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ABSTRACT

Kink oscillations of curved coronal loops with the density varying along the loop are studied in the thin tube approximation. The
equilibrium magnetic field is assumed to be potential, and the field potential and flux function are used as curvilinear coordinates. It
is also assumed that the loop expansion is weak, and the solution to the problem is looked for in the form of power series with respect
to the tube expansion parameter λ ≪ 1. The main result of the study is that the eigenfrequencies of the vertical and horizontal tube
oscillations are, in general, different, their difference being proportional to λ. As an example a simple equilibrium with the magnetic
field magnitude exponentially decaying with the height is considered. The implication of the obtained results for the interpretation of
observational data is discussed.
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1. Introduction

Since transverse oscillations of coronal loops were first observed
by TRACE (Aschwanden et al. 1999; Nakariakov et al. 1999),
they received ample attention from both observers and theo-
rists. The majority of observed transverse oscillations of coro-
nal loops were polarised in the horizontal direction. However,
Wang & Solanki (2004) and Wang et al. (2008) reported the ob-
servations by TRACE of the vertically polarised transverse os-
cillations of coronal loops. These observations raise a question:
what is the difference between properties of the horizontally and
vertically polarised oscillations? In particular, do they have the
same frequencies, or their frequencies are different?

In first theoretical studies of transverse oscillations of coro-
nal loops the simplest model of a coronal loop was used. In
this model a coronal loop is considered as a straight homoge-
neous magnetic tube with the footpoints frozen in the dense pho-
tospheric plasma. Since this magnetic plasma configuration is
axisymmetric, the loop oscillations can be polarised in any di-
rection, and the oscillation frequency is independent of the po-
larisation direction. Then more complicated models taking such
effects as the density variation along and across a loop, the loop
expansion and curvature were developed (see review paper by
Ruderman & Erdélyi 2009, and references therein). In particu-
lar, Van Doorsselaere et al. (2004) considered transverse oscil-
lations of curved coronal loops. They assumed that the loop has
the form of a half-circle and neglected the coronal density strat-
ification. Using the toroidal coordinates they studied the trans-
verse loop oscillations in the thin tube approximation. Their con-
clusion was that the eigenmode frequencies of the transverse
loop oscillations remain unchanged up to first order in curva-
ture. The curvature has more pronounced effect on the damping
rate caused by resonant absorption in a thin boundary layer near
the tube boundary. The correction to the damping rate due to the
curvature is of the first order in curvature.

Later Terradas et al. (2006) studied the same problem as Van
Doorsselaere et al. (2004), however taking the density stratifi-
cation into account. Since Terradas et al. (2006) did not use the
thin tube approximation but rather solved the exact linearised
MHD equations, they managed to calculate corrections to the
oscillation frequencies due to curvature. As a result, they found
that the curvature removes the degeneration of eigenmodes of
the transverse loop oscillations in a sense that now the eigen-
modes can be polarised either in the horizontal or in the vertical
direction only. However for thin coronal loops the difference be-
tween the eigenfrequencies of the two modes is very small.

Terradas et al. (2006) also studied the damping of transverse
oscillations. In contrast to Van Doorsselaere et al. (2004) they
did not assume that the inhomogeneous layer where the den-
sity varies in the radial direction is thin. Rather they al-
lowed the density to vary in a layer with an arbitrary thick-
ness. Terradas et al. (2006) confirmed the conclusion by Van
Doorsselaere et al. (2004) that curvature has mode pronounced
effect on the damping rate than on the eigenfrequencies. In ad-
dition, they found that, due to the density stratification, the os-
cillations become leaky and can be in resonance with the local
Alfvén oscillations in the external plasmas. However the damp-
ing due to resonant absorption in the boundary layer near the
tube boundary strongly dominates the damping due to leakage
and resonance in the external plasma.

A very important assumption made by both Van
Doorsselaere et al. (2004) and Terradas et al. (2006) was that the
loop cross-section is circular and its radius does not very along
the loop. These conditions are hardly satisfied in real coronal
loops. The loop expansion leads to the variation of the loop
cross-section area along the loop. In addition, the loop curvature
can cause the variation of the cross-section shape. In this paper
we study the effect of the variation of the loop cross-section on
the transverse coronal loop oscillations using a simple model
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Fig. 1. The sketch of the equilibrium state. The ends of the magnetic
loop are assumed to be frozen in a dense photospheric plasma. The axis
of the magnetic loop is shown by the thick line. A few cross-sections of
the loop are shown by ellipses.

where the loop is embedded in a two-dimensional potential
magnetic field. The paper is organised as follows. In the next
section we formulate the problem, describe the unperturbed
state, and present the governing equations in curvilinear coordi-
nates. In Sect. 3 we simplify the governing equations using the
thin tube approximation. In Sect. 4 we study the eigenmodes of
the vertical and horizontal loop oscillations in the approximation
of weak tube expansion. In Sect. 5 we apply general results
obtained in the previous sections to a particular equilibrium
with exponentially decaying magnetic field. Section 6 presents
the summary of the obtained results and our conclusions.

2. Problem formulation and governing equations

Let us introduce Cartesian coordinates x, y, z with the z-axis in
the vertical direction, and consider an equilibrium magnetic field
B with the magnetic field lines in the xz-plane that is indepen-
dent of y. Since the magnetic field is solenoidal, it follows that B

can be expressed in terms of magnetic flux function ψ. We also
assume that B is potential, so that it can be expressed in terms of
potential φ. As a result we have

Bx = −B0

∂ψ

∂z
= B0

∂φ

∂x
, Bz = B0

∂ψ

∂x
= B0

∂φ

∂z
, (1)

where B0 is the characteristic value of the equilibrium mag-
netic field. We assume that the magnetic field is closed with the
footpoints of the magnetic field lines frozen in the dense pho-
tospheric plasma. The sketch of a typical equilibrium state is
shown in Fig. 1.

