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Non-interference is a semantical condition on programs that guarantees the absence of illicit
information flow throughout their execution, and that can be enforced by appropriate information
flow type systems. Much of previous work on type systems for non-interference has focused on
calculi or high-level programming languages, and existing type systems for low-level languages
typically omit objects, exceptions, and method calls, and/or do not prove formally the soundness
of the type system. We define an information flow type system for a sequential JVM-like language
that includes classes, objects, arrays, exceptions and method calls, and prove that it guarantees
non-interference. For increased confidence, we have formalized the proof in the proof assistant
Coq; an additional benefit of the formalization is that we have extracted from our proof a certified
lightweight bytecode verifier for information flow. Our work provides, to our best knowledge, the
first sound and implemented information flow type system for such an expressive fragment of the
JVM.
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1. INTRODUCTION

Java security. The Java security architecture combines static and dynamic mech-
anisms to enforce innocuity of applications; in particular, it features a bytecode
verifier that guarantees statically safety properties such as the absence of arith-
metic on references, and a stack inspection mechanism that performs access control
verifications. However, it lacks of appropriate mechanisms to guarantee stronger
confidentiality properties: for example, it has been suggested that the Java security
model is not sufficient in security-sensitive applications such as smart cards [Gi-
rard 1999; Montgomery and Krishna 1999]. One weakness of the model is that
it only concentrates on who accesses sensitive information, but not how sensitive
information flows through programs.

Language-based security. The goal of language-based security [Sabelfeld and My-
ers 2003] is to provide enforcement mechanisms for end-to-end security policies that
go beyond the basic isolation properties ensured by security models for mobile code.
In contrast to security models based on access control, language-based security fo-
cuses on information-flow policies that track how sensitive information is propagated
during execution.

Starting from the seminal work of Volpano and Smith [Volpano and Smith 1997],
type systems have become a prominent approach for a practical enforcement of in-
formation flow policies, and recent research has proposed type-based enforcement
mechanisms for advanced programming features such as exceptions, objects [Barthe
and Serpette 1999; Banerjee and Naumann 2005], interactions [O’Neill et al. 2006],
concurrency [Smith and Volpano 1998] and distribution [Mantel and Sabelfeld 2003].
This line of work has culminated in the design and implementation of informa-
tion flow type systems for programming languages such as Java [Myers 1999] and
Caml [Pottier and Simonet 2003].

Our contribution. It is striking to notice that, although mobile code security is
the central motivation behind those works, there has been very little effort to study
information flow in low-level languages such as Java bytecode. While focusing on
source languages is useful to provide developers with assurances that their code
does not leak information unduly, it is definitely preferable for users to be provided
with enforcement mechanisms that operate at bytecode level, because Java applets
are downloaded as JVM bytecode programs.

The contribution of this paper is the definition and machine-checked soundness
proofs of a type system to enforce confidentiality of applications written in a se-
quential fragment of the Java Virtual Machine, with objects, methods, exceptions,
and arrays. The analysis is compatible with bytecode verification and can thus be
integrated in a standard Java security architecture, provided class files are suitably
extended with appropriate information expressed as security signatures for meth-
ods. To our best knowledge, this is the first sound type-based analysis for a such
an expressive fragment of the JVM.

ACM Transactions on Computational Logic, Vol. V, No. N, September 2007.
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Comparison with [Barthe et al. 2007] and [Barthe and Rezk 2005]. In [Barthe and
Rezk 2005], the first and third authors introduce a provably secure information flow
type system for an object-oriented language with a simple exception mechanism.
Our current work adopts many of the ideas and techniques developed there, but
we also improve substantially over this work: the operational semantics of the
language is more realistic (we provide a treatment of exceptions that is close to
that of Java) and both methods and arrays have been incorporated, the security
policies are more expressive (we adopt arbitrary lattices of security levels instead
of two-element lattices), the enforcement mechanism is more accurate (we rely on
preliminary exception analyses to reduce the control flow graph of applications), and
the soundness proof has been machine checked using the proof assistant Coq [Coq
Development Team 2004].

