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Abstract

We consider the least-square regression problem with aegation by a block/;-norm, i.e., a
sum of Euclidean norms over spaces of dimensions largerdhan This problem, referred to as
the group Lasso, extends the usual regularization by threrm where all spaces have dimension
one, where it is commonly referred to as the Lasso. In thigpape study the asymptotic model
consistency of the group Lasso. We derive necessary andisaffconditions for the consistency
of group Lasso under practical assumptions, such as modwspetification. When the linear
predictors and Euclidean norms are replaced by functiodse@producing kernel Hilbert norms,
the problem is usually referred to as multiple kernel leagrand is commonly used for learning
from heterogeneous data sources and for non linear vasaldetion. Using tools from functional
analysis, and in particular covariance operators, we extie@ consistency results to this infinite
dimensional case and also propose an adaptive scheme io alotansistent model estimate, even
when the necessary condition required for the non adaptiverse is not satisfied.

Keywords: Sparsity, regularization, consistency, convex optinizgtcovariance operators

1. Introduction

Regularization has emerged as a dominant theme in maclsimerig and statistics. It provides an
intuitive and principled tool for learning from high-dimgional data. Regularization by squared
Euclidean norms or squared Hilbertian norms has been tghtpstudied in various settings, from
approximation theory to statistics, leading to efficieraqgtical algorithms based on linear algebra
and very general theoretical consistency resuilts (Tikin@mul Arsenip] 199 a, 1990, Hastie
- , Cucker and Simale, [2002).
In recent years, regularlzatlon by non Hilbertian norms dpaserated considerable interest in
linear supervised learning, where the goal is to predicsparse as a linear function of covariates;
in particular, regularization by th&-norm (equal to the sum of absolute values), a method com-
monly referred to as theasso([Tibshirari,[T99%[ Osborne efldl., 2000), allows to perfeariable
selection. However, regularization by non Hilbertian nerrannot be solved empirically by simple
linear algebra and instead leads to general convex optiimizaroblems and much of the early
effort has been dedicated to algorithms to solve the opétita problem efficiently. In particular,
the Lars algorithm of[Efron et 41.[(2004) allows to find the entire rksgization path (i.e., the set of
solutions for all values of the regularization parametatghe cost of a single matrix inversion.

As the consequence of the optimality conditions, regudaion by thel;-norm leads tsparse
solutions, i.e., loading vectors with many zeros. Recentkev@§Zhao and Yu| 2006, Yuan and
Lin, , 6] Wainwrigh 6) have looked prdgisd the model consistency of the
Lasso, i.e., if we know that the data were generated from esegaading vector, does the Lasso
actually recover it when the number of observed data poi®sf In the case of a fixed number




of covariates, the Lasso does recover the sparsity paftandionly if a certain simple condition on
the generating covariance matrices is verifled (Yuan arlg2087Y). In particular, in low correlation
settings, the Lasso is indeed consistent. However, in poesef strong correlations, the Lasso
cannot be consistent, shedding light on potential probleissich procedures for variable selection.
Adaptive versions where data-dependent weights are addia £,-norm then allow to keep the
consistency in all situation§ (Jo[1, 2006).

A related Lasso-type procedure is thmup Lassp where the covariates are assumed to be
clustered in groups, and instead of summing the absoluteesabf each individual loading, the
sum of Euclidean norms of the loadings in each group is ugeditiely, this should drive all the
weights in one group to zermgether and thus lead to group selectign (Yuan and Lin, 2006). In
Section[R, we extend the consistency results of the Lasdwtgroup Lasso, showing that similar
correlation conditions are necessary and sufficient cmmditfor consistency. The passage from
groups of size one to groups of larger sizes leads howeverstiglaly weaker result as we can
not get a single necessary and sufficient condition (in 8ei, we show that the stronger result
similar to the Lasso is not true as soon as one group has diomelasger than one). Also, in our
proofs, we relax the assumptions usually made for such stemsiy results, i.e., that the model is
completely well-specified (conditional expectation of theponse which is linear in the covariates
and constant conditional variance). In the contexnagspecificationwhich is a common situation
when applying methods such as the ones presented in this, pe@eimply prove convergence
to the best linear predictor (which is assumed to be spds#), in terms of loading vectors and
sparsity patterns.

The group Lasso essentially replaces groups of size onedupsgrof size larger than one. It
is natural in this context to allow the size of each group towgunbounded, i.e., to replace the
sum of Euclidean norms by a sum of appropriate HilbertianmsorWhen the Hilbert spaces are
reproducing kernel Hilbert spaces (RKHS), this procedurad out to be equivalent to learn the
best convex combination of a set of basis kernels, where lezclel corresponds to one Hilbertian
norm used for regularizatior] (Bach et 4I., 2004a). This &awrk, referred to amultiple kernel
learning (Bach et a).[ 2004a), has applications in kernel selectiata fusion from heterogeneous
data sources and non linear variable selection (Lanckirigl] §2004k). In this latter case, multiple
kernel learning can exactly be seen as variable selecti@ageneralized additive modéHastie
and Tibshirani] 1990). We extend the consistency resultseofiroup Lasso to this non parametric
case, by using covariance operators and appropriate sabdiofunctional analysis. These notions
allow to carry out the analysis entirely fiprimal/input” space, while the algorithm has to work
in “dual/feature” space to avoid infinite dimensional optimization. Througththe paper, we will
always go back and forth between primal and dual formulatigmimal formulation for analysis
and dual formulation for algorithms.

The paper is organized as follows: in Secfibn 2, we presentahsistency results for the group
Lasso, while in Sectiof] 3, we extend these to Hilbert spadgrally, we present the adaptive
schemes in Sectiof] 4 and illustrate our set of results wittukitions on synthetic examples in
Sectior{b.

2. Consistency of the Group Lasso

We consider the problem of predicting a respolise R from covariatesX € R?, whereX has
a block structure withn blocks, i.e., X = (X|,..., X,[)T with eachX; € R, j = 1,...,1m,
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and>_"", p; = p. Unless otherwise specifieflX || will denote the Euclidean norm of a vectar.
The only assumptions that we make on the joint distribufiay- of (X,Y") are the following:

(A1) X andY have finite fourth order moment&|| X ||* < oo andE|Y||* < oo.
(A2) The joint covariance matriXxy = EXX " — (EX)(EX)" € RP*?is invertible.

(A3) We let (w,b) € R? x R denote any minimizer oE(Y — X "w — b)2. We assume that
E((Y —w'X —b)?|X) is almost surely greater thaif ;> 0. We let denotd = {j, w; #
0} the sparsity pattern of.

The assumptionAf) does not state that(Y|X) is an affine function of and that the conditional
variance is constant, as it is commonly done in most workdirdpavith consistency for linear
supervised learning. We simply assume that given the bfise adredictor ofY” given X (defined
by w € RP andb € R), there is still a strictly positive amount of variance ¥ If (AP) is
satisfied, then the full loading vectev is uniquely defined and is equal to = (E)T(X)—lxxy,
whereX xy = E(XY) — (EX)(EY) € RP. Note that throughout this paper, we do include a non
regularized constant tertnbut since we use a square loss it will optimized out in closethfby
centering the data. Thus all our consistency statementbevdtated only for the loading vecter;
corresponding results férthen immediately follow.

We often use the notation=Y — w ' X — b. In terms of covariance matrices, our assumption
(AB) leads oY x = E(eg|X) > o2. andX.x = 0 (bute might not in general be independent
from X).

Applications of grouped variables In this paper, we assume that the groupings of the univariate
variables is known and fixed, i.e., the group structure ismiand we wish to achieve sparsity at the
level of groups. This has numerous applications, e.g.,@esip and signal processing, where groups

may represent different frequency barfds (McAuley {aDB20or bioinformatics[(Canckriet etfl.,
P004h) and computer visioh (Varma and Ray, P§07, HarchawliBach,[2047) where each group

may correspond to different data sources or data types. tRateghose different data sources are
sometimes referred to asews(see, e.g., Zhou and Burges, 2007).

Moreover, we always assume that the numhbesf groups is fixed and finite. Considering cases
wherem is allowed to grow with the number of observed data pointghaline of Meinshausen
and Yu), is outside the scope of this paper.

Notations Throughout this paper, we consider the block covarianceixn&ty x with m? blocks

Yx,x;, 1, =1,...,m. We refer to the submatrix composed of all blocks indexeddiy 5 J as
Y x,x,- Similarly, our loadings are vectors defined following atructureqw = (wy ,...,w)"

and we denotev; the elements indexed by Moreover we denotg, the vector inR? with constant
components equal to one, ahgdthe identity matrix of sizg.

2.1 Group Lasso

We consideiindependent and identically distributédi.d.) data(z;,y;) € RP xR, i =1,...,n,
sampled fromPyy and the data are given in the form of matridésc R™ and X € R™*? and
we write X = (X1, ..., X,,) where eachX; € R™"*?J represents the data associated with grpup

1. Note that throughout this paper, we use boldface fontpdpulation quantities.
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Throughout this paper, we make the same i.i.d. assumpteaiind) with non identically distributed
or dependent data and extending our results in those sihsadire left for future research.
We consider the following optimization problem:

1 B B m
i —|Y = Xw —b1,]|> + A d:||lw;
we]gl{l,r})eR QnH w nll” + n; ]Hw]H7

whered € R™ is a vector of strictly positive fixed weights. Note that ciolesing weights in
the block/;-norm is important in practice as those have an influencerdegathe consistency of
the estimator (see Sectigh 4 for further details). Sitd® not regularized, we can minimize in
closed form with respect t by settingb = 11,7 (Y — Xw). This leads to the following reduced
optimization problem inv:

m
Iin %EYY — S yw + %WTEXXU) + An Z; djlw;l, 1)
j=

whereXyy = 1Y TILY, Yyy = 1XTILY andXyx = 1XTII, X are empirical covariance
matrices (with the centering matrix,, defined adl,, = I,, — %17112). We denotan any minimizer
of Eq. (1). We refer ta as thegroup Lassaestimaté. Note that with probability tending to one, if
(AR is satisfied (i.e., it x x is invertible), there is a unique minimum.

Problem [IL) is a non-differentiable convex optimizationlgem, for which classical tools from
convex optimization|(Boyd and Vandenbelghe, 2003) leadhe¢ofdllowing optimality conditions

(see proof by Yuan and Tih (2006) and in Appenfix]A.1):

Proposition 1 A vectorw € RP with sparsity pattern/ = J(w) = {j, w; # 0} is optimal for
problem [1) if and only if

e, |[Sxxw—Sxy|| <d, @
) - - And;
VJGJ, EXij—EXjY:—U)jm. (3)
J

2.2 Algorithms

Efficient exactalgorithms exist for the regular Lasso, i.e., for the caserefall group dimensions
p; are equal to one. They are based on the piecewise linearityedet of solutions as a function
of the regularization parametey, (Efron et al.,2004). For the group Lasso, however, the math i
only piecewise differentiable, and following such a patimas as efficient as for the Lasso. Other
algorithms have been designed to solve problgm (1) for desiajue of)\,,, in the original group
Lasso setting| (Yuan and Lin, 2006) and in the multiple keswdting [Bach et al|, 2004a,b, Son-
nenburg et al,] Rakotomamonyjy gt fal., 2007). In thiepave study path consistency of the
group Lasso and of multiple kernel learning, and in simalaiwe use the publicly available code
for the algorithm of Bach et hl[ (2004b), that computes an@pmate but entire path, by following
the piecewise smooth path with predictor-corrector method

2. We use the convention that all “hat” notations correspondhta-dependent and thusdependent quantities, so we
do not need the explicit dependenceron



2.3 Consistency Results

We consider the following two conditions:

1 PR
max — | Sx,x, 7} x, Diag(dy/lw)wal | < 1. @
ieJe dz‘ JAI
max — | Sx,x, 55k, Diag(dj/ijH)WJH <1, 5)
icJe d;

whereDiag(d;/||w;||) denotes the block-diagonal matrix (with block size$ in which each di-
agonal block is equal t(ﬂ%lpj (with I, the identity matrix of sizep;), andwy denotes the
concatenation of the loading vectors indexedJbyNote that the conditions involve the covariance
between all active groupX;, j € J and all non active groupX’;, i € Je.

These are conditions on both the input (through the joinfdance matrix: x x) and on the
weight vectorw. Note that, when all blocks have size 1, this correspondse@onditions derived
for the Lasso[(Zhao and V1, 246, Yuan and [[in, 2§07] ¥ou,|pa06te also the difference between
the strong condition}) and theweak conditior(f). For the Lasso, with our assumptions, Yuan and
Lin) has shown that the strong conditiph (4) is neagssiad sufficient for path consistency
of the Lasso; i.e., the path of solutions consistently dostan estimate which is both consistent for
the2-norm (regular consistency) and thenorm (consistency of patterns), if and only if condition
(@) is satisfied.

In the case of the group Lasso, even with a finite fixed numbgraips, our results are not as
strong, as we can only get the strict condition as sufficiadtthe weak condition as necessary. In
Sectior{ 2J4, we show that this cannot be improved in genkraite precisely the following theorem,
proved in Appendi{ BJ1, shows that if the conditidh (4) isisfetd, any regularization parameter
that satisfies a certain decay conditions will lead to a @est estimator; thus the strong condition
(@) is sufficient for path consistency:

Theorem 2 AssumeAfl-B). If condition (4) is satisfied, then for any sequengesuch that\,, — 0
and \,n'/? — 400, then the group Lasso estimaiedefined in Eq.[{1) converges in probability
to w and the group sparsity patterv(w) = {j,w; # 0} converges in probability td (i.e.,
P(J (@) = J) — 1),

The following theorem, proved in Appendix B.2, states tifigihére is a consistent solution on
the path, then the weak conditidn (5) must be satisfied.

