel Learning

We first begin with the consistency of the least-square estimate (see proof in Appendix D.2):

Proposition 17 Assume (A4-7). The unique minimizer̂fLS
κn

of

1

2
Σ̂Y Y − 〈Σ̂XY , f〉F +

1

2
〈f, Σ̂XXf〉F +

κn

2

m
∑

j=1

‖fj‖
2
Fj

,

converges in probability tof if κn → 0 and κnn1/2 → 0. Moreover, we have‖f̂LS
κn

− f‖F =

Op(κ
1/2
n + κ−1

n n−1/2).
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Since the least-square estimate is consistent and we have anupper bound on its convergence
rate, we follow Zou (2006) and use it to defined adaptive weightsdj for which we get both sparsity
and regular consistency without any conditions on the valueof the correlation operators.

Theorem 18 Assume (A4-7) andγ > 1. Letf̂LS
n−1/3

be the least-square estimate with regularization

parameter proportional ton−1/3, as defined in Proposition 17. Let̂fA denote any minimizer of

1

2
Σ̂Y Y − 〈Σ̂XY , f〉F +

1

2
〈f, Σ̂XXf〉F +

µ0n
−1/3

2





m
∑

j=1

‖(f̂LS
κn

)j‖
−γ
Fj

‖fj‖Fj





2

.

Thenf̂A converges tof andJ(f̂A) converges toJ in probability.

Theorem 18 allows to set up a specific vector of weightsd. This provides a principled way to
define data adaptive weights, that allows to solve (at least theoretically) the potential consistency
problems of the usual MKL framework (see Section 5 for illustration on synthetic examples). Note
that we have no result concerning theOp(n

−1/2) consistency of our procedure (as we have for the
finite dimensional case) and obtaining precise convergencerates is the subject of ongoing research.

The following proposition gives the expression for the solution of the least-square problem,
necessary for the computation of adaptive weights in Theorem 18.

Proposition 19 The solution of the least-square problem in Proposition 17 is given by

∀j ∈ {1, . . . ,m}, fLS
j =

n
∑

i=1

αikj(·, xij) with α = Πn





m
∑

j=1

ΠnKjΠn + nκnIn





−1

ΠnȲ ,

with norms‖F̂LS
j ‖Fj =

(

α⊤Kjα
)1/2

, j = 1, . . . ,m.

Other weighting schemes have been suggested, based on various heuristics. A notable one (which
we use in simulations) is the normalization of kernel matrices by their trace (Lanckriet et al., 2004b),
which leads todj = (trΣ̂XjXj )

1/2 = ( 1
ntrΠnKjΠn)1/2. Bach et al. (2004b) have observed em-

pirically that such normalization might lead to suboptimalsolutions and consider weightsdj that
grow with the empirical ranks of the kernel matrices. In thispaper, we give theoretical arguments
that indicate that weights which do depend on the data are more appropriate and work better (see
Section 5 for examples).

5. Simulations

In this section, we illustrate the consistency results obtained in this paper with a few simple simula-
tions on synthetic examples.

5.1 Groups of Finite Sizes

In the finite dimensional group case, we sampledX ∈ R
p from a normal distribution with zero

mean vector and a covariance matrix of sizep = 8 for m = 4 groups of sizepj = 2, j = 1, . . . ,m,
generated as follows: (a) sample anp× p matrixG with independent standard normal distributions,

18



0 5 10 15
0

0.2

0.4

0.6

0.8

1

−log(µ)

η

consistent − non adaptive

5 10 15
0

0.2

0.4

0.6

0.8

1

−log(µ)

η

consistent − adaptive (γ = 1)

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

−log(µ)

η

inconsistent − non adaptive

5 10 15
0

0.2

0.4

0.6

0.8

1

−log(µ)

η

inconsistent − adaptive (γ = 1)

0 5 10
0

0.2

0.4

0.6

0.8

1

−log(µ)

η

inconsistent − non adaptive

5 10 15
0

0.2

0.4

0.6

0.8

1

−log(µ)

η

inconsistent − adaptive (γ = 1)

Figure 1: Regularization paths for the group Lasso for two weighting schemes (left: non adaptive,
right: adaptive) and three different population densities (top: strict consistency condition
satisfied,middle: weak condition not satisfied, no model consistent estimates, bottom:
weak condition not satisfied, some model consistent estimates but without regular con-
sistency). For each of the plots, plain curves correspond tovalues of estimated̂ηj, dotted
curves to population valuesηj, and bold curves to model consistent estimates.
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(b) form ΣXX = GG⊤, (c) for eachj ∈ {1, . . . ,m}, rescaleXj ∈ R
2 so thattrΣXjXj = 1.

We selectedCard(J) = 2 groups at random and sampled non zero loading vectors as follows: (a)
sample each loading from from independent standard normal distributions, (b) rescale those to unit
norm, (c) rescale those by a scaling which is uniform at random between1

3 and1. Finally, we chose
a constant noise level of standard deviationσ equal to0.2 times (E(w⊤X)2)1/2 and sampledY
from a conditional normal distribution with constant variance. The joint distribution on(X,Y ) thus
defined satisfies with probability one assumptions (A1-3).

For cases when the correlation conditions (4) and (5) were orwere not satisfied, we consider
two different weighting schemes, i.e., different ways of setting the weightsdj of the blockℓ1-norm:
unit weights (which correspond to the unit trace weighting scheme) and adaptive weights as defined
in Section 4.

In Figure 1, we plot the regularization paths correspondingto 200 i.i.d. samples, computed by
the algorithm of Bach et al. (2004b). We only plot the values of the estimated variableŝηj , j =
1, . . . ,m for the alternative formulation in Section 2.7, which are proportional to‖ŵj‖ and normal-
ized so that

∑m
j=1 η̂j = 1. We compare them to the population valuesηj : both in terms of values,

and in terms of their sparsity pattern (ηj is zero for the weights which are equal to zero). Figure 1 il-
lustrates several of our theoretical results: (a) the top row corresponds to a situation where the strict
consistency condition is satisfied and thus we obtain model consistent estimates with also a good
estimation of the loading vectors (in the figure, only the good behavior of the norms of these loading
vectors are represented); (b) the right column correspondsto the adaptive weighting schemes which
also always achieve the two type of consistency; (c) in the middle and bottom rows, the consistency
condition was not satisfied, and in the bottom row the condition of Proposition Figure 1 that ensures
that we can get model consistent estimates without regular consistency, is met, while it is not in the
middle row: as expected, in the bottom row, we get some model consistent estimates but with bad
norm estimation.

In Figure 2, 3 and 4, we consider the three joint distributions used in Figure 1 and compute
regularization paths for several number of samples (10 to 105) with 200 replications. This allows
us to estimate both the probability of correct pattern estimationP(J(ŵ = J) which is considered in
Section 2.5, and the logarithm of the expected errorlog E‖ŵ − w‖2.

From Figure 2, it is worth noting (a) the regular spacing between the probability of correct
pattern selection for several equally spaced (in log scale)numbers of samples, which corroborates
the asymptotic result in Section 2.5. Moreover, (b) in both row, we get model consistent estimates
with increasingly smaller norms as the number of samples grow. Finally, (c) the mean square errors
are smaller for the adaptive weighting scheme.

From Figure 3, it is worth noting that (a) in the non adaptive case, we have two regimes for the
probability of correct pattern selection: a regime corresponding to Proposition 6 where this proba-
blity can take values in[0, 1) for increasingly smaller regularization parameters (whenn grows); and
a regime corresponding to non vanishing limiting regularization parameters corresponding to Propo-
sition 5: we have model consistency without regular consistency. Also, (b) the adaptive weighting
scheme allows both consistencies. In Figure 3 however, the second regime (correct model estimates,
inconsistent estimation of loadings) is not present.

In Figure 5, we sampled 10,000 different covariance matrices and loading vectors using the
procedure described above. For each of these we computed theregularization paths from 1000
samples, and we classify each path into three categories: (1) existence of model consistent estimates
with estimation error‖ŵ −w‖ less than10−1, (2) existence of model consistent estimates but none
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Figure 2: Synthetic example where consistency condition inEq. (4) is satisfied (same example as
the top of Figure 1: probability of correct pattern selection (left) and logarithm of the ex-
pected mean squared estimation error (right), for several number of samples as a function
of the regularization parameter, for regular regularization (top), adaptive regularization
with γ = 1 (bottom).
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Figure 3: Synthetic example where consistency condition inEq. (5) is not satisfied (same example
as the middle of Figure 1: probability of correct pattern selection (left) and logarithm
of the expected mean squared estimation error (right), for several number of samples
as a function of the regularization parameter, for regular regularization (top), adaptive
regularization withγ = 1 (bottom).
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Figure 4: Synthetic example where consistency condition inEq. (5) is not satisfied (same example
as the bottom of Figure 1: probability of correct pattern selection (left) and logarithm
of the expected mean squared estimation error (right), for several number of samples
as a function of the regularization parameter, for regular regularization (top), adaptive
regularization withγ = 1 (bottom).
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Figure 5: Consistency of estimation vs. consistency condition. See text for details.

with estimation error‖ŵ − w‖ less than10−1 and (3) non existence of model consistent estimates.
In Figure 5 we plot the proportion of each of the three class asa function of the logarithm of

maxi∈Jc
1
di

∥

∥

∥ΣXiXJ
Σ−1

XJXJ
Diag(dj/‖wj‖)wJ

∥

∥

∥. The position of the previous value with respect

to 1 is indicative of the expected model consistency. When itis less than one, then we get with
overwhelming probability model consistent estimates withgood errors. As the condition gets larger
than one, we get fewer such good estimates and more and more model inconsistent estimates.