A magnetic field line is determined by the equations ψ =
const. and y = const. The equation of the loop axis is ψ = ψ0,
where ψ0 is a constant. We assume that this axis is in the xz-
plane. The equation of the loop boundary can be written in a
parametric form as ψ = ψb(η), y = yb(η), η ∈ [η1, η2], where
ψb(η1) = ψb(η2) and yb(η1) = yb(η2). The interior of the loop is
defined by the equation

(ψ − ψ0)2 + y2 < [ψ(η) − ψ0]2 + y2(η),

while its exterior is defined by the equation

(ψ − ψ0)2 + y2 > [ψ(η) − ψ0]2 + y2(η).

We assume that the plasma density, ρ, is equal to ρi inside the
loop, and ρe outside, where ρi and ρe are functions of φ only,
and ρe < ρi.

The plasma motion is described by linearised ideal MHD
equations for cold plasmas,

ρ
∂2ξ

∂t2
=

1

µ0

(∇ × b) × B, (2)

b = ∇ × (ξ × B). (3)

Here ξ is the plasma displacement, b the magnetic field pertur-
bation, and µ0 the magnetic permeability of free space.

Now we introduce the curvilinear coordinates ψ, y, φ. The
unit vectors in this coordinate system are ψ̂ = ∇ψ/|∇ψ|, ŷ and

φ̂ = ∇φ/|∇φ|. It follows from Eq. (1) that φ̂ = B/B, and the

Cartesian components of ψ̂ are given by

ψ̂ =
1

B
(Bz, 0, −Bx) . (4)

It is straightforward to see that the introduced curvilinear coor-

dinate system is orthogonal and right-oriented (φ̂= ψ̂× ŷ). Since
the coordinate system is orthogonal, the metric tensor is diago-
nal, and its diagonal elements are given by

gψψ = gφφ =
B2

0

B2
, gyy = 1. (5)

Let us introduce the components of vectors ξ and b,

ξ = ξψψ̂ + ξyŷ + ξφφ̂, b = bψψ̂ + byŷ + bφφ̂.

Then, using Eq. (5), the expression for the operator ∇× in or-
thogonal curvilinear coordinates (e.g. Korn & Korn 1961), and
taking into account that, in accordance with (2), ξψ = 0, we
rewrite Eqs. (2) and (3) in the coordinate form,

∂2ξψ

∂t2
=

B3

µ0ρB0

(
∂(bψ/B)

∂φ
−
∂(bφ/B)

∂ψ

)
, (6)

∂2ξy

∂t2
=

B2

µ0ρB0

(
∂by

∂φ
− B0

B

∂bφ

∂y

)
, (7)

bψ =
B

B0

∂(Bξψ)

∂φ
, by =

B2

B0

∂ξy

∂φ
, (8)

P = −B2

µ0

(
1

B0

∂(Bξψ)

∂ψ
+
∂ξy

∂y

)
, (9)

where P = B · b/µ0 = Bbφ/µ0 is the perturbation of the magnetic
pressure. Eliminating bψ and by we rewrite Eqs. (6), (7) and (9)
as

∂2u

∂t2
= − B4

ρB0

∂Q

∂ψ
+

B4

µ0ρB
2
0

∂2u

∂φ2
, (10)

∂2ξy

∂t2
= −B2

ρ

∂Q

∂y
+

B2

µ0ρB
2
0

∂

∂φ

(
B2
∂ξy

∂φ

)
, (11)

Q = − 1

µ0

(
1

B0

∂u

∂ψ
+
∂ξy

∂y

)
, (12)

where u = Bξψ and Q = P/B2. Equations (10)–(12) constitute a
closed system of equations for u, ξy and Q. This system has to be
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supplemented by the boundary conditions at the tube boundary
and footpoints. At the tube boundary the normal displacement
and perturbation of the magnetic pressure have to be continuous.
Since B is continuous at the tube boundary, these conditions can
be written as

[ξn] = 0, [Q] = 0, (13)

where ξn is the component of displacement normal to the tube
boundary, and the square brackets indicate the jump of a quantity
across the boundary. The tube footpoints are determined by the
equations φ = φ1 and φ = φ2. The magnetic field lines at the
footpoints are frozen in the dense photospheric plasma, so that
the displacement is equal to zero at the footpoints. This gives the
boundary conditions

u = 0, ξy = 0 at φ = φ1,2. (14)

The system of Eqs. (10)–(12) with the boundary conditions (13)
and (14) is used in what follows to study the fast kink oscillations
of curved coronal loops.

3. Thin-tube approximation

Let L be the loop length and a be the characteristic size of loop
cross-sections. For typical coronal loops a ≪ L, which inspires
us to introduce ǫ = a/L ≪ 1. To have the same spatial scales
of perturbation variation with respect to all three variables, ψ, y
and φ, we introduce the new scaled variable ϕ = ǫφ. Since the
characteristic period of kink oscillations is equal to the trans-
verse Alfvén time times L/a, we also introduce the scaled time
τ = ǫt. In new variables Eqs. (10)–(12) are rewritten as

∂2u

∂τ2
= −ǫ−2 B4

ρB0

∂Q

∂ψ
+

B4

µ0ρB
2
0

∂2u

∂ϕ2
, (15)

∂2ξy

∂τ2
= −ǫ−2 B2

ρ

∂Q

∂y
+

B2

µ0ρB
2
0

∂

∂ϕ

(
B2
∂ξy

∂ϕ

)
, (16)

Q = − 1

µ0

(
1

B0

∂u

∂ψ
+
∂ξy

∂y

)
· (17)

Now we look for solution to this system of equations in the form
of expansions with respect to ǫ. It follows from (15) and (16)
that, if the expansions for u and ξy start from terms of the order
of unity, then the expansion for Q has to start from the term of
the order of ǫ2. Hence, we write these expansions as

u = u1 + . . . , ξy = ξy1 + . . . , Q = ǫ2Q1 + . . . , (18)

where the dots indicate terms of higher order with respect to ǫ.
While the characteristic scale of variation of perturbations in the
transverse directions is a, the characteristic scale of variation of
equilibrium magnetic field in the transverse directions is L. This
implies that, inside the loop and in its immediate vicinity we can
write B as