Theorem 3 Assume AflHJ). If there exists a (possibly data-dependent) sequéncsuch thatw
converges tav and.J (<) converges td in probability, then condition[{5) is satisfied.

On the one hand, TheoreEh 2 states that under the “low caoelbetween variables id and
variables inJ¢” condition {4), the group Lasso is indeed consistent. Ondther hand, the re-
sult (and the similar one for the Lasso) is rather disappaintegarding the applicability of the
group Lasso as a practical group selection method, as Tinddstates that if the weak correlation
condition {§) is not satisfied, we cannot have consistency.

Moreover, this is to be contrasted with a thresholding pdace of the joint least-square esti-
mator, which is also consistent with no conditions (but theeitibility of X x x), if the threshold is
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properly chosen (smaller than the smallest ngisry || for j € J or with appropriate decay condi-
tions). However, the Lasso and group Lasso do not have tasktasthreshold; moreover, further
analysis show that the Lasso has additional advantagesreyelar regularized least-square pro-
cedure [(Meinshausen and| Yu, 2D06), and empirical evidemoessthat in the finite sample case,
they do perform bettel (Tibshirani, 1994), in particulathe case where the number of groups

is allowed to grow. In this paper we focus on the extensiomftmi-dimensional groups to multi-
dimensional groups for finite number of groupsand leave the possibility of letting: grow with

n for future research.

Finally, by looking carefully at condition](4) and]] (5), wercaee that if we were to increase
the weightd; for j € J¢ and decrease the weights otherwise, we could always bestemisi this
however requires the (potentially empirical) knowledgd @ind this is exactly the idea behind the
adaptive scheme that we present in Sedfjon 4. Before loakititgese extensions, we discuss in the
next Section, qualitative differences between our resuitbthe corresponding ones for the Lasso.

2.4 Refinements of Consistency Conditions

Our current results state that the strict conditign (4) Eicient for joint consistency of the group
Lasso, while the weak conditiof] (5) is only necessary. WHegraups have dimension one, then
the strict condition turns out to be also necesspry (YuanLangd007).

The main technical reason for those differences is that imedsion one, the set of vectors
of unit norm is finite (two possible values), and thus reg@anared norm consistency leads to
estimates of the signs of the loadings (i.e., their norredlizersions; /||w; |) which are ultimately
constant. When groups have size larger than oneithe¢fwo;|| will not be ultimately constant (just
consistent) and this added dependence on data leads tdldverig refinement of Theoreifj 2 (see

proof in Appendi{ B.B):
Theorem 4 AssumeAfl). Assume the weak conditioj (5) is satisfied and that for alJ¢ such
that - HEXZ.XJ Sxex, Diag(dj/ijH)wJH — 1, we have

WjoT
ai/ Wil { I, = o
VIR

with A = =31 ¢ Diag(d;/|w,||)ws. Then for any sequence, such that\, — 0 and,n*/*
+00, then the group Lasso estimatedefined in Eq[{1) converges in probabilitysoand the group
sparsity pattern/(w) = {j,w; # 0} converges in probability td.

ATEXJXiEXiXJEE(}]XJ Diag A >0, (6)

This theorem is of lower practical significance than Theofand Theorenf] 3. It merely shows
that the link between strict/weak conditions and suffidietessary conditions are in a sense tight
(as soon as there existse J such thap; > 1, it is easy to exhibit examples where Ef. (6) is or is
not satisfied). The previous theorem does not contradidiaittehat condition[(4) is Qecessary for

path-consistency in the Lasso case: indeed;;ihas dimension one, thefy, — J . is always

equal to zero, and thus E{] (6) is never satisfied. Note thahveondition KB) is an equallty, we
could still refine the condition by using higher orders in #symptotic expansions presented in
Appendix[B.3B.

We can also further refined tinecessargondition results in Theoreph 3: as stated in Thediem 3,
the group Lasso estimator may be both consistent in termarafi and sparsity patterns only if the

6



condition (}) is satisfied. However, if we require only thensistent sparsity pattern estimation,
then we may allow the convergence of the regularizationrpatar),, to a strictly positive limit.
In this situation, we may consider the following populatfmoblem:

1
wme%Rg)—(w w) Sxx(w—w +)\02d [y 7

If there exists\g > 0 such that the solution has the correct sparsity patterm, tthe group Lasso
estimate with\,, — \¢, will have a consistent sparsity pattern. The followinggmsition, which
can be proved with standard M-estimation arguments, magethcise:

Proposition 5 AssumeAflf). If A, tends to\; > 0, then the group Lasso estimateis sparsity-
consistent if and only if the solution of Ef]. (7) has the carsparsity pattern.

Thus, even when conditiofi (5) is not satisfied, we may havsistant estimation of the sparsity
pattern but inconsistent estimation of the loading vectdfs provide in Sectiof] 5 such examples.

2.5 Probability of Correct Pattern Selection

In this section, we focus on regularization parameters tiévad to zero, at the rate'/2, i.e.,
A = Aon~ Y2 with Ay > 0. For this particular setting, we can actually compute thetlof the
probability of correct pattern selection (propositionyed in Appendi{ B.}4). Note that in order to
obtain a simpler result, we assume constant condition@vee ofY” givenw ' X

Proposition 6 Assume Af]-B) and var(Y|w'z) = o2 almost surely. Assume moreovks =
Xon~1/2 with \q > 0. Then, the group Lassé converges in probability tev and the probability
of correct sparsity pattern selection has the followingitim

< 1) , (8)

wheret is normally distributed with mean zero and covariance meltly . x . |x; = XXjeXze —
—1 . . e . . .
XX e Xy EXJXJ Y x,x,. (Which is the conditional covariance matrix &fy- given Xj).

t; — EXz'XJE;(.l]XJ Diag(—)WJ

0 [[w ]

The previous theorem states that the probability of coselgction tends to the mass under a non
degenerate multivariate distribution of the intersectidreylinders. Under our assumptions, this
set is never empty and thus the limiting probability is $lyipositive, i.e., there is (asymptotically)
always a positive probability of estimating the correctgat of groups.

Moreover, additional insights may be gained from Proposi, namely in terms of the depen-
dence orv, Ay and the tightness of the consistency conditions. Firsthwdends to infinity, then
the limit defined in Eq.[{8) tends to one if the strict consistecondition [§) is satisfied, and tends
to zero if one of the conditions is strictly not met. This airorates the results of Theor¢n 2 §hd 3.
Note however, that only an extension of Proposifibn 8,tchat may deviate from a—'/? would
actually lead to a proof of Theorefh 2, which is a subject ofadmg research.

Finally, Eq. [B) shows that has a smoothing effect on the probability of correct pattn
lection, i.e., if condition [|4) is satisfied, then this prbbity is a decreasing function of (and an
increasing function of\y). Finally, the stricter the inequality in Eq] (4), the largee probability of
correct rank selection, which is illustrated in Sectipn Ssgnthetic examples.
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2.6 Loading Independent Sufficient Condition

Condition (#) depends on the loading vecteand on the sparsity patted) which are both a priori
unknown. In this section, we consider sufficient condititivet do not depend on the loading vector,
but only on the sparsity pattedhand of course on the covariance matrices. The following itiomd

is sufficient for consistency of the group Lasso, for all jjussloading vectorssy with sparsity
patternJ:

C(¥xx,d,J) = max max
ieJe  vjed, |lujl|=1|| d;

As opposed to the Lasso cas&(X x x,d,J) cannot be readily computed in closed form, but
we have the following upper bound:

< 1. 9

— Yy XJEXJX Diag(d;)ugy

)

by d,J) d;
C(Exx, rfgg ;

§£:§1X‘Xk( «XJXJ)kj

ked

where for a matrix}/, || M || denotes its maximal singular value (also known as its splestrm).
This leads to the following sufficient condition for consisty of the group Lasso (which extends

the condition of Yuan and Ljrj, 20D7):
max 345 |3 Sx (SHly, )

JjeJ ked
Given a set of weightg, better sufficient conditions than E.](10) may be obtaingddiving a
semidefinite programming problerf (Boyd and Vandenbg{ob@3

<1 (10)

2
Proposition 7 The quanﬂtyv Jmﬁix” HEXZ.XJ EEXJ Diag(dj)uJH is upperbounded by
j€ ujl|=1

. -1 1 .
yonas M (Diag(d)) 25} v, Bxo % Exoxs Bxh, Diag(d)) ) (11)

whereM is a matrix defined by blocks following the block structur&ef, x,. Moreover, the bound
is also equal to
m
min Z Aj.

AER™M, Diag(dj)z;% Xy 5x5 %, 5, Xy 2;3 x Diag(d;)<Diag(}) =
Proof We letdenotel/ = uu' 3= 0. Thenifallu; for j € J have norm 1, then we haveM;; = 1
for all j € J. This implies the convex relaxation. The second problemassly obtained as the
convex dual of the first problem (Boyd and Vandenbgrghe, |[R003 [ |

Note that for the Lasso, the convex bound in Eq] (11) is tigitt leads to the bound given above
in Eq. (I0) [Yuan and []n[ 20p7, WainwrigiHt, 2006). For thesta[Zhao and Y (20P6) consider
several particular patterns of dependencies using [Efj. (W@)e that this condition (and not the
condition in Eq. [P)) is independent from the dimension angstdoes not readily lead to rules of
thumbs allowing to set the weighi} as a function of the dimensiqgs; several rules of thumbs have
been suggested, that loosely depend on the dimension ordtieshin the context of the linear

group Lasso[(Yuan and 1]if, 2006) or multiple kernel learr(iigch et al.[ 2004b); we argue in this

paper, that weights should also depend on the response lqseeeSectiof 4).
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2.7 Alternative Formulation of the Group Lasso

Following [Bach et gl.[(200#a), we can instead consider ezguation by the square of the block
f1-norm:

2

—|IY = Xw — bl,|? d;
weg;}r;)eR 2nH w 1° + un Z illw; |

This leads to the same path of solutions, but it is better\mxhbecause each variable which is not
zero is still regularized by the squared norm. The alteveatersion has also two advantages: (a) it
has very close links to more general frameworks for leartiiegkernel matrix from data (Lanckriet
et alb), and (b) it is essential in our proof of comsisy in the functional case. We also get
the equivalent formulation to Ed[](1), by minimizing in obasform with respect té, to obtain:

2

1. 1
wmellé%’ §EYY—EYXZU+ “w'Sxxw + Mn Zd Jw;ll | - (12)

The following proposition gives the optimality conditiof@ the convex optimization problem de-
fined in Eq. [1R) (see proof in Appendix A.2):

Proposition 8 A vectorw € R with sparsity pattern/ = {j, w; # 0} is optimal for problem[(]2)
if and only if

Vi e JS, HEXJ-XU) - 2XjYH < pndy (37 dil|will) (13)
djw;

lwj I

Note the correspondence at the optimum between optimatfi@uuof the two optimization prob-
lems in Eq. [(1) and Eq[(2) through, = p, (3.1, d;|lw:||). As far as consistency results are
concerned, Theorefh 3 immediately applies to the alter&imulation because the regularization
paths are the same. For Theorfm 2, it does not readily applysiBce the relationship between
An andy, at optimum is\,, = u,, (3°1 diljw;||) and thaty_;" | d;||@w;|| converges to a constant
whenevenb is consistent, it does apply as well with minor modificatidinsparticular, to deal with
the case wherd is empty, which requireg,, = ).

vy e J, i3)(]-)(11) - ZA3ij = —pn (X5 di[|wi]]) =2 (14)

3. Covariance Operators and Multiple Kernel Learning

We now extend the previous consistency results to the casmebarametric estimation, where each
group is a potentially infinite dimensional space of funatio Namely, the non parametric group
Lasso aims at estimating a sparse linear combination oftiture of separate random variables,
and can then be seen as a variable selection method in a lipgeerdditive model (Hastie and

Tibshirani,[ 199p). Moreover, as shown in Sectfon 3.5, the parametric group Lasso may also be
seen as equivalent to learning a convex combination of keradramework referred to as multiple

kernel learning (MKL). In this context it is customary to lea& single input space with several
kernels (and hence Hilbert spaces) defined on the same ipgoé §Lanckriet et all, 2004b, Bach
et aI). Our framework accomodates this case astwelbur assumptionA) regarding the
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invertibility of the joint correlation operator states tliae kernels cannot span Hilbert spaces which
intersect.

In this nonparametric context, covariance operators datesappropriate tools for the statistical
analysis and are becoming standard in the theoretical sinalj kernel method$ (Fukumizu ef al.,
p004,[Gretton et &I, 200%, Fukumizu e} &l., 2007, Capoarstt de Vitb[2005). The following

section reviews important concepts. For more details, séejd197B) ang Fukumizu et|al. (2004).

3.1 Review of Covariance Operator Theory

In this section, we first consider a single setand a positive definite kernél : X x X — R,
associated with the reproducing kernel Hilbert space (RKHSf functions fromX to R (see,
e.g.,[Scholkopf and Smold (2001) [or Berlinet and Thomasalg(200B) for an introduction to
RKHS theory). The Hilbert space and its dot prodict) » are such that for alk € X, then
k(-,x) € Fandforallf € F, (k(-,z), f)x = f(z), which leads to thereproducing property
(k(-,z), k(- y))F = k(z,y) forany(z,y) € X x X.