5.2 Nonparametric Case

In the infinite dimensional group case, we sampledX ∈ R
m from a normal distribution with zero

mean vector and a covariance matrix of sizem = 4, generated as follows: (a) sample am × m
matrix G with independent standard normal distributions, (b) formΣXX = GG⊤, (c) for each
j ∈ {1, . . . ,m}, rescaleXj ∈ R so thatΣXjXj = 1.

We use the same Gaussian kernel for each variables,k(x, x′) = e−(x−x′)2 . In this situation,
as shown in Appendix E we can compute in closed form the eigenfunctions and eigenvalues of the
marginal covariance operators. We then sample function from random independent components on
the first 10 eigenfunctions. Examples are given in Figure 6.

In Figure 7, we plot the regularization paths correspondingto 1000 i.i.d. samples, computed
by the algorithm of Bach et al. (2004b). We only plot the values of the estimated variableŝηj, j =
1, . . . ,m for the alternative formulation in Section 2.7, which are proportional to‖ŵj‖ and normal-
ized so that

∑m
j=1 η̂j = 1. We compare them to the population valuesηj : both in terms of values,

and in terms of their sparsity pattern (ηj is zero for the weights which are equal to zero). Figure 7
illustrates several of our theoretical results: (a) the toprow corresponds to a situation where the
strict consistency condition is satisfied and thus we obtainmodel consistent estimates with also a
good estimation of the loading vectors (in the figure, only the good behavior of the norms of these
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Figure 6: Functions to be estimated in the synthetic non parametric group Lasso experiments (left:
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Figure 7: Regularization paths for the group Lasso for two weighting schemes (left: non adaptive,
right: adaptive) and two different population densities (top: strict consistency condition
satisfied,bottom: weak condition not satisfied. For each of the plots, plain curves corre-
spond to values of estimated̂ηj , dotted curves to population valuesηj , and bold curves to
model consistent estimates.
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loading vectors are represented); (b) in the bottom row, theconsistency condition was not satisfied,
and we do not get good model estimates. Finally, (b) the rightcolumn corresponds to the adaptive
weighting schemes which also always achieve the two type of consistency.However, such schemes
should be used with care, as there is one added free parameter(the regularization parameterκ of the
least-square estimate used to define the weights): if chosentoo large, all adaptive weights are equal,
and thus there is no adaptation, while if chosen too small, the least-square estimate may overfit.

6. Conclusion

In this paper, we have extended some of the theoretical results of the Lasso to the group Lasso, for
finite dimensional groups and infinite dimensional groups. In particular, under practical assumptions
regarding the distributions the data are sampled from, we have provided necessary and sufficient
conditions for model consistency of the group Lasso and its nonparametric version, multiple kernel
learning.

The current work could be extended in several ways: first, a more detailed study of the limiting
distributions of the group Lasso and adaptive group Lasso estimators could be carried and then
extend the analysis of Zou (2006) or Juditsky and Nemirovski(2000) and Wu et al. (2007), in
particular regarding convergence rates. Second, our results should extend to generalized linear
models, such as logistic regression (Meier et al., 2006). Also, it is of interest to let the numberm of
groups or kernels to grow unbounded and extend the results ofZhao and Yu (2006) and Meinshausen
and Yu (2006) to the group Lasso. Finally, similar analysis may be carried through for more general
norms with different sparsity inducing properties (Bach, 2007).

Appendix A. Proof of Optimization Results

In this appendix, we give detailed proofs of the various propositions on optimality conditions and
dual problems.

A.1 Proof of Proposition 1

We rewrite problem in Eq. (1), in the form

min
w∈Rp, v∈Rm

1

2
Σ̂Y Y − Σ̂Y Xw +

1

2
w⊤Σ̂XXw + λn

m
∑

j=1

djvj ,

with added constraints that∀j, ‖wj‖ 6 vj . In order to deal with these constraints we use the tools
from conic programming with the second-order cone, also known as the “ice cream” cone (Boyd
and Vandenberghe, 2003). We consider the Lagrangian with dual variables(βj , γj) ∈ R

pj ×R such
that‖βj‖ 6 γj :

L(w, v, β, γ) =
1

2
Σ̂Y Y − Σ̂Y Xw +

1

2
w⊤Σ̂XXw + λnd⊤v −

m
∑

j=1

(

wj

vj

)⊤(βj

γj

)

.
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The derivatives with respect to primal variables are

∇wL(w, v, β, γ) = Σ̂XXw − Σ̂XY − β,

∇vL(w, v, β, γ) = λnd − γ.

At optimality, primal and dual variables are completely characterized byw andβ. Since the dual and
the primal problems are strictly feasible, strong duality holds and the KKT conditions for reduced
primal/dual variables(w, β) are

∀j, ‖βj‖ 6 λndj (dual feasibility), (24)

∀j, βj = Σ̂XjXw − Σ̂XjY (stationarity), (25)

∀j, β⊤
j wj + ‖wj‖λndj = 0 (complementary slackness). (26)

Complementary slackness for the second order cone has special consequences:w⊤
j βj+‖wj‖λndj =

0 if and only if (Boyd and Vandenberghe, 2003, Lobo et al., 1998), either (a)wj = 0, or (b)
wj 6= 0, ‖βj‖ = λndj and∃ηj > 0 such thatwj = −

ηj

λn
βj (anti-proportionality), which implies

βj = −wj
λndj

‖wj‖
andηj = ‖wj‖/dj . This leads to the proposition.

A.2 Proof of Proposition 8

We follow the proof of Proposition 1 and of Bach et al. (2004a). We rewrite problem in Eq. (12), in
the form

min
w∈Rp, v∈Rm, t∈R

1

2
Σ̂Y Y − Σ̂Y Xw +

1

2
w⊤Σ̂XXw +

1

2
µnt2,

with constraints that∀j, ‖wj‖ 6 vj andd⊤v 6 t. We consider the Lagrangian with dual variables
(βj , γj) ∈ R

pj × R andδ ∈ R+ such that‖βj‖ 6 γj , j = 1, . . . ,m:

L(w, v, β, γ, δ) =
1

2
Σ̂Y Y − Σ̂Y Xw +

1

2
w⊤Σ̂XXw +

1

2
µnt2 − β⊤w − γ⊤v + δ(d⊤v − t).

The derivatives with respect to primal variables are

∇wL(w, v, β, γ) = Σ̂XXw − Σ̂XY − β,

∇vL(w, v, β, γ) = δd − γ,

∇tL(w, v, β, γ) = µnt − δ.

At optimality, primal and dual variables are completely characterized byw andβ. Since the dual and
the primal problems are strictly feasible, strong duality holds and the KKT conditions for reduced
primal/dual variables(w, β) are

∀j, βj = Σ̂XjXw − Σ̂XjY (stationarity - 1), (27)

∀j,

m
∑

j=1

dj‖wj‖ =
1

µn
max

i=1,...,m

‖βi‖

di
(stationarity - 2), (28)

∀j,

(

βj

dj

)⊤

wj + ‖wj‖ max
i=1,...,m

‖βi‖

di
= 0 (complementary slackness). (29)
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Complementary slackness for the second order cone implies that:
(

βj

dj

)⊤

wj + ‖wj‖ max
i=1,...,m

‖βi‖

di
= 0,

if and only if, either (a)wj = 0, or (b) wj 6= 0 and ‖βj‖
dj

= max
i=1,...,m

‖βi‖

di
, and∃ηj > 0 such that

wj = −ηjβj/µn, which implies‖wj‖ =
ηjdj

µn
max

i=1,...,m

‖βi‖

di
.

By writing ηj = 0 if wj = 0 (i.e., in order to cover all cases), we have from Eq. (28)
∑m

j=1 dj‖wj‖ = 1
µn

max
i=1,...,m

‖βi‖

di
, which implies

∑m
j=1 d2

jηj = 1 and thus∀j, ηj =
‖wj‖/dj
∑

i di‖wi‖
.

This leads to∀j, βj = −wjµn/ηj = −
wj

‖wj‖

∑n
i=1 di‖wi‖. The proposition follows.

A.3 Proof of Proposition 10

By following the usual proof of the representer theorem (Wahba, 1990), we obtain that each optimal
function fj must be supported by the data points, i.e., there existsα = (α1, . . . , αm) ∈ R

n×m

such that for allj = 1, . . . ,m, fj =
∑n

i=1 αijkj(·, xij). When using this representation back into
Eq. (15), we obtain an optimization problem that only depends onφj = G⊤

j αj for j = 1, . . . ,m

whereGj denotes any square root of the kernel matrixKj, i.e., Kj = GjG
⊤
j . This problem is

exactly the finite dimensional problem in Eq. (12), whereX̄j is replaced byGj and wj by φj.
Thus Proposition 8 applies and we can easily derive the current proposition by expressing all terms
through the functionsfj. Note that in this proposition, we do not show that theαj , j = 1, . . . ,m,
are all proportional to the same vector, as is done in Appendix A.4.