B(ψ, ϕ) = B(ψ0, ϕ) + O(ǫ). (19)

Substituting Eqs. (18) and (19) in Eqs. (15)–(17), and collecting
terms of the lowest order with respect to ǫ, we obtain

∂2u1

∂τ2
= − B4

ρB0

∂Q1

∂ψ
+

B4

µ0ρB
2
0

∂2u1

∂ϕ2
, (20)

∂2ξy1

∂τ2
= −B2

ρ

∂Q1

∂y
+

B2

µ0ρB
2
0

∂

∂ϕ

(
B2
∂ξy1

∂ϕ

)
, (21)

∂u1

∂ψ
+ B0

∂ξy1

∂y
= 0, (22)

where B is calculated at ψ = ψ0. It follows from Eq. (22) that u1

and ξy1 can be expressed in terms of the flux function χ,

u1 = B0

∂χ

∂y
, ξy1 = −

∂χ

∂ψ
· (23)

Substituting these expressions in Eqs. (20) and (21), and using
cross-differentiation to eliminate Q1, we obtain the following
equation for χ,

∂2

∂τ2

(
B2 ∂

2χ

∂ψ2
+ B2

0

∂2χ

∂y2

)

− B4

µ0ρB
2
0

∂

∂ϕ

(
B2 ∂

3χ

∂ψ2∂ϕ
+ B2

0

∂3χ

∂y2∂ϕ

)
= 0. (24)

Let us introduce the polar coordinates in the ψy-plane,

ψ = ψ0 + r cos θ, y = r sin θ (25)

(recall that ψ = ψ0 at the loop axis). The loop cross-section by
the surface ϕ = const. is, in general, a curved surface. Using the
Taylor expansion we obtain

ϕ(x, z) − ϕ(x̄, z̄) =
∂ϕ

∂x
(x − x̄) +

∂ϕ

∂z
(z − z̄)

+O
(
(x − x̄)2 + (z − z̄)2

)
,

where (x̄, ȳ, z̄) is the point of intersection of the surface ϕ =
const. with the loop axis, and the partial derivatives on the right-
hand side of this expression are calculated at x = x̄ and z = z̄.
The characteristic spatial scale of variation of function ϕ(x, z)
is L. This implies that the ratio of the last term on the right-hand
side of this expression to the first two terms is of the order of ǫ.
Then it follows that, in the main order approximation with re-
spect to ǫ, the loop cross-section by the surface ϕ = const. is
a part of plane perpendicular to the loop axis. Cartesian coordi-
nates in this plane are y and σ. Since the σ-axis is orthogonal to

y-axis and B, we obtain that ψ̂ is the unit vector of the σ-axis.
In what follows we assume that the loop boundary is deter-

mined by the equation r = a. In the first order approximation
with respect to ǫ the quantities σ and ψ are related by

σ =
√
gψψ(ψ − ψ0) = (B0/B)(ψ− ψ0).

Hence, once again in the first order approximation with respect
to ǫ, the equation of the loops boundary intersection with the
σy-plane is

σ = a(B0/B) cosθ, y = a cos θ.

This is the equation of an ellipse with the half-axes equal to a
and a(B0/B), where B is calculated at the loop axis. We see that,
while the axis parallel to the y-direction is constant, the perpen-
dicular axis, in general, varies along the loop.

In what follows we are looking for eigenmodes of the loop
oscillations and take perturbations of all quantities proportional
to exp(−iΩτ). Then, in the new variables, Eq. (24) takes the form

B4

µ0ρB
2
0

∂

∂ϕ
L
[
∂χ

∂ϕ

]
+ Ω2L[χ] = 0, (26)
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where

L[χ] = (B2 cos2 θ + B2
0 sin2 θ)

∂2χ

∂r2

+(B2
0 cos2 θ + B2 sin2 θ)

(
1

r2

∂2χ

∂θ2
+

1

r

∂χ

∂r

)

−(B2 − B2
0)

(
1

r

∂2χ

∂r∂θ
− 1

r2

∂χ

∂θ

)
sin 2θ. (27)

The expression forL[∂χ/∂ϕ] is obtained from the expression for
L[χ] by substituting ∂χ/∂ϕ for χ.

Let us now rewrite the boundary conditions (13) in terms of
χ. To transform the first boundary condition we need to calculate
the normal vector to the loop boundary. Since r = a at the bound-
ary, and the Cartesian coordinates of a point are functions of ψ,
y and ϕ, the equation of the boundary in Cartesian coordinates
can be written as

x = x(ψ0 + a cos θ, ϕ),

y = a sin θ,

z = z(ψ0 + a cos θ, ϕ).

(28)

Here we have taken into account that x and z are functions of
ψ and ϕ, while they are independent of y. Equation (28) is the
equation of the boundary written in a parametric form, θ and ϕ
being the parameters. The vectors

lθ =

(
∂x

∂θ
,
∂y

∂θ
,
∂z

∂θ

)
, lϕ =

(
∂x

∂ϕ
,
∂y

∂ϕ
,
∂z

∂ϕ

)
, (29)

are tangential to the boundary. To evaluate these vectors we use
the relations

∂x

∂θ
= −a sin θ

∂x

∂ψ
,
∂y

∂θ
= a cos θ,

∂z

∂θ
= −a sin θ

∂z

∂ψ
,
∂y

∂ϕ
= 0.

(30)

We obtain with the aid of Eq. (1) that

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x

∂ψ

∂x

∂φ

∂z

∂ψ

∂z

∂φ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ψ

∂x

∂ψ

∂z

∂φ

∂x

∂φ

∂z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

=
B0

B2

(
Bz Bx

−Bx Bz

)
.