Covariance operator and norms Given a random variabl& on X with bounded second order
moment, i.e., such thdlk(X, X) < oo, we can define the covariance operator as the bounded
linear operato® y x from F to F such that for all f, g) € F x F,

(f;Exxg)r = cov(f(X), (X)) = E(f(X)g(X)) — (Ef (X)) (Eg(X)).

The operatok x x is auto-adjoin non-negativeandHilbert-Schmidti.e., for any orthonormal basis
(ep)p>1 Of F, theny 72 | |2 x xep||% is finite; in this case, the value does not depend on the chosen
basis and is referred to as the square of the Hilbert-Schmoiath. The norm that we use by default
in this paper is the operator o x x || 7 = supsez, | =1 [IZxx fl|7, which is dominated by
the Hilbert-Schmidt norm. Note that in the finite dimensiocase wheret’ = RP, p > 0 and the
kernel is linear, the covariance operator is exactly theadamce matrix, and the Hilbert-Schmidt
norm is the Frobenius norm, while the operator norm is theimam singular value (also referred
to as the spectral norm).

The null space of the covariance operator is the space ofieunscf € F such thatar f(X) =
0, i.e., such thaf is constant on the support &f.

Empirical estimators Given datax; € X,i = 1,...,n sampled i.i.d. fromPx, then the empir-
ical estimateX x x of Xy x is defined such thatf, > x xg)r is the empirical covariance between
f(X) andg(X), which leads to:

EXX— Zk 1’2 ®k 1’2 Zk wz %zn:k(vwl)v
=1

=1

whereu®u is the operator defined k', (u®v)g>f = (f,u)r(g,v)r. If we further assume that the
fourth order moment is finite, i.eEk(X, X) < 00, then the estimate is uniformly consistent i.e.,

1Exx — Sxx|lF = Op(n~1/?) (see[Fukumizu et §If 2007) and Appenfiix]C.1), which geiresl

the usual result of finite dimension.

3. Arandom variableZ,, is said to be of orde®, (a,,) if for any n > 0, there exists\/ > 0 such thasup,, P(|Z,| >
Ma,,) < n. Sed Van der Vaar} (1998) for further definitions and prapsrof asymptotics in probability.
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Cross-covariance and joint covariance operators Covariance operator theory can be extended
to cases with more than one random variab 1973put situation, we haven input
spacesty, ..., X, andm random variablesX' = (X;,..., X,,) andm RKHS Fi, ..., F,, asso-
ciated withm kernelskq, ..., k,.

If we assume thak; (X;, X;) < oo, forall j = 1,...,m, then we can naturally define the
cross-covariance operatorsy, x,; from F; to 7; such that'(f;, f;) € Fi x Fj,

(fi» 2x,x; fi) 7 = cov(fi(Xa), £5(X;)) = E(fi( Xa) f;(X5)) — (Bfi(X)) (B f5 (X))

These are also Hilbert-Schmidt operators, and if we furtissume thakk; (X;, X;)? < oo, for

all j = 1,...,m, then the natural empirical estimators converges to thellptpn quantities in
Hilbert-Schmidt and operator norms at rélg(n~'/2). We can now define a joint block covariance
operator onF = Fj x --- x Fy, following the block structure of covariance matrices in t8etf2.
As in the finite dimensional case, it leads to a joint covareanperatoiX x x and we can refer to
sub-blocks a¥x, x, for the blocks indexed by and.J.

Moreover, we can define the bounded (i.e., with finite operatym) correlation operators
through¥y, x; = E%?X_Cxixj E%?X (Bakef,[I97B). Throughout this paper we will make the as-
sumption that those 6p1erat0$3<i X; érecompactfori # j: compact operators can be characterized
as limits of finite rank operators or as operators that canidgodalized on a countable basis with
spectrum composed of a sequence tending to zero (sed, egi$,BL980). This implies that the
joint operatorC'x x, naturally defined ot = F; x --- x Fpy, is of the form “identity plus com-
pact”. It thus has a minimum and a maximum eigenvalue whietbath between and1 (Brezi$,
f[980). If those eigenvalues are strictly greater than zbem the operator is invertible, as are all the
square sub-blocks. Moreover, the joint correlation operat lower-bounded by a strictly positive
constant times the identity operator.

Translation invariant kernels A patrticularly interesting ensemble of RKHS in the contekt o
nonparametric estimation is the set of translation invriernels defined ovet’ = RP, where

p = 1, of the formk(z,2") = q(a’ — z) whereq is a function onR? with pointwise nonnegative
integrable Fourier transform (which implies thes continuous). In this case, the associated RKHS
isF ={qp*g, g€ L?(RP)}, wheregq, /, denotes the inverse Fourier transform of the square
root of the Fourier transform af and+ denotes the convolution operation, ab#{R”) denotes the
space of square integrable functions. The norm is thengqual

w 2
1913 = [

whereF and(Q are the Fourier transforms gfandq (Wahbh[1990[ Schdlkopf and Snjdia, 4001).
Functions in the RKHS are functions with appropriately gnéble derivatives. In this paper, when
using infinite dimensional kernels, we use the Gaussiarekéfn, 2’') = q(x — 2') = exp(—bl||z —
'|[?).

One-dimensional Hilbert spaces In this paper, we also consider real random variabfeande
embedded in the natural Euclidean structure of real numlerswe consider the linear kernel on
R). In this setting the covariance operaiok,y from R to F; can be canonically identified as an
element ofF;. Throughout this paper, we always use this identification.

11



3.2 Problem Formulation

We assume in this section and in the remaining of the papefdhaachj = 1,...,m, X; € &;
whered; is any set on which we have a reproducible kernel Hilbertepag, associated with the
positive kernelk; : X; x X; — R. We now make the following assumptions, that extends the
assumptionsAfl)), (AB) and @B). For each of them, we detail the main implications as well as
common natural sufficient conditions. The first two conditigA]) and @f) depend solely on the
input variables, while the two other one#f) and @Af) consider the relationship betweéhand

Y.

(A4) Foreachj = 1...,m, F; is a separable reproducing kernel Hilbert space assocratad
kernel k;, and the random variablds (-, X;) are not constant and have finite fourth-order
moments, i.e.Ek;(X;, X;)? < oo.

This is a non restrictive assumption in many situations;efcample, when (a); = RP7 and
the kernel function (such as the Gaussian kernel) is boyratedhen (b).X; is a compact subset of
RPs and the kernel is any continuous function such as linear ynpaial. This implies notably,
as shown in Sectio@.l, that we can define covariance, cm&siance and correlation operators

that are all Hilbert-Schmidf (BaRek, 7978, Fukumizu §t00T) and can all be estimated at rate

O, (n~1/2) in operator norm.

(A5) All cross-correlation operators are compact and the jointelation operato€'y x is invert-
ible.

This is also a condition uniquely on the input spaces and ndt o Following [Fukumizu et 3l.
(ROOY), a simple sufficient condition is that we have medsarspaces and distributions with joint

densitypy (and marginal distributiong .y, (z;) andpx,x,(z;,z;)) and that themean square con-
tingencybetween all pairs of variables is finite, i.e.

E{—pxixﬂ'(w“%) - 1} < 0.
px,(@i)px; (z;)

The contingency is a measure of statistical dependdncyy{REI59), and thus this sufficient con-
dition simply states that two variable's; and X; cannot be too dependent. In the context of mul-
tiple kernel learning for heterogeneous data fusion, thisesponds to having sources which are
heterogeneous enough. On top of compacity we impose thetibility of the joint correlation
operator; we use this assumption to make sure that the @unsd, . . ., f,,, are unique. This en-
sures the non existence of any set of functigns . ., f,, in the closures of, ..., F,,, such that
var f;(X;) > 0 and a linear combination is constant on the support of théararvariables. In the
context of generalized additive models, this assumptioeferred to as the emptoncurvity space
assumption|(Hastie and Tibshifahi, 1p90).

(AB) There exists function§ = (f1,...,f,) € F = F; x --- x F,, b € R, and a functiorh
of X = (X1,...,X,,) such tha (Y] X) = Y7 | £5(X;) + b + h(X) with EA(X)? < oo,
Eh(X) = 0 andEh(X)f;(X;) = 0forall j = 1,...,m and f; € F;. We assume that
E((Y — £(X) — b)?|X) is almost surely greater tharf, > 0 and smaller than?,, < cc.
We let denote] = {j, f; # 0} the sparsity pattern df.

12



This assumption on the conditional expectatiort’'ofiven X is not the most general and follows
common assumptions in approximation theory (see, le.g.0i@wito and de Vifo| (20D5), Cucker
and Smale[(2002) and references therein). It allows migsgaoon, but it essentially requires that
the conditional expectation af given sums of measurable functionsXf is attained at functions
in the RKHS, and not merely measurable functions. Dealirty wiore general assumptions in the
line of Ravikumar et gl.[(2008) requires to consider corsisy for norms weaker than the RKHS
norms [Caponnetto and de Vito, 2p(5, Steinwart, P001), auefti for future research. Note also,
that to simplify proofs, we assume a finite upper-boutid, on the residual variance.

(A7) Forallj € {1,...,m}, there existg; € F; such thaff; = E;/QX gj, i.e., eachf; is in the

range ofEl/2

This technical condition, already used[by Caponnetto andtdgP00%), which concerns all RKHS
independently, ensures that we obtain consistency for ¢ rof the RKHS (and not another
weaker norm) for the least-squares estimates. Note alsd thaplies thatvar f;(X;) > 0, i.e., f;
is not constant on the support &f;.

This assumption might be checked (at least) in two ways;, fifste,),>1 is a sequence of
eigenfunctions ok x x, associated with strictly positive eigenvalugs> 0, thenf is in the range of
Y xx ifand only if f is constant outside the support of the random variabend} _ -, A—l,,<f7 ep)?

is finite (i.e, the decay of the sequengke,)? is strictly faster than\,,).

We also provide another sufficient condition that shedstaatdil light on this technical con-
dition which is always true for finite dimensional Hilbertages. For the common situation where
X; = RPi, Px, (the marginal distribution oK ;) has a density x, (z;) with respect to the Lebesgue
measure and the kernel is of the foky(x;, 2;) = ¢;(z; — 2), we have the following proposition
(proved in Appendif D]4):

Proposition 9 AssumeX = RP and X is a random variable o’ with distribution Px that has a
strictly positivedensityp x (z) with respect to the Lebesgue measure. Assumer’) = q(z — 2')
for a functiong € L?(RP) has an integrable pointwise positive Fourier transformth/\associated
RKHSF. If f can be written asf = ¢ * g (convolution ofg and g) with [, g(x)dz = 0 and

T

pr p}(( (l dr < oo, thenf € Fisin the range of the square roél%( of the covariance operator.

The prewous proposition gives natural conditions regaydf and px. Indeed, the condition
p)((() )dx < oo corresponds to a natural support condition, ifeshould be zero wher& has
no mass, otherwise, we will not be able to estimgtaote the similarity with the usual condition

regarding the variance of importance sampling estimafgnerfaufi][ 1999). Moreovey; should
be even smoother than a regular function in the RKHS (comariby ¢ instead of the square root
of ¢). Finally, we provide in Appendik]E detailed covarianceustures for Gaussian kernels with

Gaussian variables.

Notations Throughout this section, we refer to functiofs= (f1,..., fm) € F = F1 XX Fm
and the joint covariance operat@iry y. In the following, we always use the norms of the RKHS.
When considering operators, we use the operator norm. Weeflsr to a subset of indexed by.J
through f,;. Note that the Hilbert norni f,[|x, is equal tof| f,[| =, = (3, ||fj||fj)1/2. Finally,

given a nonnegative auto-adjoint operafymwe let denoteS'/? its nonnegative autoadjoint square

root (Bakel[1973).
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3.3 Nonparametric Group Lasso

Given i.i.d data(x;;,y:), i = 1,...,n,j = 1,...,m, where eacl;; € &}, our goal is to estimate
consistently the function§; and which of them are zero. We let dendtec R" the vector of
responses. We consider the following optimization problem

2 2
n

. 1 = 229 <

spin oo Z Yi — Z filwig) =0 |+ Z il fill 7
i=1 Jj=1 7j=1

By minimizing with respect t® in closed form, we obtain a similar formulation to Ef.](12)ewe

empirical covariance matrices are replaced by empiriceéducance operators:

2

I . 1, . T
i vy = (i Bxv)r+ 5 Bxx flr + = j;djnfjnfj : (15)

We let denotef any minimizer of Eq. [(A5), and we refer to it as the non paraimeroup Lasso
estimate, or also the multiple kernel learning estimatePBypositior[ 1|3, the previous problem has
indeed minimizers, and by Propositipr] 14 this global mimimis unique with probability tending
to one.

Note that formally, the finite and infinite dimensional forations in Eq. [12) and Eq[ (15)
are the same, and this is the main reason why covariancetopeeae very practical tools for the
analysis. Furthermore, we have the corresponding prapoesiégarding optimality conditions (see

proof in Appendi{AB):

Proposition 10 A function f € F with sparsity pattern/ = J(f) = {j, f; # 0} is optimal for
problem [1p) if and only if

e |[Exus = S| < pnds (T dillfillz). (16)
J

djfj
1£ill7;

A consequence (and in fact the first part of the proof) is tinabgtimal functionf must be in the
range ofS yy andX x x, i.e., an optimalf is supported by the data; that is, eagfhs a linear com-
bination of functions:; (-, z;;), 4 = 1,...,n. This is a rather circumvoluted way of presenting the
representer theorerh (Wahla, 11990), but this is the easiettef theoretical analysis of consistency.
However, to actually compute the estimgtérom data, we need the usual formulation with dual
parameters (see Sectipn|3.5).