A.4 Proof of Proposition 13

We prove the proposition in the linear case. Going to the general case, can be done in the same way
as done in Appendix A.3. We let̄X denote the covariate matrix inRn×p; we simply need to add a
new variableu = X̄w+b1n and to “dualize” it. That is, we rewrite problem in Eq. (12), in the form

min
w∈Rp, b∈R, v∈Rm, t∈R, u∈Rn

1

2n
‖Ȳ − u‖2 +

1

2
µnt2,

with constraints that∀j, ‖wj‖ 6 vj , d⊤v 6 t andX̄w + b1n = u. We consider the Lagrangian with
dual variables(βj , γj) ∈ R

pj × R andδ ∈ R+ such that‖βj‖ 6 γj, andα ∈ R
n:

L(w, b, v, u, β, γ, α, δ) =
1

2n
‖Ȳ −u‖2+µnα⊤(u−X̄w)+

1

2
µnt2−

m
∑

j=1

{

β⊤
j wj + γjvj

}

+δ(d⊤v−t).

The derivatives with respect to primal variables are

∇wL(w, v, u, β, γ, α) = −µnX̄⊤α − β

∇vL(w, v, u, β, γ, α) = δd − γ

∇tL(w, v, u, β, γ, α) = µnt − δ

∇uL(w, v, u, β, γ, α) =
1

n
(u − Ȳ + µnnα)

∇bL(w, v, u, β, γ, α) = µnα⊤1n.
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Equating them to zero, we get the dual problem in Eq. (20). Since the dual and the primal problems
are strictly feasible, strong duality holds and the KKT conditions for reduced primal/dual variables
(w,α) are

∀j, X̄w − Ȳ + µnnα = 0 (stationarity - 1), (30)

∀j,
m
∑

j=1

dj‖wj‖ = max
i=1,...,m

(α⊤Kiα)1/2

di
(stationarity - 2), (31)

α⊤1n = 0 (stationarity - 3), (32)

∀j,

(

−X̄⊤
j α

dj

)⊤

wj + ‖wj‖ max
i=1,...,m

(α⊤Kiα)1/2

di
= 0 (complementary slackness). (33)

Complementary slackness for the second order cone goes leads to:

(

−X̄⊤
j α

dj

)⊤

wj + ‖wj‖ max
i=1,...,m

(α⊤Kiα)1/2

di
= 0,

if and only if, either (a)wj = 0, or (b)wj 6= 0 and(α⊤Kjα)1/2

dj
= max

i=1,...,m

(α⊤Kiα)1/2

di
, and∃ηj > 0

such thatwj = −ηj

(

−X̄⊤
j α
)

, which implies‖wj‖ = ηjdj max
i=1,...,m

(α⊤Kiα)1/2

di
.

By writing ηj = 0 if wj = 0 (to cover all cases), we have from Eq. (31),
∑m

j=1 dj‖wj‖ =

max
i=1,...,m

(α⊤Kiα)1/2

di
, which implies

∑m
j=1 d2

jηj = 1. The proposition follows from the fact that at

optimality,∀j, wj = ηjX̄
⊤
j α.

A.5 Proof of Proposition 14

What makes this proposition non obvious is the fact that the covariance operatorΣXX is not
invertible in general. From proposition 13, we know that each fj must be of the formfj =

ηj
∑n

i=1 αikj(xij , ·), whereα isuniquelydefined. Moreover,η is such that
(

∑m
j=1 ηjKj + nµnIn

)

α =

Ȳ and such that ifα
⊤Kjα

d2

j
< A, thenηj = 0 (whereA = maxi=1,...,m

α⊤Kiα
d2

i
). Thus, if the so-

lution is not unique, there exists two vectorsη 6= ζ such thatη andζ have zero components on
indices j such thatα⊤Kjα < Ad2

j (we let denoteJ the active set and thusJc this set of in-
dices), and

∑m
j=1(ζj − ηj)Kjα = 0. This implies that the vectorsΠnKjα = ΠnKjΠnα, j ∈ J

are linearly dependent. Those vectors are exactly the centered vector of values of the functions
gj =

∑n
i=1 αikj(xij , ·) at the observed data points. Thus, non unicity implies that the empiri-

cal covariance matrix of the random variablesgj(Xj), j ∈ J , is non invertible. Moreover, we
have‖gj‖

2
Fj

= α⊤Kjα = d2
jA > 0 and the empirical marginal variance ofgj(Xj) is equal to

α⊤K2
j α > 0 (otherwise‖gj‖

2
Fj

= 0. By normalizing by the (non vanishing) empirical standard
deviations, we thus obtain functions such that the empirical covariance matrix is singular, but the
marginal empirical variance are equal to one. Because the empirical covariance operator is a con-
sistent estimator ofΣXX andCXX is invertible, we get a contradiction, which proves the unicity of
solutions.
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Appendix B. Detailed Proofs for the Group Lasso

In this appendix, detailed proofs of the consistency results for the finite dimensional case (Theo-
rems 2 and 3) are presented. Some of the results presented in this appendix are corollaries of the
more general results in Appendix C, but their proofs in the finite dimensional case are much simpler.

B.1 Proof of Theorem 2

We begin with a lemma, which states that if we restrict ourselves to the covariates which we are
after (i.e., indexed byJ), we get a consistent estimate as soon asλn tends to zero:

Lemma 20 Assume (A1-3). Let w̃J any minimizer of

1

2n
‖Ȳ − X̄JwJ‖

2 + λn

∑

j∈J

dj‖wj‖ =
1

2
Σ̂Y Y − Σ̂Y XJ

wJ +
1

2
w⊤

J Σ̂XJXJ
wJ + λn

∑

j∈J

dj‖wj‖.

If λn → 0, thenw̃J converges towJ in probability.

Proof If λn tends to zero, then the cost function definingw̃J converges toFn(wJ) = 1
2ΣY Y −

ΣY XJ
wJ + 1

2w⊤
J

ΣXJXJ
wJ whose unique (becauseΣXJXJ

is positive definite) global minimum is
wJ (true generating value). The convergence ofw̃J is thus a simple consequence of standard results
in M -estimation (Van der Vaart, 1998, Fu and Knight, 2000).

We now prove Theorem 2. Let̃wJ be defined as in Lemma 20. We extend it by zeros onJc. We
already know from Lemma 20 that we have consistency in squared norm. Since with probability
tending to one, the problem has a unique solution (becauseΣXX is invertible), we now need to
prove that the probability that̃w is optimal for problem in Eq. (1) is tending to one.

By definition ofw̃J, the optimality condition (3) is satisfied. We now need to verify optimality
condition (2). Denotingε = Y − w⊤X − b, we have:

Σ̂XY = Σ̂XXw + Σ̂Xε =
(

ΣXX + Op(n
−1/2)

)

w + Op(n
−1/2) = ΣXXJ

wJ + Op(n
−1/2),

because of classical results on convergence of empirical covariances to covariances (Van der Vaart,
1998), which are applicable because we have the fourth ordermoment condition (A1). We thus
have:

Σ̂XY − Σ̂XXJ
w̃J = ΣXXJ

(wJ − w̃J) + Op(n
−1/2). (34)

From the optimality condition̂ΣXJY −Σ̂XJXJ
w̃J = λn Diag(dj/‖w̃j‖)w̃J definingw̃J and Eq. (34),

we obtain:
w̃J − wJ = −λnΣ−1

XJXJ
Diag(dj/‖w̃j‖)w̃J + Op(n

−1/2). (35)

Therefore,

Σ̂XJcY − Σ̂XJcXJ
w̃J = ΣXJcXJ

(wJ − w̃J) + Op(n
−1/2) by Eq. (34),

= λnΣXJcXJ
Σ−1

XJXJ
Diag(dj/‖w̃j‖)w̃J + Op(n

−1/2) by Eq. (35).

Sincew̃ is consistent, andλnn1/2 → +∞, then for eachi ∈ Jc,

1

diλn

(

Σ̂XiY − Σ̂XiXJ
w̃J

)
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converges in probability to1di
ΣXiXJ

Σ−1
XJXJ

Diag(dj/‖wj‖)wJ which is of normstrictly smaller
than one because condition (4) is satisfied. Thus the probability that w̃ is indeed optimal, which is
equal to

P

{

∀i ∈ Jc,
1

diλn

∥

∥

∥
Σ̂XiY − Σ̂XiXJ

w̃J

∥

∥

∥
6 1

}

>
∏

i∈Jc

P

{

1

diλn

∥

∥

∥
Σ̂XiY − Σ̂XiXJ

w̃J

∥

∥

∥
6 1

}

,

is tending to 1, which implies the theorem.

B.2 Proof of Theorem 3

We prove the theorem by contradiction, by assuming that there existsi ∈ Jc such that

1

di

∥

∥

∥ΣXiXJ
Σ−1

XJXJ
Diag(dj/‖wj‖)wJ

∥

∥

∥ > 1.

Since with probability tending to oneJ(ŵ) = J, with probability tending to one, we have from
optimality condition (3):

ŵJ = Σ̂−1
XJXJ

(

Σ̂XJY − λn Diag(dj/‖ŵj‖)ŵJ

)

,

and thus

Σ̂XiY − Σ̂XiXJ
ŵJ = (Σ̂XiY − Σ̂XiXJ

Σ̂−1
XJXJ

Σ̂XJY ) + λnΣ̂XiXJ
Σ̂−1

XJXJ
Diag(dj/‖ŵj‖)ŵJ

= An + Bn.