Using this result, Eq. (30), and the relation between ϕ and φ,
yields

lθ =
a

B2
(−B0Bz sin θ, B2 cos θ, B0Bx sin θ), lϕ =

B0B

ǫB2
·

The unit normal vector to the boundary is then given by

n =
lϕ × lθ

|lθ × lϕ|
= N(Bz cos θ, B0 sin θ,−Bx cos θ)

= N(Bψ̂ cos θ + B0ŷ sin θ), (31)

where

N =
(
B2 cos2 θ + B2

0 sin2 θ
)−1/2

.

When deriving this expression we have used Eq. (4). The normal
component of the displacement is given by

ξn = n · ξ = N(u cos θ + B0ξy sin θ)

= NB0

(
∂χ

∂y
cos θ − ∂χ

∂ψ
sin θ

)
=

NB0

r

∂χ

∂θ
·

This expression is only valid in the lowest order approximation
with respect to ǫ because, when deriving it, we substituted u1

and ξy1 for u and ξy. Using the expression for ξn, and taking into
account that B and, consequently, N is continuous at the loop
boundary, we reduce the first boundary condition in (13) to

[χ] = 0 at r = a. (32)

To rewrite the second boundary condition in (13) in terms of χ
we need to express Q1 in terms of χ. To do this we first take
u1, ξy1 and Q1 proportional to exp(−iΩτ). Then we transform
Eqs. (20) and (21) to the variables r and θ, multiply the first
equation by sin θ, the second by B2 sin θ, and add the results. As
a result, with the aid of (23), we obtain the expression for ∂Q1/∂θ
in terms of χ. Substituting this expression in the second bound-
ary condition in (13), that has been preliminarily differentiated
with respect to θ, we arrive at

⎡⎢⎢⎢⎢⎣
B4

µ0B2
0

∂

∂ϕ
M
[
∂χ

∂ϕ

]
+ ρΩ2M[χ]

⎤⎥⎥⎥⎥⎦ = 0 at r = a, (33)

where

M[χ] = (B2 cos2 θ + B2
0 sin2 θ)

∂χ

∂r
−

(B2 − B2
0
)

2a

∂χ

∂θ
sin 2θ, (34)

and the expression for M[∂χ/∂ϕ] is obtained from the expres-
sion forM[χ] by substituting ∂χ/∂ϕ for χ.

Finally, it follows from (14) and (23) that χ is constant at ϕ =
ϕ1,2. Since χ is determined with the accuracy up to an additive
function of ϕ, we can take

χ = 0 at ϕ = ϕ1,2. (35)

4. Eigenmodes of weakly expanding loops

To make analytical progress we consider weakly expanding
loops and assume that the variation of the magnetic field magni-
tude along the loop is small. In accordance with this assumption
we take

B2 = B2
0[1 + λq(ϕ)], (36)

and assume that λ ≪ 1, while the function q(ϕ) is of the order of
unity. Then we use the regular perturbation method and look for
the solution in the form

χ = χ1 + λχ2, Ω = Ω1 + λΩ2. (37)

4.1. First order approximation

In the first order approximation we substitute the expan-
sions (36) and (37) in Eq. (26), and boundary conditions (32),
(33) and (35). As a result we obtain

⎛⎜⎜⎜⎜⎝
B2

0

µ0ρ

∂2

∂ϕ2
+ Ω2

1

⎞⎟⎟⎟⎟⎠
(
∂2χ1

∂r2
+

1

r

∂χ1

∂r
+

1

r2

∂2χ1

∂θ2

)
= 0, (38)

[χ1] =

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝

B2
0

µ0

∂2

∂ϕ2
+ ρΩ2

1

⎞⎟⎟⎟⎟⎠
∂χ1

∂r

⎤⎥⎥⎥⎥⎦ = 0 at r = a, (39)

χ1 = 0 at ϕ = ϕ1,2. (40)



M.S. Ruderman: Vertical and horizontal loop oscillations 889

If we denote the expression in the second brackets in Eq. (38)
as f , then it follows from Eq. (40) that f = 0 at ϕ = ϕ1,2. As a
result we obtain the Sturm-Liouville problem for the function f ,

B2
0

µ0ρ

∂2 f

∂ϕ2
+ Ω2

1 f = 0, f = 0 at ϕ = ϕ1,2. (41)

Since B2
0
/(µ0ρ) is the square of the Alfvén speed, this Sturm-

Liouville problem describes Alfvénic oscillations (inside the
loop when ρ = ρi, and outside when ρ = ρe). In what follows we
assume that the frequencies of the loop kink oscillations do not
coincide with the Alfvénic frequencies either inside or outside
the loop. Then Ω2

1
is not an eigenvalue of the Sturm-Liouville

problem (41), and the only solution of this problem is f = 0.
This implies that Eq. (38) reduces to

∂2χ1

∂r2
+

1

r

∂χ1

∂r
+

1

r2

∂2χ1

∂θ2
= 0. (42)

In what follows we only study the kink oscillations, so that we
take

χ1 = χc(r, ϕ) cos θ + χs(r, ϕ) sin θ. (43)

Substituting this expression in Eq. (42) we obtain

∂2χc,s

∂r2
+

1

r

∂χc,s

∂r
− χc,s

r2
= 0. (44)

In addition, the functions χc(r, ϕ) and χs(r, ϕ) have to satisfy the
boundary conditions (39). The solution to Eq. (44) regular at
r = 0, vanishing as r → ∞, and satisfying the first boundary
condition in (39), is

χc,s(r, ϕ) = Ac,s(ϕ)

⎧⎪⎪⎨⎪⎪⎩
r, r < a,

a2/r, r > a.
(45)

Substituting this solution in the second boundary condition
in (39) yields

d2Ac,s

dϕ2
+
Ω2

1

C2
k

Ac,s = 0, C2
k =

2B2
0

µ0(ρi + ρe)
· (46)

This equation coincides with the equation derived by
Dymova & Ruderman (2005) for kink oscillations of a straight
loop with the constant circular cross-section. This is not surpris-
ing at all because, in the first order approximation with respect to
λ, we neglected the effect of variation of the cross-section along
the loop. It follows from (40) that the functions Ac(ϕ) and As(ϕ)
have to satisfy the boundary conditions

Ac,s(ϕ) = 0 at ϕ = ϕ1,2. (47)

Equation (46) and the boundary condition (47) constitute the
Sturm-Liouville problem. This problem has a non-trivial solu-
tion only when Ω2

1
is an eigenvalue. In that case the solution

is unique with the accuracy up to multiplication by an arbitrary
constant. Let us denote this solution as A1(ϕ). Then

Ac(ϕ) = CcA1(ϕ), As(ϕ) = CsA1(ϕ), (48)

where Cc and Cs are (in general complex) constants.