Moreover, one important conclusion is that all our optirtiza problems in spaces of functions
can be in fact transcribed into finite-dimensional problemgarticular, all notions from multivari-
ate differentiable calculus may be used without particatae regarding the infinite dimension.

17)

3.4 Consistency Results

We consider the following strict and weak conditions, whichrespond to conditior{](4) anf] (5) in
the finite dimensional case:

I |a1/2 1 .
IZ%E}}; d_z “EXiXiCXiXJCXJXJ Dlag(dj/Hfijj)gJH]__i <1, (18)
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<L (19)

Fi

ma - Hz Ox,x,Cx 1 x, Ding(d /81, )eal |

whereDiag(d;/||f;|| ;) denotes the block-diagonal operator with operaﬁﬁﬁlf on the diag-

onal. Note that this is well-defined becauSe x is invertible and that it reduces to E¢] (4) and
Eqg. (3) when the input space¥;, j = 1,...,m are of the formR?i and the kernels are linear.

The main reason is rewriting the conditions in terms of datien operators rather than covariance
operators is that correlation operators are invertible dsumption, while covariance operators are
not as soon as the Hilbert spaces have infinite dimensions fallowing theorems give necessary
and sufficient conditions for the path consistency of thepaoametric group Lasso (see proofs in

Appendix|[C.p and Appendix G.3):

Theorem 11 Assume AA-f) and thatJ is not empty. If condition[ (18) is satisfied, then for any
sequenceu, such thaty,, — 0 and p,n'/? — +oco, any sequence of nonparametrlc group Lasso
estimatesf converges in probability t6 and the sparsity patterd (f ) ={J, f] # 0} converges in
probability toJ.

Theorem 12 Assurpe/(\-ﬁ) and thatJ isAnot empty. If there exists a (possibly data-dependent)
sequenceu, such f converges td and J converges taJ in probability, then condition[(39) is
satisfied.

Essentially, the results in finite dimension also hold whewugs have infinite dimensions. We
leave the extensions of the refined results in Sedtign 2.4ttoe work. Condition[(18) might be
hard to check in practice since it involves inversion of etation operators; see Sectjon]3.6 for an
estimate from data.

3.5 Multiple Kernel Learning Formulation

Proposition[ 10 does not readily lead to an algorithm for cotimg the estimatef. In this sec-
tion, following [Bach et 4. [[200#a), we link the group LasedHe multiple kernel learning frame-
work (Canckriet et g.[ 2004b). Problerh [15) is an optimiaatproblem on a potentially infinite
dimensional space of functions. However, the followinggmsition shows that it reduces to a finite
dimensional problem that we now precise (see proof in Appefd]):

Proposition 13 The dual of problem[(15) is

1 ol K;a
max —— Y — al|* — — max , 20
a€R™, aT1,=0 { H "tHn H Mn i=1,...m dlz } ( )
where (K;)a, = ki(zq,xp) are the kernel matrices ilR"*", for i = 1,...,m. Moreover, the

dual variablea € R™ is optimal if and only ifa"1,, = 0 and there exists) € R7" such that
>ty mid; = 1and

m
anKj +nundy, | a= Ya (21)
j=1
T T
) o' K« o' K«
Vje{l,...,m}, dzj < max TZ =1n; =0. (22)
J i
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The optimal function may then be written As=n; > """ | a;k; (-, z45).

Since the problem in Eq[_(R0) is strictly convex, there is isue dual solutiorv. Note that Eq.[(31)
corresponds to the optimality conditions for the leastasguproblem:

112
?éijr__léiyy —(f, 2XY>]—‘ + %<f, f)XXf>f + %,un Z Hf;!fj ,
J,n; >0
whose dual problem is:
1= 1 -
L b LA el DR

and unique solution is = (37", 7; K + nunl,) 'Y . Thatis, the solution of the MKL problem
leads to dual parametersand set of weightg > 0 such thatx is the solution to the least-square
problem with kernelK = > 7; K;. Bach et a). [[2004a) has shown in a very similar con-
text (hinge loss instead of the square loss) that the optipial Proposition[ 13 can be obtained
as the minimizer of the optimal value of the regularized tisagiare problem with kernel matrix

Z;‘nzl ’I’]J'Kj, i.e.:

- 1 “
J(n) = max ——IY = nppal®? — —a’ Kl oy,
I B T T el DL

with respect ta; > 0 such that) """, 77] = 1. This formulation allows to derive probably ap-
proximately correct error boun Lanc riet et fl., 20@dysquet and Herrmdnh, 2003). Besides,
this formulation allows; to be negative, as long as the mafjiX’ , 7; K; is positive semi-definite.
However, theoretical advantages of such a possibilityrstihain unclear.

Finally, we state a corollary of Propositifn| 13 that shovat tinder our assumptions regarding
the correlation operator, we have a unique solution to timepaoametric groups Lasso problem with
probability tending to one (see proof in Appenflix]A.5):

Proposition 14 AssumeAH-B). The problem[(15) has a unique solution with probabilitydizag
to one.

3.6 Estimation of Correlation Condition ([L8)

Condition {#) is simple to compute while the non parametodiedition (1) might be hard to check
even if all densities are known (we provide however in SecBoa specific example where we
can compute in closed form all covariance operators). THewing proposition shows that we

can consistently estimate the quantﬂ”&X/X Cx, XJCX}XJ Diag(d;/||f; || 7, )gJH givenani.i.d.
sample (see proof in Appendix ¢.4):

Proposition 15 AssumeAfH?), andx,, — 0 andx,n'/? — . Let

-1

a=T, | Y KL, + neuly | IL,Y
jedJ
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andr); = dij(aTKja)l/Q_ Then, foralli € J¢, the normHEi(/inCXiXJC)};XJ Diag(dj/HfjH)gJ‘
is consistently estimated by:

Fi

1
1
(1L, K,11,,) /2 ZHnKmeLmnIn Zﬁnnk’jnn all. (23)
jed jey

4. Adaptive Group Lasso and Multiple Kernel Learning

In previous sections, we have shown that specific necessarguficient conditions are needed
for path consistency of the group Lasso and multiple kereatring. The following procedures,

adapted from the adaptive Lasso[of Zfu (2006), lead to tep-ptocedures that always achieve
both consistency, with no condition such as Ej. (4) or Ed). (A8 before, results are a bit different

when groups have finite sizes and groups may have infinits.size

4.1 Adaptive Group Lasso
The following theorem extends the similar theorenj of|Zow@0 and shows that we can get both
0,(n~1/?) consistency and correct pattern estimation:
Theorem 16 AssumeAfl) and~ > 0. Letw’S = 2)}1}(2)@/ denote the (unregularized) least-
square estimate. Let denote any minimizer of

2

1. B I 14 I - ~LS ||~
§Eyy—EYXw+§w EXXw‘f‘?n Zij 177wyl

j=1

If n=1/2 > p, > n=1/2-7/2 thenw” converges in probability tev, J(w*) converges in proba-
bility to J, andn!/?(«4 — wy) tends in distribution to a normal distribution with mean a@nd
covariance matrix> !y .

This theorem, proved in Append|x Ip.1, shows that the ademiwup Lasso exhibit all important
asymptotic properties, both in terms of errors and selectedels. In the nonparametric case, we
obtain a weaker result.

4.2 Adaptive Multiple Kernel Learning
We first begin with the consistency of the least-square eséirsee proof in Appendix O.2):

Proposition 17 AssumeABH). The unique minimizef> of

1. . 1, - Fin e )
3 2vy = By, N+ 5 Bxx f)F + 321 1£5ll%;

converges in probability t¢f if x,, — 0 and x,n'/> — 0. Moreover, we havel fL% — f||r =

Op(/i%/2 + k12,
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Since the least-square estimate is consistent and we hawpp&n bound on its convergence
rate, we follow[Zol1[(2006) and use it to defined adaptive wsighfor which we get both sparsity
and regular consistency without any conditions on the vafube correlation operators.

Theorem 18 AssumeAf) and~y > 1. Let f s be the least-square estimate with regularization
parameter proportional ta,~1/3, as defined in Propositiop [17. Lét' denote any minimizer of

2

1s o 1, ¢
S5y = (Sxv )+ 5 Sxx f)r + Z (£l 1551,

Thenf4 converges td and J(fA) converges td in probability.

Theorem[18 allows to set up a specific vector of weight3his provides a principled way to
define data adaptive weights, that allows to solve (at Idesiretically) the potential consistency
problems of the usual MKL framework (see Sectipn 5 for illason on synthetic examples). Note
that we have no result concerning tﬁg(n*l/z) consistency of our procedure (as we have for the
finite dimensional case) and obtaining precise convergeates is the subject of ongoing research.

The following proposition gives the expression for the #olu of the least-square problem,
necessary for the computation of adaptive weights in The@@.

Proposition 19 The solution of the least-square problem in Proposifionslgiven by
—1

m
Vje{1,.. Z ik (-, ;) with o = 11, Z 1L, KL, + nwpl, | 10V,
j=1

. ~ 1/2 .
with norms|| I/ £, = (o' Kja) 2i=1,....m

Other weighting schemes have been suggested, based onsvheoristics. A notable one (which
we use in simulations) is the normalization of kernel masiby their trace[ (Lanckriet efldl., 20p4b),
which leads tal; = (trSx,x,)"/? = (2211, K;11,)"/2. Bach et g.[(2004b) have observed em-
pirically that such normallzatlon mlght lead to suboptirsalutions and consider weight that
grow with the empirical ranks of the kernel matrices. In théper, we give theoretical arguments
that indicate that weights which do depend on the data are @aggpropriate and work better (see
Sectior{p for examples).

5. Simulations
In this section, we illustrate the consistency resultsiobthin this paper with a few simple simula-
tions on synthetic examples.

5.1 Groups of Finite Sizes

In the finite dimensional group case, we sampléde R? from a normal distribution with zero
mean vector and a covariance matrix of gize 8 for m = 4 groups of sizep; = 2,5 =1,...,m,
generated as follows: (a) samplejar p matrix G with independent standard normal distributions,
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Figure 1: Regularization paths for the group Lasso for twighting schemesdsléft: non adaptive,
right: adaptive) and three different population densitteg:(strict consistency condition
satisfied,middle weak condition not satisfied, no model consistent estisydiettom
weak condition not satisfied, some model consistent estsnat without regular con-
sistency). For each of the plots, plain curves correspomaitees of estimateg;, dotted
curves to population values, and bold curves to model consistent estimates.
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(b) form Sxx = GG, (c) for eachj € {1,...,m}, rescaleX; € R? so thattr¥x x, = 1.
We selectedCard(J) = 2 groups at random and sampled non zero loading vectors asvioll(a)
sample each loading from from independent standard noristaibditions, (b) rescale those to unit
norm, (c) rescale those by a scaling which is uniform at rmndetween% and1. Finally, we chose
a constant noise level of standard deviatioequal t00.2 times (E(w ' X)?)'/? and sampled”
from a conditional normal distribution with constant vaiéa. The joint distribution oX, Y') thus
defined satisfies with probability one assumptioNg-g).

For cases when the correlation conditiofls (4) dihd (5) wemgeve not satisfied, we consider
two different weighting schemes, i.e., different ways dfiag the weights/; of the block/;-norm:
unit weights (which correspond to the unit trace weighticlgesne) and adaptive weights as defined
in Section[}.

In Figure[1, we plot the regularization paths correspondng00 i.i.d. samples, computed by
the algorithm ofBach et &I[ (2004b). We only plot the valuéshe estimated variables;, j =
1,...,m for the alternative formulation in Secti¢n .7, which aregmrtional to|<i;|| and normal-
ized so thatzy”;1 7; = 1. We compare them to the population valugs both in terms of values,
and in terms of their sparsity pattem; (s zero for the weights which are equal to zero). Fidlire 1 il-
lustrates several of our theoretical results: (a) the tapaorresponds to a situation where the strict
consistency condition is satisfied and thus we obtain mooiesistent estimates with also a good
estimation of the loading vectors (in the figure, only thedjbehavior of the norms of these loading
vectors are represented); (b) the right column corresptintee adaptive weighting schemes which
also always achieve the two type of consistency; (c) in tradieiand bottom rows, the consistency
condition was not satisfied, and in the bottom row the coowlitif Proposition Figurf] 1 that ensures
that we can get model consistent estimates without regalasistency, is met, while it is not in the
middle row: as expected, in the bottom row, we get some mau®istent estimates but with bad
norm estimation.

In Figure[2,[B and]4, we consider the three joint distribigieised in Figurg] 1 and compute
regularization paths for several number of samplést¢ 10°) with 200 replications. This allows
us to estimate both the probability of correct pattern estiiomP(./(w = J) which is considered in
Sectior{ 25, and the logarithm of the expected elsgit ||« — w||2.

From Figure[P, it is worth noting (a) the regular spacing lestw the probability of correct
pattern selection for several equally spaced (in log seale)bers of samples, which corroborates
the asymptotic result in Sectign P.5. Moreover, (b) in bat,rwe get model consistent estimates
with increasingly smaller norms as the number of samplews.gfially, (c) the mean square errors
are smaller for the adaptive weighting scheme.