The second termBn in the last expression (divided byλn) converges to

v = ΣXiXJ
Σ−1

XJXJ
Diag(dj/‖wj‖)wJ ∈ R

pj ,

becausêw is assumed to converge in probability tow and empirical covariance matrices converge
to population covariance matrices. By assumption‖v‖ > di, which implies that the probability

P

{

(

v
‖v‖

)⊤
(Bn/λn) > (di + ‖v‖)/2)

}

converges to one.

The first term is equal to (withεk = yk −w⊤xk − bk and ¯epsilon = 1
n

∑n
k=1 εk):

An = Σ̂XiY − Σ̂XiXJ
Σ̂−1

XJXJ
Σ̂XJY

= Σ̂XiXJ
wJ − Σ̂XiXJ

Σ̂−1
XJXJ

Σ̂XJXJ
wJ + Σ̂Xiε − Σ̂XiXJ

Σ̂−1
XJXJ

Σ̂XJε

= Σ̂Xiε − Σ̂XiXJ
Σ̂−1

XJXJ
Σ̂XJε

= Σ̂Xiε − ΣXiXJ
Σ−1

XJXJ
Σ̂XJε + op(n

−1/2)

=
1

n

n
∑

k=1

(εk − ε̄)
(

xki − ΣXiXJ
Σ−1

XJXJ
xkJ

)

+ op(n
−1/2) = Cn + op(n

−1/2).

The random variableCn is a is a U-statistic with square integrable kernel obtainedfrom i.i.d.
random vectors; it is thus asymptotically normal (Van der Vaart, 1998). We thus simply need to
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compute the mean and the variance ofCn. We haveECn = 0 becauseE(Xε) = ΣXε = 0. We let
denoteDk = xki − ΣXiXJ

Σ−1
XJXJ

xkJ − 1
n

∑n
k=1 xki − ΣXiXJ

Σ−1
XJXJ

xkJ. We have:

var(Cn) = EC2
n = E(E(C2

n|X̄))

= E

[

1

n2

n
∑

k=1

E(ε2
k|X̄)DkD

⊤
k

]

< E

[

1

n2

n
∑

k=1

σ2
minDkD

⊤
k

]

=
1

n
σ2

minE

(

Σ̂XiXi − ΣXiXJ
Σ−1

XJXJ
Σ̂XJXi

)

=
n − 1

n2
σ2

min

(

ΣXiXi − ΣXiXJ
Σ−1

XJXJ
ΣXJXi

)

,

whereM < N denotes the partial order between symmetric matrices (i.e., equivalent toM − N
positive semidefinite).

Thusn1/2Cn is asymptotically normal with mean0 and covariance matrix larger thanσ2
minΣXi|XJ

=

σ2
min×(ΣXiXi −ΣXiXJ

Σ−1
XJXJ

ΣXJXi) which is positive definite (because this is the conditional co-

variance ofXi givenXJ andΣXX is assumed invertible). ThereforeP(n1/2v⊤An > 0) converges

to a constanta ∈ (0, 1), which implies thatP
{

v
‖v‖

⊤(An + Bn)/λn > (di + ‖v‖)/2
}

is asymptoti-

cally bounded below bya. Thus, since‖(An + Bn)/λn‖ >
v

‖v‖
⊤(An +Bn)/λn > (di +‖v‖)/2 >

di implies thatŵ is not optimal, we get a contradiction, which concludes the proof.

B.3 Proof of Theorem 4

We first prove the following refinement of Lemma 20:

Lemma 21 Assume (A1-3). Let w̃J any minimizer of

1

2n
‖Ȳ − X̄JwJ‖

2 + λn

∑

j∈J

dj‖wj‖ =
1

2
Σ̂Y Y − Σ̂Y XJ

wJ +
1

2
w⊤

J Σ̂XJXJ
wJ + λn

∑

j∈J

dj‖wj‖.

If λn → 0 andλnn1/2 → ∞, then 1
λn

(w̃J − wJ) converges in probability to

∆ = −Σ−1
XJXJ

Diag(dj/‖wj‖)wJ.

Proof We follow Fu and Knight (2000) and writẽwJ = wJ + λn∆̃. The vector∆̃ is the minimizer
of the following function:

F (∆) = −Σ̂Y XJ
(wJ + λn∆) +

1

2
(wJ + λn∆)⊤Σ̂XJXJ

(wJ + λn∆) + λn

∑

j∈J

dj‖wj + λn∆j‖

= −λnΣ̂Y XJ
∆ +

λ2
n

2
∆⊤Σ̂XJXJ

∆ + λnw
⊤
J Σ̂XJXJ

∆ + λn

∑

j∈J

dj (‖wj + λn∆j‖ − ‖wj‖) + cst

= −λnΣ̂εXJ
∆ +

λ2
n

2
∆⊤Σ̂XJXJ

∆ + λn

∑

j∈J

dj (‖wj + λn∆j‖ − ‖wj‖) + cst,
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by usingΣ̂Y XJ
= w⊤

J
Σ̂XJXJ

+Σ̂εXJ
. The first term isOp(n

−1/2λn) = op(λ
2
n), while the last ones

are equal to‖wj + λn∆j‖ − ‖wj‖ = λn

(

wj

‖wj‖

)⊤
∆j + op(λn). Thus,

F (∆)/λ2
n =

1

2
∆⊤ΣXJXJ

∆ +
∑

j∈J

djwj

‖wj‖

⊤

∆j + op(1).

By Lemma 20,ŵJ is Op(1) and the limiting function has an unique minimum; standard results in
M-estimation (Van der Vaart, 1998) shows that∆̃ converges in probability to the minimum of the
last expression which is exactly∆ = −Σ−1

XJXJ
Diag(dj/‖wj‖)wJ.

We now turn to the proof of Theorem 4. We follow the proof of Theorem 2. Givenw̃ defined
through Lemma 20 and 21, we need to satisfy optimality condition (2) for alli ∈ Jc, with probability

tending to one. For all thosei such that1di

∥

∥

∥ΣXiXJ
Σ−1

XJXJ
Diag(dj/‖wj‖)wJ

∥

∥

∥ < 1, then we know

from Appendix B.1, that the optimality condition is indeed satisfied with probability tending to one.

We now focus on thosei such that1di

∥

∥

∥ΣXiXJ
Σ−1

XJXJ
Diag(dj/‖wj‖)wJ

∥

∥

∥ = 1, and for which we

have the condition in Eq. (6). From Eq. (35) and the few arguments that follow, we get that for all
i ∈ Jc,

Σ̂XiY − Σ̂XiXJ
w̃J = λnΣXiXJ

Σ−1
XJXJ

Diag(dj/‖w̃j‖)w̃J + Op(n
−1/2) (36)

Moreover, we have from Lemma 21 and standard differential calculus, i.e., the gradient and the

Hessian of the functionv ∈ R
q 7→ ‖v‖ ∈ R arev/‖v‖ and 1

‖v‖

(

Iq −
vv⊤

v⊤v

)

:

w̃j

‖w̃j‖
=

wj

‖wj‖
+

λn

‖wj‖

(

Ipj −
wjw

⊤
j

w⊤
j wj

)

∆j + op(λn). (37)

From Eq. (36) and Eq. (37), we get:

1

λn
(Σ̂XiY − Σ̂XiXJ

w̃J) = Op(n
−1/2λ−1

n ) + ΣXiXJ
Σ−1

XJXJ

{

Diag(dj/‖wj‖)wJ + λnΣXiXJ
Σ−1

XJXJ
Diag

[

dj/‖wj‖

(

Ipj −
wjw

⊤
j

w⊤
j wj

)]

∆ + op(λn)

}

= A + λnB + op(λn) + Op(n
−1/2λ−1

n ).

Sinceλn ≫ n−1/4, we haveOp(n
−1/2λ−1

n ) = op(λn). Thus, since we assumed that‖A‖ =
‖ΣXiXJ

Σ−1
XJXJ

Diag(dj/‖wj‖)wJ‖ = di, we have:
∥

∥

∥

∥

1

λn
(Σ̂XiY − Σ̂XiXJ

w̃J)

∥

∥

∥

∥

2

= ‖A‖2 + 2λnA⊤B + op(λn)d2
i + op(λn)

= d2
i + op(λn)

−2λn∆⊤ΣXJXiΣXiXJ
Σ−1

XJXJ
Diag

(

dj/‖wj‖(Ipj −
wjw

⊤
j

w⊤
j wj

)

)

∆,

(note that we haveA = −ΣXiXJ
∆) which is asymptotically strictly smaller thand2

i if Eq. (6) is
satisfied, which proves optimality and concludes the proof.
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B.4 Proof of Proposition 6

As in the proof of Theorem 2 in Appendix B.1, we consider the estimatew̃ built from the reduced
problem by constrainingwJc = 0. We consider the following event:

E1 = {Σ̂XX invertible and∀j ∈ J, w̃j 6= 0}.

This event has a probability converging to one. Moreover, ifE1 is true, then the group Lasso
estimate has the correct sparsity pattern if and only if for all i ∈ Jc,

∥

∥

∥Σ̂XiXJ
(w̃J − wJ) − Σ̂Xiε

∥

∥

∥ 6 λndi = λ0n
−1/2di.