This paper is an extended version of [Barthe et al. 2007]. The main differences
are the incremental presentation of different language fragments, the inclusion of
formal proofs, and a more detailed account of control dependence regions, and of
related work. We also provide additional examples to illustrate the working of the
typing rules.

Notations and conventions. For every function f ∈ A → B, x ∈ A and v ∈ B,
we let f ⊕{x 7→ v} denote the unique function f ′ s.t. f ′(y) = f(y) if y 6= x and
f ′(x) = v. Further, we let A⋆ denote the set of A-stacks for every set A. We use
hd and tl and :: and ++ to denote the head and tail and cons and concatenation
operations on stacks.

For simplicity, examples throughout the paper take as partial order of security
levels S = {L, H} with L ≤ H , where H is the high level for confidential data, and
L is the low level for observable data.

Finally, we also make the assumption that all methods return a result; this is a
harmless departure from Java, which allows us to avoid duplicating many definitions.
This assumption is done here for the sake of presentation, but the formal proofs do
consider both the cases of methods returning a result, and methods returning no
result.

2. INFORMAL OVERVIEW

The purpose of this section is to provide an informal account of our security con-
dition, to highlight some salient features of our type system, and finally to provide
a high level description of the type soundness proof. In order to avoid a profusion
of technical details, we ignore exceptions in a first place, and indicate at the end of
the section additional issues that arise when they are considered.

2.1 Policies and attacker model

The security policy is based on the assumption that the attacker can only draw
observations on the input/output behavior of methods. On the other hand, we
adopt a termination insensitive policy which assumes that the attacker is unable
to observe non-termination of programs. Formally, the policy is given by a partial
order (S,≤) of security levels, and:

— a security level kobs that determines the observational capabilities of the at-
tacker. Essentially, the attacker can observe fields, local variables, and return values
whose level is below kobs;

— a global policy ft : F → S that attaches security levels to fields (we let
F denote the set of fields). The global policy is used to determine a notion of
equivalence ∼ between heaps. Intuitively, two heaps h1 and h2 are equivalent if
h1(l).f = h2(l).f for all locations l and fields f s.t. ft(f) ≤ kobs; the formal
definition of heap indistinguishability is rather involved and deferred to Section 5;
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— local policies for each method (we let M denote the set of methods). In
a setting where exceptions are ignored, local policies are expressed using security

signatures of the form ~kv
kh−→ kr where ~kv provides the security levels of the method’s

local variables (including method’s arguments1), kh is the effect of the method on
the heap, and kr is the return signature, i.e. the security level of the return value.
The vector ~kv of security levels is used to determine a notion of indistinguishability
∼ ~kv

between arrays of parameters, whereas the return signature is used to define a
notion of indistinguishability ∼kr

between return values.

Essentially, a method is safe w.r.t. a signature ~kv
kh−→ kr if:

(1) two terminating runs of the method with ∼ ~kv
-equivalent inputs, i.e. inputs

that cannot be distinguished by an attacker, and equivalent heaps, yield ∼kr
-

equivalent results, i.e. results that cannot be distinguished by the attacker,

(2) the method does not perform field updates on fields whose security level is below
kh—as a consequence, it cannot modify the heap in a way that is observable by
an attacker that has access to fields whose security level is below kh.

Formally, the security condition is expressed relative to the operational semantics
of the JVM, which is captured by judgments of the form hi, lv ⇓m r, hf , meaning
that executing the method m with initial heap hi and parameters lv yields the final
heap hf and the result r.

Then, we say that a method m is safe w.r.t. a signature ~kv
kh−→ kr if its method

body does not perform field updates on fields of level lower than kh and if it sat-
isfies the following non-interference property: for all heaps hi, hf , h′

i, h
′
f , arrays of

parameters ~a and ~a′, and results r and r′,

hi,~a ⇓m r, hf

h′
i,

~a′ ⇓m r′, h′
f

hi ∼ h′
i

~a ∼ ~kv

~a′















⇒ hf ∼ h′
f ∧ r ∼kr

r′

There are two important underlying choices in this security condition: first, the
security condition focuses on input/output behaviors, and so does not consider the
case of executions that hang; however, it also does not consider “wrong” executions
that get stuck, as such executions are eliminated by bytecode verification. Second,
the security condition is defined on methods, and not on programs, as we aim for a
modular verification technique in the spirit of bytecode verification.