From Figure[B, it is worth noting that (a) in the non adaptiase; we have two regimes for the
probability of correct pattern selection: a regime corcegfing to Propositiof] 6 where this proba-
blity can take values ifo, 1) for increasingly smaller regularization parameters (whenows); and
a regime corresponding to non vanishing limiting regukgicn parameters corresponding to Propo-
sition[§: we have model consistency without regular coesist. Also, (b) the adaptive weighting
scheme allows both consistencies. In Figﬁljre 3 howevergitensl regime (correct model estimates,
inconsistent estimation of loadings) is not present.

In Figure[, we sampled 10,000 different covariance matrimed loading vectors using the
procedure described above. For each of these we computegghkarization paths from 1000
samples, and we classify each path into three categorigsxi€tence of model consistent estimates
with estimation errof«y — w|| less thanl0~!, (2) existence of model consistent estimates but none
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Figure 2: Synthetic example where consistency conditioBdn(4) is satisfied (same example as
the top of Figurd]1: probability of correct pattern seleat{eft) and logarithm of the ex-
pected mean squared estimation erright), for several number of samples as a function
of the regularization parameter, for regular regularaatiop), adaptive regularization
with v = 1 (botton).
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Figure 3: Synthetic example where consistency conditidggn(®) is not satisfied (same example
as the middle of Figur] 1: probability of correct patterneséibn (eft) and logarithm
of the expected mean squared estimation emight), for several number of samples
as a function of the regularization parameter, for regudgutarization top), adaptive
regularization withy = 1 (botton).
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Figure 4: Synthetic example where consistency conditidgn(®) is not satisfied (same example
as the bottom of Figurf] 1: probability of correct patterrestbn (eft) and logarithm
of the expected mean squared estimation emight), for several number of samples
as a function of the regularization parameter, for regudgutarization fop), adaptive
regularization withy = 1 (bottorn).
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B correct sparsity, regular consistency
[ correct sparsity, no regular consistency
[ lincorrect sparsity

0
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log 10(condltlon)

Figure 5: Consistency of estimation vs. consistency camitSee text for details.

with estimation errofj@> — w|| less thanl0~! and (3) non existence of model consistent estimates.
In Figure[b we plot the proportion of each of the three class dsnction of the logarithm of

max;e ye dli HEXZ.XJ E;&XJ Diag(dj/Hw]-H)wJH. The position of the previous value with respect
to 1 is indicative of the expected model consistency. Whes liéss than one, then we get with

overwhelming probability model consistent estimates \giibd errors. As the condition gets larger
than one, we get fewer such good estimates and more and maokd meonsistent estimates.

5.2 Nonparametric Case

In the infinite dimensional group case, we samped= R™ from a normal distribution with zero
mean vector and a covariance matrix of size= 4, generated as follows: (a) samplerax m
matrix G with independent standard normal distributions, (b) fdfmy = GG, (c) for each
Jje{l,...,m}, rescaleX; € Rsothaty, x, = 1.

We use the same Gaussian kernel for each variables;’) = e~@~*)*, In this situation,
as shown in Appendik]E we can compute in closed form the eigretibns and eigenvalues of the
marginal covariance operators. We then sample functian flandom independent components on
the first 10 eigenfunctions. Examples are given in Figjire 6.

In Figure[J, we plot the regularization paths correspond@000 i.i.d. samples, computed
by the algorithm of Bach et hI[ (20Q4b). We only plot the valoéthe estimated variables, j =
1,...,m for the alternative formulation in Secti¢n .7, which aregmrtional to||0;|| and normal-
ized so thalzg.”:1 n; = 1. We compare them to the population valugs both in terms of values,
and in terms of their sparsity pattern; (is zero for the weights which are equal to zero). Fidire 7
illustrates several of our theoretical results: (a) thermp corresponds to a situation where the
strict consistency condition is satisfied and thus we obtaialel consistent estimates with also a
good estimation of the loading vectors (in the figure, onky glood behavior of the norms of these
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Figure 6: Functions to be estimated in the synthetic nonrpadc group Lasso experiments (left:
consistent case, right: inconsistent case).

consistent — non adaptive consistent — adaptive (y = 2)
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Figure 7: Regularization paths for the group Lasso for twighting schemesdsléft: non adaptive,
right: adaptive) and two different population densities( strict consistency condition
satisfied bottom weak condition not satisfied. For each of the plots, plaivesi corre-
spond to values of estimateg, dotted curves to population valugs and bold curves to
model consistent estimates.
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loading vectors are represented); (b) in the bottom rowgctmsistency condition was not satisfied,
and we do not get good model estimates. Finally, (b) the ightmn corresponds to the adaptive
weighting schemes which also always achieve the two typeusistency.However, such schemes
should be used with care, as there is one added free pargitheteegularization parameterof the
least-square estimate used to define the weights): if cltosdarge, all adaptive weights are equal,
and thus there is no adaptation, while if chosen too smallldhst-square estimate may overfit.

6. Conclusion

In this paper, we have extended some of the theoreticaltsesiuthe Lasso to the group Lasso, for
finite dimensional groups and infinite dimensional groupgdrticular, under practical assumptions
regarding the distributions the data are sampled from, we paovided necessary and sufficient
conditions for model consistency of the group Lasso anddtgparametric version, multiple kernel
learning.

The current work could be extended in several ways: first, gerdetailed study of the limiting
distributions of the group Lasso and adaptive group Lastmatrs could be carried and then
extend the analysis ¢f Zbl (2006) pr Juditsky and NemirpyRDQ) and[Wu_et al.[(20D7), in
particular regarding convergence rates. Second, ourtseshibuld extend to generalized linear
models, such as logistic regressipn (Meier ¢t al., PO0&0AL is of interest to let the number of
groups or kernels to grow unbounded and extend the resifisaaf and Yu[(2006) and Meinshausen
and Yu [200p) to the group Lasso. Finally, similar analysés/oe carried through for more general

norms with different sparsity inducing propertig¢s (BadbQ?).

Appendix A. Proof of Optimization Results

In this appendix, we give detailed proofs of the various psifons on optimality conditions and
dual problems.

A.1 Proof of Proposition[1
We rewrite problem in Eq[}1), in the form

. 1 - -l 1 T A~ m
Jj=

with added constraints thafj, |w;|| < v;. In order to deal with these constraints we use the tools
from conic programming with the second-order cone, alsomMnas the “ice cream” cone (Boyd
and Vandenberg@OS). We consider the Lagrangian withvdwiables(3;, ;) € RPi x R such
that | 5;]] < ;:

1. . 1 1o TS (w) (B
£(w,v,ﬁ,’y):52yy—2yxw+§w Lxxw + And U_Z Vs N )
o\ j
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The derivatives with respect to primal variables are

Vw[r(wﬂ%ﬁy’Y) - ZAI)()(U)_E:)(Y_ﬂ7
Vv[r(wﬂ%ﬁy’Y) - )‘nd_ -

At optimality, primal and dual variables are completelym@tderized byw ands. Since the dual and
the primal problems are strictly feasible, strong dualitydis and the KKT conditions for reduced
primal/dual variablegw, (3) are

Vi, 18] < And; (dual feasibility), (24)
Vi, Bj = ) X;XW — )y XY (stationarity), (25)
V3, ﬁijj + [Jw;|[And; =0 (complementary slackness) (26)

Complementary slackness for the second order cone haamequenceso;ﬁjﬂmj | And; =
0 if and only if (Boyd and Vandenberghg, 2003, Lobo &t pl., p9@ther (a)w,; = 0, or (b)
w; # 0, ||B]] = And; and3n; > 0 such thatw; = —ﬁﬂj (anti-proportionality), which implies

Bj = —w;j ﬁ{; ﬁ andn; = |lw;||/d;. This leads to the proposition.

A.2 Proof of Proposition[§

We follow the proof of Propositiof] 1 and pf Bach e} 4. (2Q04A% rewrite problem in Eq[(IL2), in
the form

1. 1 1
—Syy — 3 ™ 2,
werr, L, g gTYY T EYXW A W RXXW A it

with constraints that'j, ||w;|| < v; andd'v < t. We consider the Lagrangian with dual variables
(Bj,7;) € RPi x Randd € Ry such thaﬂ]ﬁju <v,i=1,...,m

1. . 1w 1
L(w,v,,7,6) = 53yy = Syxw + §wT2xxw - §unt2 —BTw—~Tv+4d(d"v—1).

The derivatives with respect to primal variables are

vwﬁ(wafmﬁ/}/) = ZA)XXU)_XA]XY —Ba
VUE(ZU,’U,Q,’}/) = d0d— 7>
ViL(w,v,0,7) = pint—0.
At optimality, primal and dual variables are completelyewierized byw andg. Since the dual and

the primal problems are strictly feasible, strong dualityds and the KKT conditions for reduced
primal/dual variablesw, 3) are

Vi, B = Sx,xw—Yx,y  (stationarity - 1), (27)
1 3, o
V7, Z dj||lw;|| = o mex Hd—H (stationarity - 2), (28)

7j=1

v, (%) wj + [wyll ,max ng_‘H =0 (complementary slackness) (29)
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Complementary slackness for the second order cone implgs t

B 18l _
(%) bl s 10—

7 IRRRE)

if and only if, either (ajw; = 0, or (b)w; # 0 and ”g;” 1 ”SZ” and3n; > 0 such that
N 1= yeees T
wj = —n;5;/ ttn, Which implies|jw;|| = 153 max H?H.
Hn 4 m
By writing n; = 0 if w; = 0 (i.e., in order to cover all cases), we have from Hal (28)
[18i H , sl /d

Sty dillwll = Minzznfm z , which implies)_"" | d%n; = 1 and thusvj, n; = %
This leads tovj, 3; = —wjpn/n; = _W >ie, di|lw;||. The proposition follows.
A.3 Proof of Proposition[10
By following the usual proof of the representer theor¢m (Bdafi99D), we obtain that each optimal
function f; must be supported by the data points, i.e., there exists (o, ..., ®y,) € R™™
such thatforallj = 1,...,m, f; = >_I" ; ai;k; (-, z;;). When using this representation back into

Eq. (I5), we obtain an optimization problem that only degeod¢; = G].Taj forj=1,....m
whereG; denotes any square root of the kernel matkiy, i.e., K; = GJGJT. This problem is
exactly the finite dimensional problem in Eq.](12), whé¥e is replaced byG; andw; by ¢;.
Thus Propositior)] 8 applies and we can easily derive the mupr@position by expressing all terms
through the functiong;. Note that in this proposition, we do not show thatthej = 1,...,m,
are all proportional to the same vector, as is done in Appefdi.

A.4 Proof of Proposition[13

We prove the proposition in the linear case. Going to the igg¢rase, can be done in the same way
as done in Appendik Al3. We IeX denote the covariate matrix R™*?; we simply need to add a
new variableu = Xw + b1,, and to “dualize” it. That is, we rewrite problem in Ef.](12) the form

min —HY—uH2+ ,untZ

weRP, beR, veER™, teR, ueR™ 2N

with constraints that'j, ||w;|| < v;, d"v < t andXw + b1,, = u. We consider the Lagrangian with
dual variableg3;,v;) € R? x R andé € R, such that|s;|| < v;, anda € R™:

1o o1 =
‘C(wabavauaﬁ/%av&) = —||Y—uH2—{—,unozT(u—Xw)—F—,untz— ﬁTw +ry]v] +6(dT’U—t)
2n 2 73
i=1

The derivatives with respect to primal variables are

V ﬁ(w7vau767’ya CE) - _MHXTa_ﬁ
(w7vau7/87’yaa) - 5d—7
(w7vau7/87’yaa) - /’Lnt_(s

1 _
JL(w,v,u, B,v,a) = E(u =Y + ppna)
Vbﬁ(w,v,u,ﬁ,%a) = ,U/naTln'



Equating them to zero, we get the dual problem in Ed. (20)ceéSihe dual and the primal problems
are strictly feasible, strong duality holds and the KKT dtinds for reduced primal/dual variables
(w,«r) are

Vi, Xw—Y + ppna =0 (stationarity - 1), (30)

TK;a)l/? o
v;,jzld lw; || = Imax (O‘TZO‘) (stationarity - 2), (31)
a'l,=0  (stationarity - 3), (32)

_ T
_XTa TK< 1/2
V7, < d] ) wj + [Jw;|| max % =0 (complementary slackness)33)
j i=1,..., m i

Complementary slackness for the second order cone goestlead

_XTa\ " T 7 ) 1/2
X« w; + |lw;|| max M:O
dj J J i=1,...m dz ’

T A\1/2
if and only if, either (ajv; = 0, or (b)w; # Oand% = max M, anddn; > 0

such thatw; :—nj( X]a ) which implies||w;|| = n;d; nax
m

By writing n; = 0 if w; = 0 (to cover all cases), we have from EE(SQ L djllwg =

(@ Kia)/? N
max —— ——, which mphesZ}il d?nj = 1. The proposition follows from the fact that at
1=1,....m g

optimality, Vj, w; = 1; X, a.