Moreover we have by definition of̃wJ: Σ̂XJXJ
(w̃J −wJ)− Σ̂XJε = −λn Diag(dj/‖w̃j‖)w̃J, and

thus, we get:

Σ̂XiXJ
(w̃J − wJ) − Σ̂Xiε

= Σ̂XiXJ
Σ̂−1

XJXJ
Σ̂XJε − Σ̂Xiε − λ0n

−1/2Σ̂XiXJ
Σ̂−1

XJXJ
Diag(dj/‖w̃j‖)w̃J

= ΣXiXJ
Σ−1

XJXJ
Σ̂XJε − Σ̂Xiε − λ0n

−1/2ΣXiXJ
Σ−1

XJXJ
Diag(dj/‖wj‖)wJ + Op(n

−1)

The random vectorΣXε ∈ R
p is a multivariate U-statistic with square integrable kernel obtained

from i.i.d. random vectors; it is thus asymptotically normal (Van der Vaart, 1998) and we simply
need to compute its mean and variance. The mean is zero, and the variance isn−1

n2 σ2ΣXX =
n−1σ2ΣXX + o(n−1). This implies that the random vectors of sizeCard(Jc) defined by

si = n1/2‖Σ̂XiXJ
(w̃J − wJ) − Σ̂Xiε‖,

is equal to

si =
∥

∥

∥σΣXiXJ
Σ−1

XJXJ
uJ − σui − λ0ΣXiXJ

Σ−1
XJXJ

Diag(dj/‖wj‖)wJ

∥

∥

∥+ Op(n
−1/2)

= fi(u) + Op(n
−1/2),

whereu = σ−1n−1/2Σ̂Xε andfi are deterministic continuous functions. The vectorf(u) converges
in distribution tof(v) wherev is normally distributed with mean zero and covariance matrix ΣXX .
By Slutsky’s lemma (Van der Vaart, 1998), this implies that the random vectors has the same
limiting distribution. Thus, the probabilityP(maxi∈Jc si/di 6 λ0) converges to

P

(

max
i∈Jc

1

di

∥

∥

∥σ(ΣXiXJ
Σ−1

XJXJ
vJ − vi) − λ0ΣXiXJ

Σ−1
XJXJ

Diag(dj/‖wj‖)wJ

∥

∥

∥ 6 λ0

)

.

Under the eventE1 which has probability tending to one, we have correct pattern selection if and
only if maxi∈Jc si/di 6 λ0, which leads to

P

(

max
i∈Jc

1

di

∥

∥

∥σti − λ0ΣXiXJ
Σ−1

XJXJ
Diag(dj/‖wj‖)wJ

∥

∥

∥ 6 λ0

)

,

whereti = ΣXiXJ
Σ−1

XJXJ
vJ− vi. The vectort is normally distributed and a short calculation shows

that its covariance matrix is equal toΣXJcXJc |XJ
, which concludes the proof.

34



Appendix C. Detailed Proofs for the Nonparametric Formulation

We first prove lemmas that will be useful for further proofs, and then prove the consistency results
for the non parametric case.

C.1 Useful Lemmas on Empirical Covariance Operators

We first have the following lemma, proved by Fukumizu et al. (2007), which states that the empir-
ical covariance estimator converges in probability at rateOp(n

−1/2) to the population covariance
operators:

Lemma 22 Assume (A4) and (A6). Then‖Σ̂XX −ΣXX‖F = Op(n
−1/2) (for the operator norm),

‖Σ̂XY − ΣXY ‖F = Op(n
−1/2) and‖Σ̂Xε‖F = Op(n

−1/2).

The following lemma is useful in several proofs:

Lemma 23 Assume (A4). Then

∥

∥

∥

∥

(

Σ̂XX + µnI
)−1

ΣXX − (ΣXX + µnI)−1 ΣXX

∥

∥

∥

∥

F

= Op(n
−1/2µ−1

n ),

and

∥

∥

∥

∥

(

Σ̂XX + µnI
)−1

Σ̂XX − (ΣXX + µnI)−1 ΣXX

∥

∥

∥

∥

F

= Op(n
−1/2µ−1

n ).

Proof We have:
(

Σ̂XX + µnI
)−1

ΣXX − (ΣXX + µnI)−1 ΣXX

=
(

Σ̂XX + µnI
)−1

(ΣXX − Σ̂XX) (ΣXX + µnI)−1 ΣXX

This is the product of operators whose norms are respectively upper bounded byµ−1
n , Op(n

−1/2)
and 1, which leads to the first inequality (we use‖AB‖F 6 ‖A‖F‖B‖F ). The second inequality
follows along similar lines.

Note that the two previous lemma also hold for any suboperator of ΣXX , i.e., forΣXJXJ
, or ΣXiXi .

Lemma 24 Assume (A4), (A5) and (A7). There existshJ ∈ FJ such thatfJ = Σ
1/2
XJXJ

hJ.

Proof The range condition implies that

fJ = Diag(Σ
1/2
XjXj

)gJ = Diag(Σ
1/2
XjXj

)C
1/2
XJXJ

C
−1/2
XJXJ

gJ

(becauseCXX is invertible). The result follows from the identity

ΣXJXJ
= Diag(Σ

1/2
XjXj

)C
1/2
XJXJ

(Diag(Σ
1/2
XjXj

)C
1/2
XJXJ

)∗

and the fact that ifΣXJXJ
= UU∗ andf = Uα then there existsβ such thatf = Σ

1/2
XJXJ

β (Baker,

1973).4

4. The adjoint operatorV ∗ of V : Fi → FJ is so that for allf ∈ Fi andg ∈ FJ, 〈f, V g〉Fi
= 〈V ∗f, g〉FJ

(Brezis,
1980).

35



C.2 Proof of Theorem 11

We now extend Lemma 20 to covariance operators, which requires to use the alternative formulation
and a slower rate of decrease for the regularization parameter:

Lemma 25 Let f̃J be any minimizer of

1

2
Σ̂Y Y − 〈Σ̂XJY , fJ〉FJ

+
1

2
〈fJ, Σ̂XJXJ

fJ〉FJ
+

µn

2





∑

j∈J

dj‖fj‖Fj





2

.

If µn → 0 andµnn1/2 → +∞, then‖f̃J − fJ‖FJ
converges to zero in probability. Moreover for

anyηn such thatηn ≫ µ
1/2
n + µ−1

n n−1/2 then‖f̃J − fJ‖FJ
= Op(ηn).

Proof Note that from Cauchy-Schwartz inequality, we have:





∑

j∈J

dj‖fj‖Fj





2

=





∑

j∈J

d
1/2
j ‖fj‖

1/2
Fj

×
d
1/2
j ‖fj‖Fj

‖fj‖
1/2
Fj





2

6





∑

j∈J

dj‖fj‖Fj





∑

j∈J

dj‖fj‖
2
Fj

‖fj‖Fj

,

with equality if and only if there existsα > 0 such that‖fj‖Fj = α‖fj‖Fj for all j ∈ J. We consider
the unique minimizer̄fJ of the following cost function, built by replacing the regularization by its
upperbound,

F (fJ) =
1

2
Σ̂Y Y − 〈Σ̂XJY , fJ〉FJ

+
1

2
〈fJ, Σ̂XJXJ

fJ〉FJ
+

µn

2





∑

j∈J

dj‖fj‖Fj





∑

j∈J

dj‖fj‖
2
Fj

‖fj‖Fj

.

Since it is a regularized least-square problem, we have (with ε = Y −
∑

j∈J
fj(X) − b):

f̄J =
(

Σ̂XJXJ
+ µnD

)−1 (

Σ̂XJXJ
fJ + Σ̂XJε

)

,

whereD =
(

∑

j∈J
dj‖fj‖

)

Diag(dj/‖fj‖). Note thatD is upperbounded and lowerbounded, as

an auto-adjoint operator, bystrictly positiveconstants times the identity operator (with probability
tending to one), i.e.,DmaxIFJ

< D < DminIFJ
with Dmin,Dmax > 0. We now prove that̄fJ − fJ

is converging to zero in probability. We have:

(

Σ̂XJXJ
+ µnD

)−1
Σ̂XJε = Op(n

−1/2µ−1
n ), (38)

because of Lemma 22 and

∥

∥

∥

∥

(

Σ̂XJXJ
+ µnD

)−1
∥

∥

∥

∥

FJ

6 D−1
minµ

−1
n . Moreover, similarly, we have

(

Σ̂XJXJ
+ µnD

)−1
Σ̂XJXJ

fJ −
(

Σ̂XJXJ
+ µnD

)−1
ΣXJXJ

fJ = Op(n
−1/2µ−1

n ). (39)
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Besides, by Lemma 23,
(

Σ̂XJXJ
+ µnD

)−1
ΣXJXJ

fJ − (ΣXJXJ
+ µnD)−1 ΣXJXJ

fJ = Op(n
−1/2µ−1

n ). (40)

Thusf̄J − fJ = V + Op(n
−1/2µ−1

n ), where

V =
[

(ΣXJXJ
+ µnD)−1 ΣXJXJ

− I
]

fJ = − (ΣXJXJ
+ µnD)−1 µnDfJ.

We have

‖V ‖2
FJ

= µ2
n〈fJ,D (ΣXJXJ

+ µnD)−2 DfJ〉FJ

6 D2
maxµ

2
n〈fJ, (ΣXJXJ

+ µnDminI)−2
fJ〉FJ

6 D2
maxµn〈fJ, (ΣXJXJ

+ µnDminI)−1
fJ〉FJ

6 D2
maxµn〈hJ,ΣXJXJ

(ΣXJXJ
+ µnDminI)−1

hJ〉FJ
by Lemma 24,

6 D2
maxµn‖hJ‖

2
FJ

.