4.2. Second order approximation

In the second order approximation we collect terms proportional
to λ in Eq. (26), and boundary conditions (32), (33) and (35).
Then, using (43), (45), (46) and (48), we obtain

∂2χ2

∂r2
+

1

r

∂χ2

∂r
+

1

r2

∂2χ2

∂θ2
= 0, r < a, (49)

(
B2

0

µ0ρe

∂2

∂ϕ2
+ Ω2

1

) (
∂2χ2

∂r2
+

1

r

∂χ2

∂r
+

1

r2

∂2χ2

∂θ2

)
=

− 2

r3

⎛⎜⎜⎜⎜⎝
B2

0

µ0ρe

∂

∂ϕ
q
∂A1

∂ϕ
+ qΩ2

1A1

⎞⎟⎟⎟⎟⎠

× (Cc cos 3θ + Cs sin 3θ), r > a, (50)

[χ2] = 0 at r = a, (51)

[(
B2

0

µ0

∂2

∂ϕ2
+ ρΩ2

1

)
∂χ2

∂r

]
=

B2
0

2µ0

d

dϕ
q

dA1

dϕ

× (3Cc cos θ +Cs sin θ +Cc cos 3θ + Cs sin 3θ)

− q

2
A1Ω

2
1[2ρi(Cc cos θ + 2Cs sin θ)

+ ρe(3Cc cos θ + 3Cs sin θ −Cc cos 3θ −Cs sin 3θ)]

+ 2Ω1Ω2A1(ρi + ρe)(Cc cos θ + Cs sin θ) at r = a, (52)

χ2 = 0 at ϕ = ϕ1,2. (53)

Equation (49) for χ2 inside the loop coincides with Eq. (42) for
χ1. It can be easily verified that χ = r[Fc(ϕ) cos θ + Fs(ϕ) sin θ],
where Fc(ϕ) and Fs(ϕ) are arbitrary functions, is an exact so-
lution of Eq. (26). This property is related to the fact that, in
the thin tube approximation, the loop moves as rigid, i.e. the dis-
placement of all points of a particular cross-section are the same.
The solution to Eq. (49) is

χ2 = r[A2c(ϕ) cos θ + A2c(ϕ) sin θ)], r < a, (54)

where A2c(ϕ) and A2e(ϕ) are arbitrary functions. It follows
from (53) that A2c,s(ϕ1,2) = 0.

We look for the solution to Eq. (50) in the form

χ2 = r−1[Ã2c(ϕ) cos θ + Ã2s(ϕ) sin θ]

+χ̃2(r, ϕ)(Cc cos 3θ + Cs sin 3θ). (55)

Substituting this expression in Eq. (50) we obtain

(
B2

0

µ0ρe

∂2

∂ϕ2
+ Ω2

1

) (
∂2χ̃2

∂r2
+

1

r

∂χ̃2

∂r
− 9

r2
χ̃2

)
=

− 2

r3

⎛⎜⎜⎜⎜⎝
B2

0

µ0ρe

∂

∂ϕ
q
∂A1

∂ϕ
+ qΩ2

1A1

⎞⎟⎟⎟⎟⎠ . (56)

The general solution to this equation is given by

χ̃2 = a2r−1A3(ϕ) + r−3 f (ϕ), (57)

where f (ϕ) is an arbitrary function, and A3(ϕ) satisfies the
equation

B2
0

µ0ρe

d2A3

dϕ2
+ Ω2

1A3 =
B2

0

4µ0ρe

d

dϕ
q

dA1

dϕ
+

q

4
Ω2

1A1. (58)
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Substituting (55) in (51) and using (57) we obtain f (ϕ) =

−a4A3(ϕ), Ã2c = a2A2c(ϕ), and Ã2c = a2A2c(ϕ), so that
eventually

χ2 =
a2

r
[A2c(ϕ) cos θ + A2s(ϕ) sin θ)

+A3(ϕ)

(
a2

r
− a4

r3

)
(Cc cos 3θ +Cs sin 3θ), r > a. (59)

It follows from (53) that A3(ϕ1,2) = 0.
Now we substitute (54) and (59) in the boundary condi-

tion (52), and collect terms proportional to cos θ, sin θ, and
(Cc cos 3θ + Cs sin 3θ). As a result we obtain equations for A2c,
A2s, and A3. The equation for A3 coincides with (58), and the
equations for A2c and A2s are

d2A2c

dϕ2
+
Ω2

1

C2
k

A2c = −Cc

(
3

4

d

dϕ
q

dA1

dϕ

− qµ0

4B2
0

(2ρi + 3ρe)Ω2
1A1 +

2Ω1Ω2

C2
k

A1

⎞⎟⎟⎟⎟⎠ , (60)

d2A2s

dϕ2
+
Ω2

1

C2
k

A2s = −Cs

(
1

4

d

dϕ
q

dA1

dϕ

− qµ0

4B2
0

(4ρi + 3ρe)Ω2
1A1 +

2Ω1Ω2

C2
k

A1

⎞⎟⎟⎟⎟⎠ . (61)

The homogeneous counterparts to Eqs. (60) and (61) coincide
with Eq. (49), so that they have a non-trivial solution A1(ϕ).
Then it follows from the general theory of linear operators
that Eqs. (60) and (61) can be solved only when their right-
hand sides are orthogonal to A1(ϕ). These solvability conditions
can be also obtained directly. To do this we multiply either of
Eqs. (60) and (61) by A1 and integrate with respect to ϕ from
ϕ1 to ϕ2. Using integration by parts and the boundary conditions
A2c,s(ϕ1,2) = 0 we obtain that the integrals from the left-hand
sides of Eqs. (60) and (61) are equal to zero. This implies that
the integrals from the right-hand sides of Eqs. (60) and (61) are
also equal to zero. Once again using integration by parts we can
write these conditions as