A.5 Proof of Proposition[14

What makes this proposition non obvious is the fact that theaigance operatoE x x is not
invertible in general. From propositign]13, we know thatreg¢ must be of the formf; =

;i iy @ikj(xij, -), wherea is uniquelydefined. Moreover is such thal > 7", 7; K; + nMnIn) o=

Y and such that i% < A, thenn; = 0 (whereA = max;—q,_, @ K‘l) Thus, if the so-

lution is not unique, there exists two vectors# ¢ such thaty and ¢ have zero components on
indicesj such thataTKja < Ad? (we let denoteJ the active set and thug® this set of in-
dices), andd 7", ((; — n;) Ko = 0. This implies that the vector,, ;o = 11, K;11,a, j € J
are linearly dependent. Those vectors are exactly the reehteector of values of the functions
g; = > i, aikj(xi;,-) at the observed data points. Thus, non unicity implies thatempiri-
cal covariance matrix of the random variablgg.X;), j € J, is non invertible. Moreover, we
have||g]\|f =o' Kja = d2A > 0 and the emplrlcal marginal variance @f(X;) is equal to

TK2a > 0 (otherW|seHg]Hf = 0. By normalizing by the (non vanishing) empmcal standard
deV|at|ons we thus obtain functions such that the empidogariance matrix is singular, but the
marginal empirical variance are equal to one. Because tlpérieal covariance operator is a con-
sistent estimator afl x xy andC'yx x is invertible, we get a contradiction, which proves the itpiof
solutions.
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Appendix B. Detailed Proofs for the Group Lasso

In this appendix, detailed proofs of the consistency redult the finite dimensional case (Theo-
rems[R and]3) are presented. Some of the results presenteid mppendix are corollaries of the
more general results in Appendik C, but their proofs in thiedfidimensional case are much simpler.

B.1 Proof of Theorem[2

We begin with a lemma, which states that if we restrict owmeslto the covariates which we are
after (i.e., indexed byl), we get a consistent estimate as soon,atends to zero:

Lemma 20 AssumeA[lHg). Letwy any minimizer of

1 - - 1. A 1 A
Y - Xywsl” + A Y djllw;|| = Jovy — Xyxgws + §wJTEXJXJWJ + A > dyllwy].
jed jed
If A, — 0, thenwyz converges tavy in probability.
Proof If )\, tends to zero, then the cost function defining converges taF,, (wy) = %Eyy —
Sy x,wy + 2w] Xx, x,wy whose unique (becausgy, x, is positive definite) global minimum is

w (true generating value). The convergencevgfis thus a simple consequence of standard results
in M-estimation [[Van der Vaauft, 1998, Fu and Knjidht, 2000). [ |

We now prove Theorelf} 2. Leiy be defined as in Lemn{a]20. We extend it by zerod oriWe
already know from Lemmp PO that we have consistency in squaoem. Since with probability
tending to one, the problem has a unique solution (becausg is invertible), we now need to
prove that the probability thab is optimal for problem in Eq[]1) is tending to one.

By definition ofwy, the optimality condition[{3) is satisfied. We now need tafyesptimality
condition (®). Denoting =Y — w' X — b, we have:

Sxy = Sxxw+ Xxe = <EXX + Op(n’l/Q)) w + Op(nfl/z) =Xxx; w3+ Op(n*1/2)’

because of classical results on convergence of empirieariemces to covariancef (Van der Vpart,
f[998), which are applicable because we have the fourth endenent condition Afl). We thus
have:

i]X)/—i]XXJZZ}J :EXXJ(W‘]—UN)J)—FOP(H_UQ). (34)

From the optimality conditio® x,y —> x, x, Wy = \, Diag(d;/||@;||)wy definingy and Eq. [34),
we obtain:
@3 — W3 = =S, x, Diag(d;/[[@;]) 5 + Op(n~ %), (35)

Therefore,

Sxgey — Sxpex, W3 = Sxgex, (wy —dy) + Op(n~'/%) by Eq. (BB),
= MZxgex; Sy y, Diag(d;/||i; )i + Op(n~/?) by Eq. [3F)

Sincew is consistent, and,,n'/?2 — +o0, then for each € J¢,

dn ( X;Y X; X3 W3
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converges in probability t _EXZ,XJE;(}IXJ Diag(d;/||w||)wy which is of normstrictly smaller
than one because conditign (4) is satisfied. Thus the pritgathiat « is indeed optimal, which is
equal to

IP’{W € JC,L

Yy — Dy x, 0 H<1 ,
din, X;Y X; X;Wy }

. N 1
2.—2.~Hg1> B
XA } 11 {dmn
ieJe
is tending to 1, which implies the theorem.

B.2 Proof of Theorem[3

We prove the theorem by contradiction, by assuming thaethgistsi € J¢ such that

1 _ .
7 P Dlag(dj/HWjH)WJH > 1.
T

Since with probability tending to oné(w) = J, with probability tending to one, we have from
optimality condition [[B):

iy = 5, (Sxov = A Ding(d; /i) )
and thus

Sxy = Exo®s = (Cxy = Ex6EKx Uxy) + AExx, X x, Diag(d;/||dj])ids
— A, + B,

The second tern®,, in the last expression (divided by,) converges to
v = EXiXJE)_(iXJ Diag(d;/||w;|)wy € RF7,

becausen is assumed to converge in probabilitywoand empirical covariance matrices converge

to population covariance matrices. By assumptijofj > d;, which implies that the probability
T

P { (ﬁ) (Bn/An) = (di + HvH)/z)} converges to one.

The first term is equal to (with, = y, — w 'z, — by, andepsilon = % Y b1 Ek):

. . al] e
An = Exyv = Exx,Ex, x, 2X5Y

¢ o SH-1 ¢ o o Sl ¢

= XX, x;W3 — XXX, EXJXJ YxyXgWI + LXe — XXXy EXJXJ Y Xge

_ ¥ 3 -1 §
= EXit? - EXiXJEXJXJ EX.V?

= ZA)XZG — XXXy E)_(ﬁXJ 2A]XJE + Op(nil/z)
1o _ _ -
= = (ex — &) <w;“ - EXiXJEX}]XJxk;J) + 0p(n 1/2) =Cp +op(n 1/2).
k=1

The random variabl€’,, is a is a U-statistic with square integrable kernel obtaifiech i.i.d.
random vectors; it is thus asymptotically normfal (Van dea/d199B). We thus simply need to
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compute the mean and the variance&f We havelEC,, = 0 becauséi(Xe) = X x. = 0. We let
denoteD;, = x; — 2 X, X5 E}iXJka — % 22:1 Thi — 2X; Xy E}}]X‘]xk.]. We have:

var(C,) = EC:=E(E(CZX))

1 < _
= E WZE(saX)DkD,I]
k=1
1 . 2 T
= E EE'EE:Ohﬁnl)kl)k
k=1
- l0'2- E(i:x.x. —Ex.x 271 XA)X X')
p min N i = X3Xg JA4
n—1, 1
= n2 Omin <2XiXi - EXZ'XJ EXJXJEXJXi) )

whereM = N denotes the partial order between symmetric matrices écglivalent todl — N
positive semidefinite).

Thusn!/2C,, is asymptotically normal with meahand covariance matrix larger thafl,, S x, x, =
Ur2nin X (Xx,x, — XX, X; E;&XJ Y x,x,) which is positive definite (because this is the conditiomal ¢
variance ofX; given Xy andX x x is assumed invertible). Therefo]Pénl/%TAn > 0) converges
to a constant € (0, 1), which implies thaf? {ﬁT(An + Bp)/An = (d; + HvH)/Q} is asymptoti-

cally bounded below by. Thus, since|(A,, + B,,)/A\.|| = %T(An%—Bn)/)\n > (d;+||v]])/2 >

ol

d; implies thatw is not optimal, we get a contradiction, which concludes ttuop

B.3 Proof of Theorem[4

We first prove the following refinement of Lemrhg 20:

Lemma 21 AssumeA[lHg). Letwy any minimizer of

1. - 1. . 1 1w
oY = Xywsl® + A Y djllw;|| = Jovy — Xyxgws + ngTEXJXJWJ + A > dyllwy].
JjeJ JjedJ

If A, — 0and,n'/? — oo, thens- (15 — wy) converges in probability to

A = -3 v, Diag(d;/|[w;l)ws.

Proof We follow Fu and Knight[(2000) and writéy = wy + A, A. The vectorA is the minimizer
of the following function:

~ 1 ~
F(A) = =Sy x, (Wi + And) + 5 (Wi + M) TS xx (W 4 AnA) + A0 Y djl[w + A A
jeJ

. \2 . .
= M Eyx, A+ T"ATEXJXJA + AW Bx, XA+ A Y dy ([ws + M) — lwjl) + cst
jeJ

. A2 .
= —AnXex; A+ EATEXJXJA + A0 > dj ([ + Xaljl| = [[wyll) + est
jeJ
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by using®y x, = wy Xx;, x, + Xex,. The firstterm is0,(n=1/2)\,,) = 0,(\2), while the last ones
T
are equal tdlw; + A\, A || — [[w;]| = A, <&> A + 0p(\y). Thus,

lTw;ll

d;jw;

1 T

F(A)/N, = 58T Sx,x, A+ ) Aj+op(1).
JET

By Lemma[2D,iy is O,(1) and the limiting function has an unique minimum; standasiilts in

M-estimation [Van der Vagrf, 1998) shows tiatconverges in probability to the minimum of the

last expression which is exactly = —E;&XJ Diag(d;/||w;|[)wj. [ |

[[w ]

We now turn to the proof of Theorefh 4. We follow the proof of Brem[2. Givenu defined
through Lemm# 20 ar[dP1, we need to satisfy optimality cami{f2) for all: € J¢, with probability

tending to one. For all thosesuch thatdii ‘EXiXJ E;&XJ Diag(d;/||w;|)ws|| < 1, then we know
from AppendiqB.1L, that the optimality condition is indeeatisfied with probability tending to one.
We now focus on thosgsuch thatdii Yx,X; E;&XJ Diag(d;/||w;|)ws|| = 1, and for which we
have the condition in Eq[](6). From E.|35) and the few argumhat follow, we get that for all
1€ J¢,

Sxy = ExxG W1 = A Exx, Bxh x, Diag(d; /|| d;)ig + Op(n~'/?) (36)
Moreover, we have from Lemnia]21 and standard differentiludas, i.e., the gradient and the
Hessian of the function € RY — |[jv]| € R arev/||v| and 2 (Iq — ””T):

llvll vlv
B _ Wi e (o WiwS ) (An) 37)
= e i +o .
gl Twsll ™ lwyll 7 wwy )0
From Eq. [3p) and Eq[(B7), we get:
1 - A - _ _ _
_(EXiY_EXiXJwJ) = Op(n 1/2)\7’L1)+2X1XJ2X‘1]XJ

An

{Diag(dj/ Iwil)ws + AnXx.x,Ex, x, Diag

WjW}—
dj /Wil { Ip; — S —
7 J

= A+ MB+0,(A\n) +0,(n7 V2N,

Since \, > n~Y4, we haveO,(n"'/?)\-1) = o,()\,). Thus, since we assumed that| =
1=, %, %, x, Diag(d;/[[wjl)wa || = di, we have:
2

A —{—op()\n)}

1. L
/\—(EXiY — Yx,x;W5)

n

= AR + 20, AT B+ 0,(M)d2 + 0p(M)

= dZ? + 0p(An)

.

ATy Sy D5k Diag | d /w1, — —29 ) A

n X3 X; 44X Xy xyx; 2148 j/HW]H( Dj WTW') )
;Wi

(note that we havel = —Yx, x,A) which is asymptotically strictly smaller thaff if Eq. @) is
satisfied, which proves optimality and concludes the proof.
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B.4 Proof of Proposition[§

As in the proof of Theorerf] 2 in Appendjx B.1, we consider thinestew built from the reduced
problem by constraining . = 0. We consider the following event:

E; = {Sxx invertible andvj € J, @, # 0}.

This event has a probability converging to one. Moreovelifis true, then the group Lasso
estimate has the correct sparsity pattern if and only if foi & J¢,

< Mnd; = \on~ Y24,

HixixJ (b3 —w3) — Xx.e

Moreover we have by definition aby: 3y, x, (w3 — w3) — ¥x,. = —\, Diag(d;/||w;]|)@3, and
thus, we get:

Sx,x, (03 — wy) — Sx;e
= X, Bxe — Exie — Ao VP, X i, Diag(dy /[l )i
= Sxxs Sy x, Sxae — Sxie — Ao PEx,x, Ty, Diag(d, /||lwl)wy + Op(n )
The random vectoE . € RP? is a multivariate U-statistic with square integrable kémwlatained
from i.i.d. random vectors; it is thus asymptotically noirfigan der Vaaft[ 1998) and we simply

need to compute its mean and variance. The mean is zero, andattance is"n;21022XX =
n1o?Yxx + o(n~1). This implies that the random vecteof size Card(J¢) defined by

5; = nl/QHixixJ (@5 — w3) = Exell;
is equal to

s = HO’EXiXJE}.leJuJ —ou; — )\oEXiXJE;&XJ Diag(dj/ijH)wJH + Op(n—l/Q)
= fi(u) + Op(n_l/Q),

whereu = o~ 'n"1/2% . andf; are deterministic continuous functions. The vegttr) converges
in distribution tof (v) wherev is normally distributed with mean zero and covariance mairy x .
By Slutsky’s lemma [(Van der Vahrf, 1998), this implies tha¢ random vectos has the same
limiting distribution. Thus, the probabilit (max;c e s;/d; < Ag) converges to

1
P (max —

ieJe d;

O’(EXiXJEA;(iAXJUJ — Uz‘) — )‘OEXiXJE)_&XJ Diag(dj/ijH)wJH < )\0) .

Under the evenfs; which has probability tending to one, we have correct patsedection if and
only if max;ejge s;/d; < Ao, which leads to

1
P —
<max )

1eJe d;

oti — MSx,x; Sy, Diag(d /iju)wJH < )\0> ,

wheret; = Xx, x, E;(}I X, V3 — Vi The vector is normally distributed and a short calculation shows
that its covariance matrix is equal ¥ox . x .| x,, Which concludes the proof.
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Appendix C. Detailed Proofs for the Nonparametric Formulation

We first prove lemmas that will be useful for further proofsddhen prove the consistency results
for the non parametric case.