Finally we obtain‖f̄J − fJ‖FJ
= Op(µ

1/2
n + n−1/2µ−1

n ).

We now consider the cost function defining̃fJ:

Fn(fJ) =
1

2
Σ̂Y Y − 〈Σ̂XJY , fJ〉FJ

+
1

2
〈fJ, Σ̂XJXJ

fJ〉FJ
+

µn

2





∑

j∈J

dj‖fj‖Fj





2

.

We have (note that although we seem to take infinite dimensional derivatives, everything can be
done in the finite subspace spanned by the data):

Fn(fJ) − F (fJ) =
µn

2









∑

j∈J

dj‖fj‖Fj





2

−





∑

j∈J

dj‖fj‖Fj





∑

j∈J

dj‖fj‖
2
Fj

‖fj‖Fj



 ,

∇fi
Fn(fJ) −∇fi

F (fJ) = µn









∑

j∈J

dj‖fj‖Fj





difi

‖fi‖Fj

−





∑

j∈J

dj‖fj‖Fj





difi

‖fi‖Fj



 .

Since the right hand side of the previous equation corresponds to a continuously differentiable func-
tion of fJ aroundfJ (with upper-bounded derivatives aroundfJ), we have:

‖∇fi
Fn(f̄J) − 0‖Fi 6 Cµn‖fJ − f̄J‖FJ

= µnOp(µ
1/2
n + n−1/2µ−1

n ).

for some constantC > 0. Moreover, on the ball of center̄fJ and radiusηn such thatηn ≫

µ
1/2
n + µ−1

n n−1/2 (to make sure that it asymptotically containsfJ, which implies that on the ball
eachfj, j ∈ J are bounded away from zero), andηn ≪ 1 (so that we get consistency), we have a

lower bound on the second derivative of
(

∑

j∈J
dj‖fj‖Fj

)

. Thus for any element of the ball,

Fn(fJ) > Fn(f̄J) + 〈∇fJFn(f̄J), (fJ − f̄J)〉FJ
+ C ′µn‖fJ − f̄J‖

2
FJ

,
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whereC ′ > 0 is a constant. This implies that the value ofFn(fJ) on the edge of the ball is larger
than

Fn(f̄J) + ηnµnOp(µ
1/2
n + n−1/2µ−1

n ) + C ′η2
nµn,

Thus ifη2
nµn ≫ ηnµ

3/2
n andη2

nµn ≫ n−1/2ηn, then we must have all minima inside the ball of
radiusηn (because with probability tending to one, the value on the edge is greater than one value
inside and the function is convex) which implies that the global minimum ofFn is at mostηn away
from f̄J and thus sincēfJ is O(µ

1/2
n ) away fromfJ, we have the consistency if

ηn ≪ 1 andηn ≫ µ1/2
n + n−1/2µ−1

n ,

which concludes the proof of the lemma.

We now prove Theorem 11. Let̃fJ be defined as in Lemma 20. We extend it by zeros onJc. We
already know the squared norm consistency by Lemma 20. Sinceby Proposition 14, the solution is
unique with probability tending to one, we need to prove thatwith probability tending to onẽf is
optimal for problem in Eq. (15). We have by the first optimality condition forf̃J:

Σ̂XJY − Σ̂XJXJ
f̃J = µn‖f̃‖d Diag(dj/‖f̃j‖)f̃J,

where we use the notation‖f‖d =
∑m

j=1 dj‖fj‖Fj (note the difference with‖f‖F = (
∑m

j=1 ‖fj‖
2
Fj

)1/2).

We thus have by solving for̃fJ and usingΣ̂XJY = Σ̂XJXJ
fJ + Σ̂XJε:

f̃J =
(

Σ̂XJXJ
+ µnDn

)−1 (

Σ̂XJXJ
fJ + Σ̂XJε

)

,

with the notationDn = ‖f̃‖d Diag(dj/‖f̃j‖Fj ). We can now put that back intôΣXJcY −Σ̂XJcXJ
f̃J

and show that this will have small enough norm with probability tending to one. We have for all
i ∈ Jc:

Σ̂XiY − Σ̂XiXJ
f̃J = Σ̂XiY − Σ̂XiXJ

(

Σ̂XJXJ
+ µnDn

)−1 (

Σ̂XJXJ
fJ + Σ̂XJε

)

= −Σ̂XiXJ

(

Σ̂XJXJ
+ µnDn

)−1
Σ̂XJXJ

fJ

+Σ̂XiY − Σ̂XiXJ

(

Σ̂XJXJ
+ µnDn

)−1
Σ̂XJε

= −Σ̂XiXJ
fJ + Σ̂XiXJ

(

Σ̂XJXJ
+ µnDn

)−1
µnDnfJ

+Σ̂XiY − Σ̂XiXJ

(

Σ̂XJXJ
+ µnDn

)−1
Σ̂XJε

= Σ̂XiXJ

(

Σ̂XJXJ
+ µnDn

)−1
µnDnfJ

+Σ̂Xiε − Σ̂XiXJ

(

Σ̂XJXJ
+ µnDn

)−1
Σ̂XJε (41)

= An + Bn.

The first termAn (divided byµn) is equal to

An

µn
= Σ̂XiXJ

(

Σ̂XJXJ
+ µnDn

)−1
DnfJ.
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We can replacêΣXiXJ
in An

µn
byΣXiXJ

at costOp(n
−1/2µ

−1/2
n ) because〈fJ,Σ−1

XJXJ
fJ〉FJ

< ∞ (by

Lemma 24). Also, we can replacêΣXJXJ
in An

µn
by ΣXJXJ

at costOp(n
−1/2µ−1

n ) as a consequence
of Lemma 23. Those two areop(1) by assumptions onµn. Thus,

An

µn
= ΣXiXJ

(ΣXJXJ
+ µnDn)−1 DnfJ + op(1).

Furthermore, we let denoteD = ‖f‖d Diag(dj/‖fj‖Fj ). From Lemma 25, we know thatDn−D =
op(1). Thus we can replaceDn by D at costop(1) to get:

An

µn
= ΣXiXJ

(ΣXJXJ
+ µnD)−1 DfJ + op(1) = Cn + op(1).

We now show that this last deterministic termCn ∈ Fi converges to:

C = Σ
1/2
XiXi

CXiXJ
C−1

XJXJ
DgJ,

where, from (A7), ∀j ∈ J, fj = Σ
1/2
XjXj

gj . We have

Cn − C = Σ
1/2
XiXi

CXiXJ

[

Diag(Σ
1/2
XjXj

) (ΣXJXJ
+ µnD)−1 Diag(Σ

1/2
XjXj

) − C−1
XJXJ

]

DgJ

= Σ
1/2
XiXi

CXiXJ
KnDgJ.

whereKn = Diag(Σ
1/2
XjXj

) (ΣXJXJ
+ µnD)−1 Diag(Σ

1/2
XjXj

) − C−1
XJXJ

. In addition, we have:

Diag(Σ
1/2
XjXj

)CXJXJ
Kn = ΣXJXJ

(ΣXJXJ
+ µnD)−1 Diag(Σ

1/2
XjXj

) − Diag(Σ
1/2
XjXj

)

= −µnD (ΣXJXJ
+ µnD)−1 Diag(Σ

1/2
XjXj

).

Following Fukumizu et al. (2007), the range of the adjoint operator
(

Σ
1/2
XiXi

CXiXJ

)∗
= CXJXiΣ

1/2
XiXi

is included in the closure of the range ofDiag(ΣXjXj) (which is equal to the range ofΣXJXJ
by

Lemma 24). For anyvJ ∈ FJ in the intersection of two ranges, we havevJ = CXJXJ
Diag(Σ

1/2
XjXj

)uJ

(note thatCXJXJ
is invertible), and thus

〈KnDgJ, vJ〉FJ
= 〈KnDgJ, CXJXJ

Diag(Σ
1/2
XjXj

)uJ〉FJ

= 〈−µnD (ΣXJXJ
+ µnD)−1 Diag(Σ

1/2
XjXj

)DgJ, uJ〉FJ

which isOp(µ
1/2
n ) and thus tends to zero. Since this holds for all elements in the intersection of the

ranges, Lemma 9 by Fukumizu et al. (2007) implies that‖Cn − C‖FJ
converges to zero.

We now simply need to show that the second termBn is dominated byµn. We have:‖Σ̂Xiε‖Fi =

Op(n
−1/2) and‖Σ̂XiXJ

(

Σ̂XJXJ
+ µnDn

)−1
Σ̂XJε‖Fi 6 ‖Σ̂Xiε‖Fi , thus, sinceµnn1/2 → +∞,

Bn = op(µn) and therefore for for eachi ∈ Jc,

1

diµn‖f‖d

(

Σ̂XiY − Σ̂XiXJ
f̃J

)
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converges in probability to‖C‖FJ
/di‖f‖d which is strictly smaller than one because Eq. (18) is

satisfied. Thus

P

{

1

diµn‖f‖d

∥

∥

∥Σ̂XiY − Σ̂XiXJ
f̃J

∥

∥

∥

Fi

6 1

}

is tending to 1, which implies the theorem (using the same arguments than in the proof of Theorem 2
in Appendix B.1).

C.3 Proof of Theorem 12

Before proving the analog of the second group Lasso theorem,we need the following additional
proposition, which states that consistency of the patternscan only be achieved ifµnn1/2 → ∞
(even if chosen in a data dependent way).