2.2 Dealing with unstructured programs

Preventing direct flows with stack types.. Any sound information flow type system
must prevent direct information leakages that occur through assigning secret values
to public variables. In a high level language, avoiding such indirect flows is ensured
by setting appropriate rules for assignments; in a typical type system for a high-level
language [Volpano and Smith 1997], the typing rule for assignments is of the form

⊢ e : k k ≤ ~kv(x)

⊢ x := e : ~kv(x)

where ~kv(x) is the security given to variable x by the policy and k is an upper bound
of the security level of the variables occurring in the expression e. The constraint
k ≤ ~kv(x) ensures that the value stored in x does not depend of any variable whose
security level is greater than that of x, and thus that there is no illicit flow to x.

1JVM programs use a fragment of their local variables to store parameter values.
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In a low level language where intermediate computations are performed with an
operand stack, direct information flows are prevented by assigning a security level
to each value in the operand stack, via a so-called stack type, and by rejecting
programs that attempt storing a value in a low variable when the top of the stack
type is high:

P [i] = load x

i ⊢ st ⇒ ~kv(x) :: st

P [i] = store x k ≤ ~kv(x)

i ⊢ k :: st ⇒ st

where st represents a stack type (a stack of security levels) and ⇒ represents a
relation between the stack type before execution and the stack type after execution
of load.

For instance, xL = yH is rejected by any sound information flow type system for
a while language, because the constraint H ≤ L generated by the typing rule for
assignment is violated. Likewise, the low level counterpart

load yH

store xL

cannot be typed as the typing rule for load forces the top of the stack type to high
after executing the instruction, and the typing rule for store generates the constraint
H ≤ L.

Preventing indirect flows via security environments. Any sound information flow
type system must also prevent information leakages that occur through the control
flow of programs. In a high level language, avoiding such indirect flows is ensured
by setting appropriate rules for branching statements; in a typical type system for
a high-level language [Volpano and Smith 1997], the typing rule for if statements is
of the form

⊢ e : k ⊢ c1 : k1 ⊢ c2 : k2 k ≤ k1, k2

⊢ if e then c1 else c2 : k

and ensures that the write effects of c1 and c2 are greater than the guard of the
branching statement.

To prevent illicit flows in a low-level language, one cannot simply enforce local
constraints in the typing rules for branching instructions: one must also enforce
global constraints that prevent low assignments and updates to occur under high
guards. In order to express the global constraints that are necessary to enforce
soundness, we rely on additional information about the program, namely control
dependence regions (cdr) which approximate the scope of branching statements.
The cdr information:

— is defined relative to a binary successor relation 7→⊆ PP × PP between pro-
gram points, and a set PPr of return points. The successor relation and the set of
return points are defined according to the semantics of instructions. Intuitively, j is
a successor of i if performing one-step execution from a state whose program point
is i may lead to a state whose program point is j. Likewise, j is a return point if it
corresponds to a return instruction. In the sequel, we write i 7→ if i ∈ PPr;

— is captured by a function that maps a branching program point i (i.e. a
program point with two or more successors) to a set of program points region(i),
called the region of i, and by a partial function that maps branching program points
to a junction point jun(i).

The intuition behind regions and junction points is that region(i) includes all pro-
gram points executing under the guard of i and that jun(i), if it exists is the sole
exit from the region of i; in particular, whenever jun(i) is defined there should be no
return instruction in region(i). The properties to be satisfied by control dependence

ACM Transactions on Computational Logic, Vol. V, No. N, September 2007.
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regions, called SOAP properties (Safe Over Approximation Properties), are further
discussed in next section.