C.1 Useful Lemmas on Empirical Covariance Operators

We first have the following lemma, proved py Fukumizu gt[abQ®), which states that the empir-
ical covariance estimator converges in probability at (aj;(en—l/ 2) to the population covariance
operators:

Lemma 22 AssumeAfl) and AB). Then||Xx x — Sx x|l = Op(n~1/?) (for the operator norm),
1Zxy — Bxv|r = 0p(n~Y2) and |Xxc | F = Op(n~1/2).

The following lemma is useful in several proofs:

Lemma 23 AssumeAf). Then

. 1
<EXX + MnI) Sxx — (Sxx + )t Z3)()(H = O0p(n~12u;Y),

f

and

A 1 .
‘(Exx—{—lunl) Exx—(zxx—k,unf)lEXXH :Op(n_1/2 T_Ll)

f
Proof We have:

~ 1 _
<EXX + Mnf) Sxx — (Sxx + pmnd)  Sxx

~ -1 ~
= <2XX + MnI) (Sxx — Sxx) (Exx + pnd)  Sxx

This is the product of operators whose norms are respegtiyger bounded by !, Op(nfl/ 2)
and 1, which leads to the first inequality (we UséB|| = < ||Al|#||B]|#). The second inequality
follows along similar lines. [ |

Note that the two previous lemma also hold for any subopeddtd x x, i.e., forXx, x,, orXx, x, .

Lemma 24 AssumeAH), (AB) and Af)). There existdy € Fy such thatfy = Eﬁ(/fXJ hj.

Proof The range condition implies that

. 1/2 . 1/2 1/2 —1/2
fJ = Dlag(EX/ij )g.] - Dlag(z)(/jxj)c)(/‘]X‘]CX.]A/XJgJ

(because&’x x is invertible). The result follows from the identity

. 1/2 1/2 . 1/2 1/2 *
E)(J)(J = Dlag(z)(/JX])CX/‘]XJ (Dla‘g(z)(/JXj)C)(/JXJ)

and the fact that iE x, x, = UU* and f = U« then there exist$ such thatf = E;/JQXJﬁ (Bake},
Lo73)" ¥

4. The adjoint operatov™ of V : F; — Fy is so that for allf € F; andg € Fi, (f,Vg)r, = (V*[,9), Brezi},

[r989).
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C.2 Proof of Theorem[11

We now extend Lemm{a R0 to covariance operators, which regjtiruse the alternative formulation
and a slower rate of decrease for the regularization pasmet

Lemma 25 Let f3 be any minimizer of

2

1. .
S2vy = (Exgy, fa)m + <fJ7 SxaxsfnE + 5 | Yo dillfillz
jedJ

If p, — 0 and p,n'/? — +o0, then| fy — f||7, converges to zero in probability. Moreover for
1/2 _
P4 2 then|| fy — fillz = Op(nn)-

anyn,, such thaty, > u,
Proof Note that from Cauchy-Schwartz inequality, we have:

2

1/2
_ 1/2 1/2 '/ Hfij,
Sdillfils | = | DodIEIE 71/2
jed jes 15117
jufjufj
< [ Dol ZW
jed jeg WHlF;

with equality if and only if there exists > 0 such that| f; || =, = a||f;|#, forall j € J. We consider
the unique minimizerfy of the following cost function, built by replacing the regtikation by its
upperbound,

1 djll £511%,
F(fy) = —EYY — (Ex,v. fa)m + Sifs Sxaxo f0E o | Do dilgllr | DD e
= o gl

Since it is a regularized least-square problem, we havégnit Y — 5. f;(X) — b):

jeJ I
_ ~ -1 /. ~
f3= (EXJXJ + MnD) (EXJXJfJ + EXJ€) )

whereD = (ZjEJ defjH> Diag(d;/||/f;]|). Note thatD is upperbounded and lowerbounded, as

an auto-adjoint operator, strictly positiveconstants times the identity operator (with probability
tending to one), i.e DiaxIr; = D = Dpyinlr; With Diiy, Diax > 0. We now prove thafy — £
is converging to zero in probability. We have:

<2XJX‘] + MnD> ZA)X_]a - Op(nil/Qlu';Ll% (38)

<D=

~ -1
because of Lemn{ap2 arHc(EXJXJ + unD)
F3

~1_Moreover, similarly, we have

mln’u”n

(ﬁbg)(J +,unD> S, x f1 — (EXJXJ +,unD) Yx;x,f5 = Op(n 2. (39)
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Besides, by Lemmp P3,

~ 1
(EXJXJ + :unD) EXJXJfJ - (EXJXJ + :unD)il EXJXJfJ = Op(nil/z:u;l)- (40)
Thusfy — fy =V + O,(n~"?p; 1), where
vV o= [(EXJXJ + D) Sx,x, — I] f; = — (Sx,xy + ptnD) " pin DEy.

We have

V1%, 12 (F5, D (Sx,x, + inD) "% Dfy) 7,

DIQnax:ugz <fJ, (EXJXJ + ,uaninI)72 fJ>,7—"J

Dr2nax:un<f.], (EXJXJ + ,U'aninI)i1 fJ>,7—"J

D2, iin(hy, Sx; x5 (Ex,x; + finDmin) ' hy)z, by Lemmd 24

Dipaschin| 3|7

INCINCININ

Finally we obtain||fy — f5]|5, = Op(ui/* + n=1/2p ).

We now consider the cost function definirfig:
2
1. A 1, < fin
En(fs) = 58y = Exov, fo)m + 5 Bxx fa)m + 5 > djlifillz,
j€T
We have (note that although we seem to take infinite dimeakidarivatives, everything can be
done in the finite subspace spanned by the data):

2

djll £511%,
Lin JHNSINF,
Bl = Elfa) = S| L dilills | = | 2 dillsle | D e |
jed jET jes I
difi difi
Vi) = VE ) = || 2 dillille | i | 2 il | g
— ill 75 jed 7

Since the right hand side of the previous equation corredgptma continuously differentiable func-
tion of f3 aroundfy (with upper-bounded derivatives aroufid, we have:

IV 1. Fu(f3) = Oll 7 < Cunllfs — fillzy = 1nOp(ul/? + 0120 h).

for some constan€ > 0. Moreover, on the ball of centef; and radiusn, such thatn, >
w/* + 7 'n~1/2 (to make sure that it asymptotically contaifys which implies that on the ball
eachf;, j € J are bounded away from zero), angd < 1 (so that we get consistency), we have a

lower bound on the second derivative @ZJ.GJ defjH;j>. Thus for any element of the ball,

Fu(f3) 2 Fa(f3) + (Vs Falf3), (f3 = f3)) 7y + C'hanll 5 = il
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whereC’ > 0 is a constant. This implies that the valuef(fy) on the edge of the ball is larger
than

Fo(f3) + i Op(pl/* + 0120 + C'2

Thus ifn2 s > mp/? andn? g, > n~1/2n,, then we must have all minima inside the ball of
radiusn,, (because with probability tending to one, the value on thgeeasd greater than one value
inside and the function is convex) which implies that thebglaninimum ofF}, is at most;,, away

from fy and thus sincdy is O(u}ﬂ) away fromfy, we have the consistency if

M < Landn, > u/* +n"12p, ",

which concludes the proof of the lemma. [ |

We now prove TheorefnJL1. Léy be defined as in Lemn{a]20. We extend it by zerodorive
already know the squared norm consistency by Letnrha 20. SinBeopositior] 14, the solution is
unique with probability tending to one, we need to prove thig probability tending to ong is
optimal for problem in Eq.[(35). We have by the first optimatibndition for fy:

Sy = Sxx; 3 = | flla Diag(ds /| f51) f,
where we use the notatidif [ls = Y=}, d; | f;]|, (note the difference withf | = (372, [151%,)"/?)-
We thus have by solving fofy and using: x,y = Sy, x,fy + Xx,.:

~ A -1 /. o
fr= (S +mnDn) (Sxaxfs + 5xe)

with the notationD,, = || f|| Diag(d; /|| f;]| ). We can now put that back in®x .y —Xx;. x, fy
and show that this will have small enough norm with probgabiiending to one. We have for all
1 e Je

N

. . _ . . . 1 .
Yxy —Xx:x5/3 = Xxivy — XXX (EXJXJ + ,unDn) (EXJXJfJ + EXJ5>

R R 1.
= =YX, Xy <2XJXJ + ,unDn) Yxyx5f3

~ ~ ~ -1 .
+Xx,v — XX, X, <EXJXJ + MnDn> X Xje

. . . 1
= —Yx;x;f51+3Yx,x; (EXJXJ + ,unDn) pin Dy £y

. . . -1
+Xx,v — XX, X5 <2XJXJ + ,unDn) Y X;e

. . . -1
+Xxe — XXX, <2XJXJ + MnDn> Yixge (41)
= A, + B,.
The first termA,, (divided by,,) is equal to
An

- = 2le’)(.] <2XJXJ + /LnDn)
1229

1
D, f;.
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We can replac& x, x, in A” by ¥ x,x, atcostO,(n~/2u /2) becauséfy, XJXJfJ>fJ < oo (by
Lemma[2}). Also, we can repladgy, x, in 2 Ada hy Sy, x, at costO, (n~/2y1) as a consequence
of Lemma[2B. Those two akg,(1) by assumptlons on,,. Thus,

A _
—Mn = EXZ'XJ (EXJXJ + ,U,nDn) 1 D, fy + Op(l)-
n

Furthermore, we let denofe = ||f||; Diag(d;/||f;]|#,). From Lemmd 35, we know thd?,, — D =
op(1). Thus we can replacP,, by D at costo, (1) to get:

A _
—M" = Yx.x; (Cxyx5 + pnD) " DEy + 0,(1) = Cp + 0,(1).
n

We now show that this last deterministic te€rfy € F; converges to:

where, from AR, Vj € J, f; = E;/QX g;. We have
c,—C = 1/2 X, Ox.x; [Dlag(E /2 )(EXJXJ + unD)™ Dlag(El/2 ) — C;(;XJ Dgy
= 1/2 x,Ox.x; KnDgy.

whereK, D1ag(2/ )(EXJXJ + 11, D) ! Diag(2y/ 1/ ) CX x,- Inaddition, we have:

Dlag(z / )CXJXJK - EXJXJ (EXJXJ + MHD)_l Diag(zif/ij) - Diag(zi(/ij)

= —pnD (Sx,x; + D)~ Diag(BY’y ).

Following[Fukumizu et 1[(2007), the range of the adjoimmor(E;/in CX,-XJ> * CXJXiE;/in

is included in the closure of the rangeofag (X x, x;) (which is equal to the range afx; x; by

Lemmd2l). Forany; € Fj inthe intersection of two ranges, we haye= Cx; x, D1ag(2X/ X; Jug
(note thatC'y, x, is invertible), and thus

(KnDgy,vs)r, = (KnDgy,Cx,x, Diag(Sy7y Jus)z,
= (—pD (Sx,x5 + D)™ Diag(zﬁ(/ij)DgJ, uy)

which isOp(u}l/Q) and thus tends to zero. Since this holds for all elementseiimtiersection of the
ranges, Lemma 9 by Fukumizu ei 41. (2p07) implies @ — C|| =, converges to zero.

We now simply need to show that the second tétris dominated byz,,. We have:||Sx. ||z =

. . -1 . _
Op(n_l/Q) and ||, x; (EXJXJ + runD") Yxzellm < [1Xxell7, thus, Smca‘nnl/Q — +00,
By, = op(n) and therefore for for eache J¢,

1

— (Sx,y - 3x, ~)
dz‘ManHd< Xy — Xx,x;f3
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converges in probability t§C/| £, /d;||f|la which is strictly smaller than one because Hq] (18) is
1 - N -
P {7 HEXZY - EXiXJfJ‘

satisfied. Thus
<1
dipin ||£]]a Fi }

is tending to 1, which implies the theorem (using the sameraamts than in the proof of Theordin 2

in Appendix[B.]L).

C.3 Proof of Theorem[1?

Before proving the analog of the second group Lasso theoneameed the following additional
proposition, which states that consistency of the patteamsonly be achieved f,,n'/? — oo
(even if chosen in a data dependent way).

Proposition 26 AssumeAf]) and thatJ is not empty. Iff is converging in probability td" and
J(f) converges in probability td, theny,,n'/?> — oo in probability.

Proof We give a proof by contradiction, and we thus assume thaeteeists)M > 0 such that
liminf,,_ s IP)(M,ml/2 < M) > 0. This imposes that there exists a subsequence which is almos
surely bounded by/ (Durretk,[2004). Thus, we can take a further subsequencehvdainverges to
alimit o € [0, 00). We now consider such a subsequence (and still use thearotdtthe original
sequence for simplicity).

With probability tending to one, we have the optimality citioth ({L7):

Sxge + Sxaxafs = Exyv = Bx,x,f3 + gl fla Diag(d; /| £l 7,) £
If we let denoteD,, = n'/?p1, || f||4 Diag(d; /|| f;] 7). we get:
D, f; = [EXJXJ + Dnnfl/Q] nl/? {f_] — f_]] + nl/zf]XJE,
which can be approximated as follows (we denbte- ||| Diag(d;/||f; | 7,)):

10 Dfy + 0p(1) = S, x,n'/? [fJ - fJ] +op(1) +n'?Sxe
We can now write for € J¢:
nl/2 <2X¢Y — iXiXJ]EJ) = 2%+ Sy, x,n (5 — fi)
= '8y + Sxx,n' 2 (f5 — fy) + 0,(1).