Proposition 26 Assume (A4-7) and thatJ is not empty. Iff̂ is converging in probability tof and
J(f̂) converges in probability toJ, thenµnn1/2 → ∞ in probability.

Proof We give a proof by contradiction, and we thus assume that there existsM > 0 such that
lim infn→∞ P(µnn1/2 < M) > 0. This imposes that there exists a subsequence which is almost
surely bounded byM (Durrett, 2004). Thus, we can take a further subsequence which converges to
a limit µ0 ∈ [0,∞). We now consider such a subsequence (and still use the notation of the original
sequence for simplicity).

With probability tending to one, we have the optimality condition (17):

Σ̂XJε + Σ̂XJXJ
fJ = Σ̂XJY = Σ̂XJXJ

f̂J + µn‖f̂‖d Diag(dj/‖f̂j‖Fj )f̂J.

If we let denoteDn = n1/2µn‖f̂‖d Diag(dj/‖f̂j‖Fj ), we get:

DnfJ =
[

Σ̂XJXJ
+ Dnn−1/2

]

n1/2
[

fJ − f̂J

]

+ n1/2Σ̂XJε,

which can be approximated as follows (we denoteD = ‖f‖d Diag(dj/‖fj‖Fj )):

µ0DfJ + op(1) = ΣXJXJ
n1/2

[

fJ − f̂J

]

+ op(1) + n1/2Σ̂XJε.

We can now write fori ∈ Jc:

n1/2
(

Σ̂XiY − Σ̂XiXJ
f̂J

)

= n1/2Σ̂Xiε + Σ̂XiXJ
n1/2(fJ − f̂J)

= n1/2Σ̂Xiε + ΣXiXJ
n1/2(fJ − f̂J) + op(1).

We now consider an arbitrary vectorwJ ∈ FJ, such thatΣXJXJ
wJ is different from zero (such

vector exists becauseΣXJXJ
6= 0, as we have assumed in (A4) that the variables are not constant).

Since the range ofΣXJXi is included in the range ofΣXJXJ
(Baker, 1973), there existsvi ∈ Fi

such thatΣXJXivi = ΣXJXJ
wJ. Note that sinceΣXJXJ

wJ is different from zero, we must have

Σ
1/2
XiXi

vi 6= 0. We have:

n1/2〈vi, Σ̂XiY − Σ̂XiXJ
f̂J〉Fi = n1/2〈vi, Σ̂Xiε〉Fi + 〈wJ,ΣXJXJ

n1/2(fJ − f̂J)〉FJ
+ op(1)

= n1/2〈vi, Σ̂Xiε〉Fi + 〈wJ, µ0DfJ − n1/2Σ̂XJε〉FJ
+ op(1)

= 〈wJ, µ0DfJ〉FJ
+ n1/2〈vi, Σ̂Xiε〉Fi − n1/2〈wJ, Σ̂XJε〉FJ

+ op(1).
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The random variableEn = n1/2〈vi, Σ̂Xiε〉 −n1/2〈wJ, Σ̂XJε〉 is a U-statistic with square integrable
kernel obtained from i.i.d. random vectors; it is thus asymptotically normal (Van der Vaart, 1998)
and we simply need to compute its mean and variance. The mean is zero and a short calculation
similar to the one found in the proof of Theorem 3 in Appendix B.2 shows that we have:

EE2
n > (1 − 1/n)σ2

min〈vi,ΣXiXivi〉Fi + σ2
min〈wJ,ΣXJXJ

wJ〉FJ
− 2σ2

min〈vi,ΣXiXJ
wJ〉Fi

= (1 − 1/n)(σ2
min〈vi,ΣXiXivi〉Fi − σ2

min〈vi,ΣXiXJ
wJ〉Fi).

The operatorC−1
XJXJ

CXJXi has the same range asCXJXJ
(becauseCXX is invertible), and is

thus included in the closure of the range ofDiag(Σ
1/2
XjXj

) (Baker, 1973). Thus, for anyu ∈ Fi,

C−1
XJXJ

CXJXiu can be expressed as a limit of terms of the formDiag(Σ
1/2
XjXj

)t wheret ∈ FJ. We
thus have that

〈u,CXiXJ
Diag(Σ

1/2
XjXj

)wJ〉Fi = 〈u,CXiXJ
C−1

XJXJ
CXJXJ

Diag(Σ
1/2
XjXj

)wJ〉Fi

can be expressed as a limit of terms of the form

〈t,Diag(Σ
1/2
XjXj

)CXJXJ
Diag(Σ

1/2
XjXj

)wJ〉FJ
= 〈t,ΣXJXJ

wJ〉FJ
= 〈t,ΣXJXivi〉FJ

= 〈t,Diag(Σ
1/2
XjXj

)CXJXiΣ
1/2
XiXi

vi〉FJ
→ 〈u,CXiXJ

C−1
XJXJ

CXJXiΣ
1/2
XiXi

vi〉Fi .

This implies thatCXiXJ
Diag(Σ

1/2
XjXj

)wJ = CXiXJ
C−1

XJXJ
CXJXiΣ

1/2
XiXi

vi, and thus we have:

EE2
n > σ2

min〈vi,ΣXiXivi〉Fi − σ2
min〈vi,Σ

1/2
XiXi

CXiXJ
Diag(Σ

1/2
XjXj

)wJ〉Fi

= σ2
min〈vi,ΣXiXivi〉Fi − σ2

min〈vi,Σ
1/2
XiXi

CXiXJ
C−1

XJXJ
CXJXiΣ

1/2
XiXi

vi〉Fi

= σ2
min〈Σ

1/2
XiXi

vi, (IFi − CXiXJ
C−1

XJXJ
CXJXi)Σ

1/2
XiXi

vi〉Fi .

By assumption (A5), the operatorIFi −CXiXJ
C−1

XJXJ
CXJXi is lower bounded by a strictly positive

constant times the identity matrix, and thus, sinceΣ
1/2
XiXi

vi 6= 0, we haveEE2
n > 0. This implies

thatn1/2〈vi, Σ̂XiY − Σ̂XiXJ
f̂J〉 converges to a normal distribution with strictly positive variance.

Thus the probabilityP
(

n1/2〈vi, Σ̂XiY − Σ̂XiXJ
f̂J〉Fi > di‖f̂‖d‖vi‖Fi + 1

)

converges to a strictly

positive limit (note that‖f̂‖d can be replaced by‖f‖d without changing the result). Sinceµnn1/2 →
µ0 < ∞, this implies that

P

(

µ−1
n 〈vi, Σ̂XiY − Σ̂XiXJ

f̂J〉Fi > di‖f̂‖d‖vi‖Fi

)

is asymptotically strictly positive (i.e., has a strictly positive lim inf). Thus the optimality condi-
tion (16) is not satisfied with non vanishing probability, which is a contradiction and proves the
proposition.

We now go back to the proof of Theorem 12. We prove by contradiction, by assuming that there
existsi ∈ Jc such that

1

di

∥

∥

∥Σ
1/2
XiXi

CXiXJ
C−1

XJXJ
Diag(dj/‖fj‖Fj )gJ

∥

∥

∥

Fi

> 1.
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Since with probability tending to oneJ(f̂) = J, with probability tending to one, we have from
optimality condition (17), and the usual line of arguments (see Eq. (41) in Appendix B.2) that for
everyi ∈ Jc:

Σ̂XiY − Σ̂XiXJ
f̂J = µnΣ̂XiXJ

(

Σ̂XJXJ
+ µnDn

)−1
Dnf

+Σ̂Xiε − Σ̂XiXJ

(

Σ̂XJXJ
+ µnDn

)−1
Σ̂XJε,

whereDn = ‖f̂‖d Diag(dj/‖f̂j‖). Following the same argument as in the proof of Theorem 11,
(and becauseµnn1/2 → +∞ as a consequence of Proposition 26), the first term in the lastexpres-
sion (divided byµn) converges to

vi = Σ
1/2
XiXi

CXiXJ
C−1

XJXJ
‖f‖d Diag(dj/‖fj‖Fj )gJ

By assumption‖vi‖ > di‖f‖d. We have the second term:

Σ̂Xiε − Σ̂XiXJ

(

Σ̂XJXJ
+ µn‖f̂‖d Diag(dj/‖f̂j‖Fj )

)−1
Σ̂XJε

= Op(n
−1/2) − Σ̂XiXJ

(

Σ̂XJXJ
+ µn‖f‖d Diag(dj/‖fj‖Fj )

)−1
Σ̂XJε + Op(n

−1/2).

The remaining term can be bounded as follows (withD = ‖f‖d Diag(dj/‖fj‖Fj )):

E

(

∥

∥

∥

∥

Σ̂XiXJ

(

Σ̂XJXJ
+ µnD

)−1
Σ̂XJε

∥

∥

∥

∥

2

Fi

|X̄

)

6
σ2

max

n
trΣ̂XiXJ

(

Σ̂XJXJ
+ µnD

)−1
Σ̂XJXJ

(

Σ̂XJXJ
+ µnD

)−1
Σ̂XJXi

6
σ2

max

n
trΣ̂XiXi ,

which implies that the full expectation isO(n−1) (because our operators are trace-class, i.e., have
finite trace). Thus the remaining term isOp(n

−1/2) and thus negligible compared toµn, therefore
1

µn‖f̂‖d

(

Σ̂XiY − Σ̂XiXJ
f̂J

)

converges in probability to a limit which is of norm strictlygreater than

di. Thus there is a non vanishing probability of being strictlylarger thandi, which implies that with
non vanishing probability, the optimality condition (16) is not satisfied, which is a contradiction.
This concludes the proof.