Cc(Ω2 −Ω2h) = 0, Ω2h

∫ ϕ2

ϕ1

A2
1

C2
k

dϕ =

∫ ϕ2

ϕ1

q

8

⎡⎢⎢⎢⎢⎣
µ0Ω1

B2
0

(2ρi

+3ρe)A
2
1 +

3

Ω1

(
dA1

dϕ

)2⎤⎥⎥⎥⎥⎥⎦ dϕ, (62)

Cs(Ω2 −Ω2v) = 0, Ω2v

∫ ϕ2

ϕ1

A2
1

C2
k

dϕ =

∫ ϕ2

ϕ1

q

8

⎡⎢⎢⎢⎢⎣
µ0Ω1

B2
0

(4ρi

+3ρe)A
2
1 +

1

Ω1

(
dA1

dϕ

)2⎤⎥⎥⎥⎥⎥⎦ dϕ. (63)

In general, Ω2h � Ω2v. Then it follows from (60) and (61) that
either Cc � 0 andΩ2 = Ω2h, or Cs � 0 andΩ2 = Ω2v. Using (23),
(25), (43), (45), (48), and the relation u = Bξψ, we easily obtain

ξψ1 = CsA1(ϕ), ξy1 = −CcA1(ϕ). (64)

This result implies that the case where Cs � 0 corresponds to
vertical oscillations, and the case where Cc � 0 to horizontal os-
cillations. We see that the second order approximation removes
the system degeneration. Now eigenmodes cannot be polarised
in any direction. Rather they are polarised either in the vertical
or in horizontal direction.

4.3. Equations in physical variables

In the first order approximation with respect to λ the eigenfre-
quencies and eigenmodes of the loop kink oscillations are de-
termined by Eq. (46) with the boundary conditions (47). The
second order corrections to the eigenfrequencies are given by
Eqs. (62) and (63). All these equations are written in variables
that are inconvenient for comparison with the results obtained
in previous studies and with observations. We now rewrite these
equations in physical variables. We start from introducing the
length s along the loop axis. Since gφφ = (B0/B)2, we obtain

ds = (B0/B) dφ = ǫ−1(B0/B) dϕ, so that

s = B0

∫ φ

φ1

dφ′

B(φ′)
= ǫ−1B0

∫ ϕ

ϕ1

dϕ′

B(ϕ′)
· (65)

We also introduce ξv = ǫξψ1, ξh = ǫξy1, and ω̃1 = ǫ
−1Ω1. In these

new variables Eq. (46) with the boundary conditions (47) takes
the form

1

B

d

ds

(
1

B

dξ̃

ds

)
+
ω̃2

1

B2
0
C2

k

ξ̃ = 0, ξ̃ = 0 at s = 0, L, (66)

where L is the length of the loop given by

L = B0

∫ φ2

φ1

dφ

B(φ)
, (67)

and either ξ̃ = ξv, or ξ̃ = ξh. Now we recall that B2 =

B2
0
[1 + λq(s)] and look for the solution to the boundary value

problem (66) in the form ξ̃ = ξ + λξ2 and ω̃1 = ω1 + λω̃2. Then
we obtain in the first order approximation with respect to λ

d2ξ

ds2
+
ω2

1

C2
k

ξ = 0, ξ = 0 at s = 0, L, (68)

where either ξ = ξv + O(λ), or ξ = ξh + O(λ). The
boundary value problem (68) coincides with one obtained by
Dymova & Ruderman (2005) for kink oscillations of a straight
non-expanding loop with the circular cross-section and with the
density varying along the loop.

In the next order approximation we obtain

d2ξ2

ds2
+
ω2

1

C2
k

ξ2 =
λ

2

⎛⎜⎜⎜⎜⎝
d

ds
q

dξ

ds
−
ω2

1

C2
k

qξ − 4ω1ω̃2

C2
k

ξ

⎞⎟⎟⎟⎟⎠ , (69)

with ξ2 = 0 at s = 0, L. Multiplying this equation by q, integrat-
ing the result with respect to s, and using (68) and integration by
parts, we obtain the solvability condition for this boundary value
problem,

ω̃2

∫ L

0

ξ2

C2
k

dξ = − 1

4ω2
1

∫ L

0

q

⎡⎢⎢⎢⎢⎢⎣
(
dξ

ds

)2
+
ω2

1

C2
k

ξ2

⎤⎥⎥⎥⎥⎥⎦ ds. (70)

Now we introduce ω = ǫ−1Ω and write ω = ω1 + λω2. Then we
have

ω1 + λω2 = ǫ
−1(Ω1 + λΩ2) = ω̃1 + λǫ

−1Ω2,

so thatω2 = ǫ
−1Ω2+ω̃2. Using this result, Eq. (70), and Eqs. (62)

and (63) rewritten in terms of s and ξ, we eventually obtain ex-
pressions for the frequency of vertical, ωv, and horizontal, ωh,
oscillations of the loop,

ωv,h = ω1 + λω2v,h, (71)
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where

ω2v

∫ L

0

ξ2

C2
k

ds =

∫ L

0

q

8

⎡⎢⎢⎢⎢⎢⎣
µ0ω1

B2
0

(3ρi + 2ρe)ξ2 − 1

ω1

(
dξ

ds

)2⎤⎥⎥⎥⎥⎥⎦ ds,

(72)

ω2h

∫ L

0

ξ2

C2
k

ds =

∫ L

0

q

8

⎡⎢⎢⎢⎢⎢⎣
µ0ω1

B2
0

(ρi + 2ρe)ξ
2 +

1

ω1

(
dξ

ds

)2⎤⎥⎥⎥⎥⎥⎦ ds.