We now consider an arbitrary vectary € Fj, such thatt x, x,wy is different from zero (such
vector exists becausey, x, # 0, as we have assumed iAf) that the variables are not constant).
Since the range of x, x, is included in the range of y, x, ([Bakel,[197B), there exists < F;
such that x; x,v; = Xx,;x,wy. Note that since x, x,wy is different from zero, we must have

Ei(/invi # 0. We have:

n1/2 (’Uz', iXiY - iXiXJfJ>fi = n1/2<vi, EXZ'€>]:Z' + (’U)J, EX.]X.]nl/Q(fJ - fJ)>]'—J + Op(l)
= 0" (v, Sxe) 7 + (wy, poDfs — 'S0 7 + 0p(1)

<'LUJ, )LI’ODfJ>fJ + n1/2 <Uia ZA]AXZ€>,7—'Z - n1/2 <’U)J, ZA]AXJ€>-7:J + Op(l)‘
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The random variabl&,, = n'/2(v;, ¥ x,.) — n'/?(wy, X x,.) is a U-statistic with square integrable
kernel obtained from i.i.d. random vectors; it is thus asiatipally normal [Van der Vagdr{, 1998)
and we simply need to compute its mean and variance. The reezera and a short calculation
similar to the one found in the proof of Theor¢m 3 in Apper|dig Bhows that we have:

EE;, > (1=1/n)00(vi, 2x,x,00) 7, + Ommin (W5, DXy, 03) £y — 20min (v, Bx,x,W03) 7,
= (1= 1/n)(0min (vis Zx,x,01) 7 — Tain (Vi DX, X, 03) 7).
The operatorC)}}XJCXJXi has the same range &5y, x, (becauseCxx is invertible), and is
thus included in the closure of the rangeIaifag(E;/fXj) (Bake},[197B). Thus, for any € F;,

C;(;XJCXJXZ,u can be expressed as a limit of terms of the deEBg(E;/fXj)t wheret € Fj. We

thus have that
. 1/2 — . 1/2
<u7 Cx xy Dlag(z)(/ij)wJ>.7:i = <u7 Cx,x; CX;XJ Cx;xy Dlag(zx/jxj )wJ>~7'—i

can be expressed as a limit of terms of the form

. 1/2 a1)2
(t,Dlag(Ex/ij)CXJXJ Dlag(zx/jxj)w.ﬁﬁ = (. Xx; x;w3) 7y = (6 XX, x,0i) 7
: 1/2 1/2 - 1/2
- <t’Dlag(zX/ij)CXJXZ'EX/iXivi>fJ — (u, CXiXJCX.}XJCXJXiE)(/iXiUi>~7'—i'

This implies thalCx;, x, Diag(Eﬁ(/jsz)wJ = Cx,x; C;(}XJ CXJXZE;/invZ-, and thus we have:

EE2 > 020 Sx,x0) 7 — Oin (i D x, Ox.xs Diag(Sy 7y Jwa)
1/2 — 1/2
= U?nin <Ui7 EXiXivi>]:i - 0'12nin<viv EX/iXiCXiXJ CX;XJCXJXiE)((iXiUi>}—i
1/2 — 1/2

= O'rznin<2X/iXivi, (I»T'i - Cx,x, CX}XJ CXJXi)EX/iXiUi>]:i'
By assumptionAf), the operatoi £, — C'x, x, C;(}XJ Cx, x, is lower bounded by a strictly positive
constant times the identity matrix, and thus, siﬁlﬁﬁéfxivi £ 0, we haveIEE?L > 0. This implies
thatn'/?(v;, X x,y — Sx,x,f3) converges to a normal distribution with strictly positivariance.
Thus the probabilityP (n1/2<vi, Sxy = Sx.xy f1)F = dill fllallvillz + 1) converges to a strictly
positive limit (note thaf| f||; can be replaced bjjf |, without changing the result). Singgn!/? —
1o < oo, this implies that

P (1 (v Sxr = Sxxo fo)z > dill flalloi]1 = )

is asymptotically strictly positive (i.e., has a strictlggitive lim inf). Thus the optimality condi-
tion (18) is not satisfied with non vanishing probability, iethis a contradiction and proves the
proposition.

[ |

We now go back to the proof of Theordgnj 12. We prove by conttiadicby assuming that there
existsi € J¢ such that

1/2 — .
2¥ %, Cxxs Cx ) x, Ding(ds/ 1811z )|, > 1.

1
d;
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Since with probability tending to oné(f) = J, with probability tending to one, we have from
optimality condition [17), and the usual line of argumerstse( Eq. [(41) in Appendix B.2) that for
every: € J¢

. . R . . 1
Yxy —Ex,x; 13 = mXxix, (EXJXJ + MnDn> D,f

~ ~ ~ -1 .
+2Xi8 - EXZ'XJ (EXJXJ + ,unDn) EXJ87

whereD,, = ||f||l4 Diag(d;/| f;||)- Following the same argument as in the proof of Theofem 11,
(and becausg,,n'/? — +oc as a consequence of Propositfoh 26), the first term in theelgses-
sion (divided by,,) converges to

1/2 — .
vi = 27y, Ox.x,Ox) I la Ding(d/|15]1 7, g
By assumption|v; || > d;||/f||4. We have the second term:
. . . . . -1
Sxie = Sxxy (Sxoxs + nll fla Ding(ds /1 fill7,))  Sxse

A A~ _1 N
= 0,(nY?) ~Sy.x, (EXJXJ + pnllfla Diag(dj/ufjufj)> Sx,e + 0p(n~12).

The remaining term can be bounded as follows (With= ||f||; Diag(d;/[|f;] 7, )):

2 —
| X
Fi
—1

1. . .
YX;X5 (EXJXJ + ,unD) YX5X;

A A -1 .
E (HEXZXJ (EXJXJ + ‘LLnD) EXYJE

2
o ~ o
< TlaXtTEXiXJ (EXJXJ + ,unD)

2
< O max

ter,’X,’ )

which implies that the full expectation @(n~!) (because our operators are trace-class, i.e., have
finite trace). Thus the remaining term(i§,(n*1/2) and thus negligible compared tg,, therefore

T (Sxiy — Yy xy fJ) converges in probability to a limit which is of norm strictiyeater than
n d

d;. Thus there is a non vanishing probability of being stritdiger thand;, which implies that with
non vanishing probability, the optimality conditioh 18) riot satisfied, which is a contradiction.
This concludes the proof.

C.4 Proof of Proposition[15
Note that the estimator defined in Ef.](23) is exactly equal to

|00, (B, x, + )" gy /I (£ 1) (FED)a|

Fi

Using Propositior] 37 and the arguments from Apperfidiy C.2epjacing f by Frg, we get the
consistency result.
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Appendix D. Proof of Results on Adaptive Group Lasso
D.1 Proof of Theorem[Ip

We definew as the minimizer of the same cost function restrictedvjo = 0. Becausen’® is
consistent, the norms Q@LS for j € J are bounded away from zero, and we get from standard
results on M-estimatior| (Van der Vddrt, 1p98) the normaltlaiistribution with given covariance
matrix if u,, < n=1/2.

Moreover, the patterns of zeros (which is obvious by corsivn of w) converges in probability.
What remains to be shown is that with probability tendingre,av is optimal for the full problem.
We just need to show that with probability tending to one dibi € J¢,

=5, = Sx,x, (03 = wy)l| < palldfalldf| 7. (42)
Note that|«||; converges in probability thw||; > 0. Moreover,||w S — w;|| = O,(n~1/2). Thus,
if i € J¢, i.e., iff; = 0, then||w S| = O,(n~'/2). The left hand side in Eq[{}#2) is thus upper
bounded byo,,(n~1/2) while the right hand side is lower bounded asymptoticallyy /2. Thus

if n=1/2 = o(u,n?/?), then with probability tending to one we get the correctmality condition,
which concludes the proof.

D.2 Proof of Proposition[1]

We have: -
fEs = (EXX + /inff) Yxy,
and thus:

~ ~ 71 R . N
f,fnS_f = <EXX+I€nI}‘> EXXf—f‘F(EX)(—FIinI}‘) Yxe
= (Sxx + fnD) P Sxxf — F 4 Op(n~ %k, ") from Lemma2B
= —(Sxx + bfnlr) rnf + Op(nil/z,‘i;l),

Sincef = EX/Xg, we havel| — (Xxx + knlr)” Iian]_— C'in| g||%, which concludes the proof.

D.3 Proof of Theorem[1B

We definef as the minimizer of the same cost function restrictegfo= 0. Becausef 015 1S
consistent, the norms Q]’f _1/3) for j € J are bounded away from zero, and Lemmp 25 applies

with i, = pon =13, ie., f converges in probability t6 and so are the patterns of zeros (which is
obvious by constructlon of). Moreover for any; > 0, from Lemma[25, we havefy — f5| =
O, (n=1/6+m) (becausgy, /2 +n1/2u71 = = 0,(n"1/9)).

What remains to be shown is that with probability tending te,of is optimal for the full
problem. We just need to show that with probability tendiagme, for alli € J¢,

£ = Sxoxs (3 = O < sl Flall(F 2003l 7 (43)

Note that||f||d converges in probability t4f||; > 0. Moreover, by Propositiof 17(f _1/3) -
fil| = Op(n=1/%). Thus, ifi € J¢,i.e., if f; = 0, then||(f5 )|l = Op(n~'/). The left hand
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side in Eq. [@B) is thus upper bounded @y(n~'/2 + n~1/6+7) while the right hand side is lower
bounded asymptotically by ~/3n7/6. Thus if —1/6 + n < —1/3 + ~/6, then with probability
tending to one we get the correct optimality condition. Asrsasy > 1, we can findp small
enough and strictly positive, which concludes the proof.

D.4 Range Condition of Covariance Operators

We let denote”(¢) the convolution operator by on the space of real functions @& and7'(p)
the pointwise multiplication by(x). In this appendix, we look at different Hilbertian produofs
functions onR?, we use the notations, -) x and(:, -) 12 (, .y @and(:, -) .2(r) for the dot products in
the RKHSF, the spacd.?(py ) of square integrable functions with respecpte)dz, and the space
L?(RP) of square integrable functions with respect to the Lebesgemsure. With our assumptions,
for all f,§ € L*(R?), we have:

(f,9)r2 = (C(9)"*],C(0)"?) 7.
Denote by{\; },>1 and{e; };>1 the positive eigenvalues and the eigenvectors of the coveei

operatorX x x, respectively. Note that singex (x) was assumed to be strictly positive, all eigen-
values are strictly positive (the RKHS cannot contain any nero constant functions dk?). For

k>1,setf, = A;l/Q(ek — Jg» €x(z)px (z)dz). By construction, for ang, £ > 1,
MOk = (e, Xeg) r = / px()(er — [go er(@)px (x)dx)(er — [p, eo(x)px (v)dr)dx
RP
ZﬁﬁﬁﬂAjW@NMMﬁ@szﬁﬁﬁ”U%ﬁﬁ%m.
p

Thus{ fx}x>1 is an orthonormal sequence If (px). Let f = C(q)g for g € L?(RP) such that
Jg» 9(x)dx = 0. Note thatf is in the range OE%( if and only if (f, £~ f) £ is finite. We have:

o) [e%¢) [e’e} 2
UﬁWWZZ%%MﬁZZ%WM%MZZ%%AMWWW)
p=1 P p=1 g

=1
s 2
o e 9-(x)
=> x'9. ! <lpxg :/ dz,
p:1< X p>L2(pX) H X ||L2(px) Rp px(x)

becausd fi. }x>1 is an orthonormal sequence i} (px ). This concludes the proof.

Appendix E. Gaussian Kernels and Gaussian Variables

In this section, we consideY € R™ with normal distribution with zero mean and covariance iratr
S. We also consider Gaussian kermejgz;, z’;) = exp(—b;(z; — m})Q) on each of its component.
In this situation, we can find orthonormal basis of the HillspacesF; where we can compute the
coordinates of all covariance operators. This thus allewshieck conditions[(18) of (IL9) without
using sampling.
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We consider the eigenbasis of the non centered covariareratops on eaclt;, j = 1,...,m,

which is equal to[(Zhu et fl[, 1998):

/2 1/2

- / ] ei—a)u

egg(-%'j) = ()\?ﬁ)l/2< 1/; - ) e (cj—aj) Hk((ch)l/ij)
a; 25 k!

. a\ 1/2
with eigenvalueij = (QA—?J) (Bj)k, whereq; = 1/45“, cj = (a?—i—Qajbj) /2, Aj = CLj-Fbj-FCj
andB; = b;/A;, andHy, is thek-th Hermite polynomial.

‘We can then compute all required expectations as followse(tfat by definition we have
Ee) (X;)% = AL):

Eeng(Xj) = 0
1/2
T\ 4y o) K 2(c; + aj)

1/2 1/2 /2 2\—1/2
, A o c;' e (SiiSj5 — Si;)
Eel (X;)es(Xi) = (Agkx J ) Y Diu(Qij),

> ajl-/Qail/QZkZék!E! 4#6;/20;/2
1
1 1—a;/c) 0 ) S;ici Sl /2 cL/?
whereQ);; = pf v +1 wwCi ijC G and
QJ ( 0 %(1 - aj/cj) 4 Sijcil/QC;/Q Sj iCj

Dul@) = [ e [— ( 5 )TQ ( ! )] Hy(u) Hy(0)dudo,

for any positive matrix). For any given, Dy,(Q) can be computed exactly by using a singular
value decomposition af) and the appropriate change of variables.
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