C.4 Proof of Proposition 15

Note that the estimator defined in Eq. (23) is exactly equal to

∥

∥

∥Σ̂XiXJ
(Σ̂XJXJ

+ κnI)−1 Diag(dj/‖(f̂
LS
κn

)j‖Fj )(f̂
LS
κn

)J

∥

∥

∥

Fi

.

Using Proposition 17 and the arguments from Appendix C.2 by replacingf̃ by F̂LS , we get the
consistency result.
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Appendix D. Proof of Results on Adaptive Group Lasso

D.1 Proof of Theorem 16

We definew̃ as the minimizer of the same cost function restricted towJc = 0. BecauseŵLS is
consistent, the norms of̂wLS

j for j ∈ J are bounded away from zero, and we get from standard
results on M-estimation (Van der Vaart, 1998) the normal limit distribution with given covariance
matrix if µn ≪ n−1/2.

Moreover, the patterns of zeros (which is obvious by construction ofw̃) converges in probability.
What remains to be shown is that with probability tending to one,w̃ is optimal for the full problem.
We just need to show that with probability tending to one, forall i ∈ Jc,

‖Σ̂Xiε − Σ̂XiXJ
(w̃J − wJ)‖ 6 µn‖w̃‖d‖ŵ

LS
i ‖−γ . (42)

Note that‖w̃‖d converges in probability to‖w‖d > 0. Moreover,‖ŵLS
i −wi‖ = Op(n

−1/2). Thus,
if i ∈ Jc, i.e., if fi = 0, then‖ŵLS

i ‖ = Op(n
−1/2). The left hand side in Eq. (42) is thus upper

bounded byOp(n
−1/2) while the right hand side is lower bounded asymptotically byµnnγ/2. Thus

if n−1/2 = o(µnnγ/2), then with probability tending to one we get the correct optimality condition,
which concludes the proof.

D.2 Proof of Proposition 17

We have:

f̂LS
κn

=
(

Σ̂XX + κnIF

)−1
Σ̂XY ,

and thus:

f̂LS
κn

− f =
(

Σ̂XX + κnIF

)−1
Σ̂XXf − f +

(

Σ̂XX + κnIF

)−1
Σ̂Xε

= (ΣXX + κnI)−1 ΣXXf − f + Op(n
−1/2κ−1

n ) from Lemma 23

= − (ΣXX + κnIF )−1 κnf + Op(n
−1/2κ−1

n ).

Sincef = Σ
1/2
XXg, we have‖− (ΣXX + κnIF )−1 κnf‖

2
F 6 Cκn‖g‖

2
F , which concludes the proof.

D.3 Proof of Theorem 18

We definef̃ as the minimizer of the same cost function restricted tofJc = 0. Becausef̂LS
n−1/3

is

consistent, the norms of(f̂LS
n−1/3

)j for j ∈ J are bounded away from zero, and Lemma 25 applies

with µn = µ0n
−1/3, i.e., f̃ converges in probability tof and so are the patterns of zeros (which is

obvious by construction of̃f ). Moreover, for anyη > 0, from Lemma 25, we have‖f̃J − fJ‖ =

Op(n
−1/6+η) (becauseµ−1/2

n + n−1/2µ−1
n = Op(n

−1/6)).
What remains to be shown is that with probability tending to one, f̃ is optimal for the full

problem. We just need to show that with probability tending to one, for alli ∈ Jc,

‖Σ̂Xiε − Σ̂XiXJ
(f̃J − fJ)‖ 6 µn‖f̃‖d‖(f̂

LS
n−1/3)i‖

−γ
Fi

. (43)

Note that‖f̃‖d converges in probability to‖f‖d > 0. Moreover, by Proposition 17,‖(f̂LS
n−1/3

)i −

fi‖ = Op(n
−1/6). Thus, if i ∈ Jc, i.e., if fi = 0, then‖(f̂LS

n−1/3
)i‖Fi = Op(n

−1/6). The left hand
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side in Eq. (43) is thus upper bounded byOp(n
−1/2 + n−1/6+η) while the right hand side is lower

bounded asymptotically byn−1/3nγ/6. Thus if−1/6 + η < −1/3 + γ/6, then with probability
tending to one we get the correct optimality condition. As soon asγ > 1, we can findη small
enough and strictly positive, which concludes the proof.

D.4 Range Condition of Covariance Operators

We let denoteC(q) the convolution operator byq on the space of real functions onRp andT (p)
the pointwise multiplication byp(x). In this appendix, we look at different Hilbertian productsof
functions onRp, we use the notations〈·, ·〉F and〈·, ·〉L2(pX) and〈·, ·〉L2(Rp) for the dot products in
the RKHSF , the spaceL2(pX) of square integrable functions with respect top(x)dx, and the space
L2(Rp) of square integrable functions with respect to the Lebesguemeasure. With our assumptions,
for all f̃ , g̃ ∈ L2(Rp), we have:

〈f̃ , g̃〉L2 = 〈C(q)1/2f̃ , C(q)1/2g̃〉F .

Denote by{λk}k≥1 and{ek}k≥1 the positive eigenvalues and the eigenvectors of the covariance
operatorΣXX , respectively. Note that sincepX(x) was assumed to be strictly positive, all eigen-
values are strictly positive (the RKHS cannot contain any non zero constant functions onRp). For
k > 1, setfk = λ

−1/2
k (ek −

∫

Rp ek(x)pX(x)dx). By construction, for anyk, ℓ > 1,

λkδk,ℓ = 〈ek,Σeℓ〉F =

∫

Rp

pX(x)(ek −
∫

Rp ek(x)pX(x)dx)(eℓ −
∫

Rp eℓ(x)pX(x)dx)dx

= λ
1/2
k λ

1/2
ℓ

∫

Rp

pX(x)fk(x)fℓ(x)dx = λ
1/2
k λ

1/2
ℓ 〈fk, fℓ〉L2(pX) .

Thus{fk}k>1 is an orthonormal sequence inL2(pX). Let f = C(q)g for g ∈ L2(Rp) such that
∫

Rp g(x)dx = 0. Note thatf is in the range ofΣ1/2
XX if and only if 〈f,Σ−1f〉F is finite. We have:

〈f,Σ−1f〉F =

∞
∑

p=1

λ−1
p 〈ep, f〉

2
F =

∞
∑

p=1

λ−1
p 〈ep, g〉

2
L2(Rp) =

∞
∑

p=1

λ−1
p

(
∫

Rp

g(x)ep(x)dx

)2

=

∞
∑

p=1

〈

p−1
X g, fp

〉2

L2(pX)
6 ‖p−1

X g‖2
L2(pX) =

∫

Rp

g2(x)

pX(x)
dx,

because{fk}k>1 is an orthonormal sequence inL2(pX). This concludes the proof.

Appendix E. Gaussian Kernels and Gaussian Variables

In this section, we considerX ∈ R
m with normal distribution with zero mean and covariance matrix

S. We also consider Gaussian kernelskj(xj , x
′
j) = exp(−bi(xj − x′

j)
2) on each of its component.

In this situation, we can find orthonormal basis of the Hilbert spacesFj where we can compute the
coordinates of all covariance operators. This thus allows to check conditions (18) or (19) without
using sampling.
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We consider the eigenbasis of the non centered covariance operators on eachFj , j = 1, . . . ,m,
which is equal to (Zhu et al., 1998):

ej
k(xj) = (λj

k)
1/2

(

c
1/2
j

a
1/2
j 2kk!

)1/2

e−(cj−aj)u
2

Hk((2cj)
1/2xj)

with eigenvaluesλj
k =

(

2aj

Aj

)1/2
(Bj)

k, whereai = 1/4Sii, cj = (a2
j +2ajbj)

1/2, Aj = aj+bj +cj

andBj = bj/Aj , andHk is thek-th Hermite polynomial.
We can then compute all required expectations as follows (note that by definition we have

Eej
k(Xj)

2 = λi
k):

Eej
2k+1(Xj) = 0

Eej
2k(Xj) =

(

λj
2k

2a
1/2
j c

1/2
j

(aj + cj)

(

2k

k

)

)1/2
(

cj − aj

2(cj + aj)

)k

Eej
k(Xj)e

i
ℓ(Xi) =

(

λj
2kλ

i
2ℓ

c
1/2
j c

1/2
i

a
1/2
j a

1/2
i 2k2ℓk!ℓ!

)1/2
(SiiSjj − S2

ij)
−1/2

4πc
1/2
i c

1/2
j

Dkℓ(Qij),

whereQij =

(

1
2(1 − ai/ci) 0

0 1
2(1 − aj/cj)

)

+ 1
4

(

Siici Sijc
1/2
i c

1/2
j

Sijc
1/2
i c

1/2
j Sjjcj

)−1

and

Dkℓ(Q) =

∫

R2

exp

[

−

(

u
v

)⊤

Q

(

u
v

)

]

Hk(u)Hℓ(v)dudv,

for any positive matrixQ. For any givenQ, Dkℓ(Q) can be computed exactly by using a singular
value decomposition ofQ and the appropriate change of variables.5
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