(73)

To verify the correctness of the obtained results we consider kink
oscillations of a straight homogeneous magnetic tube with an el-
liptic cross-section. To do this we take q to be a non-zero con-
stant. Then the half-axes of the elliptic cross-section are a and
b = a(1−λq/2). The solution to the boundary value problem (68)
corresponding to the fundamental mode is ξ = sin(πs/L), ω1 =

πCk/L. Calculation of ω2v and ω2h is straightforward, and even-
tually we obtain

ω2v =
πqCk(5ρi + 3ρe)

8L(ρi + ρe)
, ω2h =

πqCk(3ρi + 5ρe)

8L(ρi + ρe)
.

Kink oscillations of a straight homogeneous magnetic tube with
an elliptic cross-section were studied by Ruderman (2003). In
particular, he obtained the expressions for the frequencies of two
kink modes in the thin tube approximation (see his Eq. (60)). If
we substitute b = a(1 − λq/2) and B2 = B2

0
(1 + λq) in these

expressions, and make expansions with respect to λ up to terms
proportional to λ, then we obtain exactly the same expressions
for ω2v and ω2h.

5. Exponentially decaying magnetic field

in an isothermal atmosphere

To give an example of the obtained general results we consider
the following equilibrium state. The potential and flux function
of the equilibrium magnetic field are give by

φ = le−kz sin(kx), ψ = le−kz cos(kx). (74)

The picture of the field lines for this magnetic field is qualita-
tively the same as one shown in Fig. 1. The ratio of densities
inside and outside the loop is constant, ρi/ρe = ζ > 1. The loop
is in the isothermal atmosphere, so that

ρe = ρ0e−z/H, (75)

where H is the atmospheric scale height. The loop footpoints are
at z = 0, x = ±x0, so that ψ0 = l cos(kx0). Then the equation of
the loop axis is

ekz =
cos(kx)

cos(kx0)
, |kx| ≤ kx0. (76)

Using (74) and (76) we can express z in terms of φ,

e−2kz = l−2φ2 + cos2(kx0). (77)

It follows from (1) and (74) that

Bx = B0lke−kz cos(kx), Bz = −B0lke−kz sin(kx), (78)

so that

B2

B2
0

= 1 + λq(φ) = (lk)2e−2kz = k2φ2 + (lk)2 cos2(kx0). (79)

This equation implies that

λq(φ) = k2φ2 + (lk)2 cos2(kx0) − 1. (80)

The function |φ(x, z)| varies from l sin(kx0) at the footpoints to
zero at the loop apex, so that λq(φ) varies from (lk)2 − 1 to
(lk)2 cos2(kx0) − 1. The condition |q(φ)| � 1 implies that

(lk)2 = 1 + O(λ), cos2(kx0) = 1 + O(λ). (81)

It follows from the second equation in (81) that (kx0)2 = O(λ).
Since λ is an arbitrary small parameter, we will take

λ = (kx0)2 (82)

in what follows. To satisfy the first Eq. in (81) we take

l = k−1(1 + αλ), (83)

where α is a constant of the order of unity. Then it follows
from (80) that

q(φ) = x−2
0 φ

2 + 2α − 1 + O(λ). (84)

Now we can rewrite the equation of the loop axis (76) in an
approximate form,

z =
1

2
x0

√
λ

⎡⎢⎢⎢⎢⎢⎣1 −
(

x

x0

)2⎤⎥⎥⎥⎥⎥⎦ ·

We see that the loop shape is approximately parabolic. The ratio
of the loop height to the distance between the loop footpoints is
1
4

√
λ, so that it is small.
The loop cross-section is elliptic with the horizontal half-

axis equal to a. The vertical half-axis is equal to (B0/B)a ≈
a(1 − 1

2
λq). Hence, in accordance with (74) and (82)–(84), it

monotonically increases with the height from a(1 − αλ) at the
loop footpoints to a[1 − (α − 1/2)λ] at the loop apex.

The distance along the loop is related to the magnetic field
potential by Eq. (65). Using (74), (79) and (84) we obtain from
this equation

s ≈
∫ φ

−x0[1+(α−1/6)λ]

[
1 − λ

2

(
x−2

0 φ
′2 + 2α − 1

)]
dφ′

= φ + x0 + λ

⎡⎢⎢⎢⎢⎣
(
α − 1

6

)
x0 −

φ3 + x3
0

6x2
0

−
(
α − 1

2

)
(φ + x0)

⎤⎥⎥⎥⎥⎦ .

(85)

Substituting φ = x0[1+ (α−1/6)λ] in (85) we obtain the expres-
sion for the loop length, L ≈ (2 + λ/3)x0. Using (85) we rewrite
the expression for q as

q(s) = (s/x0 − 1)2 + 2α − 1 + O(λ). (86)

Now we assume that H and L are of the same order of magni-

tude. Since the loop height is of the order of L
√
λ, this implies

that the relative density variation along the loop axis is of the or-

der of
√
λ. The account of this density variation would result in

a correction to ω1 of the order of
√
λ. This correction is the same

for the vertical and horizontal oscillations. Since we are mainly
interested in the difference of frequencies of the vertical and hor-
izontal oscillations, we will neglect the density variation in what
follows. Then Ck = const. and the solution to the boundary value
problem (68) corresponding to the fundamental mode is

ξ = ξ0 sin
πs

L
, ω1 =

πCk

L
, (87)
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where ξ0 is a constant. The calculation of integrals in (72)
and (73) with q(s) given by (86) and ξ given by (87) is straight-
forward, and we obtain

ω2v =
Ck[π2(5ζ + 3)(6α + 1) − 6(7ζ + 5)]

24π2L(ζ + 1)
, (88)

ω2h =
Ck[π2(3ζ + 5)(6α + 1) − 6(ζ + 3)]

24π2L(ζ + 1)
· (89)

When deriving these expressions we have taken x0 ≈ L/2. The
difference between the frequencies of vertical and horizontal os-
cillations is

∆ω = ωv − ωh = λ(ω2v − ω2h)

=
λCk[π2(ζ − 1)(6α + 1) − 6(3ζ + 1)]

12π2L(ζ + 1)
· (90)

We see that, in general, ωv � ωh. They are only equal when

α =
3ζ + 1

π2(ζ − 1)
− 1

6
·

It is especially instructive to take α = 0. In that case the loop
cross-sections at the footpoints are circles of radius a. The ver-
tical half-axis b of the elliptic loop cross-section monotoni-
cally increases with the height from a at the loop footpoints
to a(1 + λ/2) at the loop apex. Substituting α = 0 in (90) we
obtain

∆ω = −λCk(3ζ + 1)

2π2L(ζ + 1)
,

so thatωv < ωh. This result is in good agreement with the results
obtained by Ruderman (2003). Ruderman (2003) has shown that
the frequency of kink oscillation of a magnetic tube with an ellip-
tic cross section in the direction of the larger axis is smaller than
that in the direction of the smaller axis. Since the vertical axis
of the variable elliptic loop cross-section is everywhere larger
than the horizontal axis, we should expect that the frequency
of the vertical oscillation is smaller than that of the horizontal
oscillation.

6. Summary and conclusions

In this paper we have studied kink oscillations of curved coro-
nal magnetic loops with the density varying along the loop. We
have assumed that the loop is in a vertical plane, so that the loop
torsion is zero. We have also assumed that the equilibrium mag-
netic field is potential. Using the magnetic field potential and
flux function as curvilinear coordinates in the loop plane we de-
rived the equation governing the loop motion in the thin tube
approximation. Then we have considered a loop with the ellip-
tic cross-section, and rewrote the governing equations and the
boundary conditions at the loop boundary in terms of polar co-
ordinates in the loop cross-section. An important property of this
model is that the loop curvature causes the loop expansion. As a
result the ratio of axis of the loop cross-section varies along the
loop.

The governing equation for the loop motion is a partial dif-
ferential equation for one function that depends of the polar co-
ordinates in the loop cross-section, r and θ. The coefficients of
this equation depend both on r and θ. We managed to find the

solution to the governing equation corresponding to kink oscil-
lations inside the loop. However, it seems highly improbable that
a similar solution describing the motion outside the loop can be
found. To make analytical progress we assumed that the loop
expansion is small and introduced the small parameter, λ, char-
acterising this expansion. In this approximation the loop cross-
section is almost circular. The ratio of axes of the loop ellip-
tic cross-section differs from unity by a quantity of the order of
λ. After that we have used the regular perturbation method and
looked for the solution to the problem in the form of power series
expansions with respect to λ.

In particular, we looked for the eigenmodes of kink oscil-
lations in the form ω = ω1 + λω2. In the first order approxi-
mation we found that ω1 is determined by the eigenvalue prob-
lem (68). Equation (68) is exactly the same as one obtained by
Dymova & Ruderman (2005) for kink oscillations of a straight
non-expanding loop with the circular cross-section and the den-
sity varying along the loop. The eigenvalue problem is degen-
erate in the sense that kink oscillations can be polarised in any
direction.

In the next order approximation the kink eigenmodes of the
loop oscillation can be polarised only either in the vertical or
horizontal direction, so that the degeneration of the eigenvalue
problem is removed. The corrections to the kink oscillation fre-
quency are different for the vertical and horizontal oscillations.
They are given by Eqs. (72) and (73) for the fundamental modes
of the vertical and horizontal kink oscillations.

As an example we have considered a simple equilibrium with
the magnetic field magnitude exponentially decaying with the
height. Neglecting the density variation along the loop we re-
duced the eigenvalue problem (68) to one describing kink oscil-
lations of a straight thin homogeneous magnetic tube. Then we
easily calculated the corrections to the frequencies of the vertical
and horizontal oscillations, ωv and ωh (see Eqs. (88) and (89)).
These corrections depend on the parameter α characterising the
shape of the loop cross-section at the footpoints. In general, this
cross-section is an ellipse with the ration of the vertical and hor-
izontal axes equal to 1 − αλ. When α = 0, which corresponds to
the circular footpoint cross-section, ωv < ωh, i.e. the frequency
of the vertical loop oscillation is smaller than that of the hori-
zontal oscillation.

The main conclusion of this work is that the frequencies of
the vertical and horizontal kink oscillations are, in general, dif-
ferent. The effect of loop curvature on the frequencies of the
vertical and horizontal kink oscillations is not direct. Rather the
curvature results in variation of the shape of the loop cross-
section along the loop, and it is this variation of the cross-section
shape that causes the difference in the frequencies. It is instruc-
tive to compare the results of this work with those obtained by
Van Doorsselaere et al. (2004) and Terradas et al. (2006). These
authors came to a conclusion that the difference between the fre-
quencies of the vertical and horizontal oscillations of a curved
loop is only of the order of ǫ2, where ǫ is the ration of the loop
radius to its length, so that it can be neglect in the thin tube
approximation. Our study clearly shows that this result in re-
lated to the model used by Van Doorsselaere et al. (2004) and
Terradas et al. (2006). In this model a curved loop has a circular
cross-section with the constant radius.

The difference between the frequencies of the vertical and
horizontal oscillations is of the order of λ ≪ 1, i.e. it is small.
This result is directly related to our assumption that the loop
expansion is small. For loops with sufficiently large expansions
this difference can be quite substantial.
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Although, as we have already mentioned, the majority of
observed kink oscillations of coronal loops are horizontally po-
larised, an arbitrary disturbance should cause both vertically and
horizontally polarised oscillations. Since, in general, the fre-
quencies of the vertical and horizontal oscillations are differ-
ent, it would be interesting to look for signatures of two dif-
ferent frequencies in the observational data. If the ratio of two
observed frequencies is sufficiently large (say, larger than 1.5),
then they are usually attributed to the fundamental mode and first
overtone of kink oscillations. However if two frequencies with a
smaller ratio (say, 1.2 or 1.3) are found, then it is quite probable
that they are the frequencies of the vertical and horizontal kink
oscillations.
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