In the type system, we use cdr information in conjunction with a security envi-
ronment that attaches to each program point a security level, intuitively the upper
bound of all the guards under which the program point executes. More precisely,
programs are checked against a security environment se and global constraints arise
in the type system as side conditions in the typing rules for branching statements.
For instance, the rule for if bytecode is of the form:

P [i] = ifeq j ∀j′ ∈ region(i), k ≤ se(j′)

i ⊢ k :: st ⇒ · · ·

(In Section 4, we discuss the possible choices for the result stack type in the con-
clusion.)

In order to prevent indirect flows, the typing rules for instructions with write
effect, e.g. store and putfield, must check that the security level of the variable
or field to be written is at least as high as the current security environment. For
instance, the rule for store becomes:

P [i] = store x k ⊔ se(i) ≤ ~kv(x)

i ⊢ k :: st ⇒ st

The combination of both rules allows to prevent indirect flows. For instance, the
standard example of indirect flow if (yH) {xL = 0; } else {xL = 1; } is compiled in
our low-level language as

load yH

ifeq l1
push 0
store xL

goto l2
l1 : push 1

store xL

l2 : . . .

By requiring that se(i) ≤ ~kv(x) in the store rule and by requiring a global constraint
on the security environment in the rule for ifeq, the type system ensures that the
above program will be rejected: se(i) must be H if the store instruction is under
the influence of a high ifeq, and thus the transition for the store instruction cannot
be typed.

2.3 Type system

Our information flow type system adopts the principles of Java bytecode verification,
in the sense that it is modular (each method can be verified against its signature
in isolation) and that it is defined as a data flow analysis of an abstract transition
relation. Formally, the type system is parameterized by:

— a table Γ of method signatures, necessary for typing rules involving method
calls;

— a global policy ft that provides the security level of fields;

— a cdr structure (region, jun) for the method under verification;

— a security environment se;

— a current method signature sgn.

The typing rules are designed to prevent information leakage through imposing
appropriate constraints; typing rules are of one of the two forms below, where the

ACM Transactions on Computational Logic, Vol. V, No. N, September 2007.
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rule on the left is used for normal intra-method execution, and the rule on the right
is used for return instructions:

P [i] = ins constraints

Γ, ft, region, se, sgn, i ⊢ st ⇒ st′
P [i] = ins constraints

Γ, ft, region, se, sgn, i ⊢ st ⇒

where st, st′ ∈ S⋆ are stacks of security levels, and ins is an instruction found at
point i in program P . Typing rules are used to establish a notion of typability.
Following Freund and Mitchell [Freund and Mitchell 2003], typability stipulates the
existence of a function, that maps program points to stack types, such that each
transition is well-typed.

Definition 2.3.1 Typable method. A method m is deemed typable w.r.t. a method
signature table Γ, a global field policy ft, a signature sgn and a cdr region :
PP → ℘(PP) if there exists a security environment se : PP → S and a func-
tion S : PP → S⋆ such that S1 = ε (the operand stack is empty at the initial
program point 1), and for all i, j ∈ PP :

(1) i 7→ j implies that there exists st ∈ S⋆ such that Γ, ft, region, se, sgn, i ⊢ Si ⇒ st

and st ⊑ Sj ;

(2) i 7→ implies that Γ, ft, region, se, sgn, i ⊢ Si ⇒;

where we write Si instead of S(i) and ⊑ denotes the point-wise partial order on
type stack with respect to the partial order taken on security levels.

The definition of typable method is stated to ensure that runs of typable programs
(i.e. programs whose methods are typable against their signatures) verify at each
step the constraints imposed by the typing rules, provided they are called with
parameters that respect the signature of their main method.

Typability of a method against its signature can be performed via a dataflow
analysis based on Kildall’s algorithm [Nielson et al. 1999]. The analysis takes as
inputs the local and global policies, the method table, the cdr structure, the security
environment, the current signature, and either returns a type S : PP → S⋆, or a
tag indicating that type-checking has failed.

Assuming that the lattice of security levels satisfy the ascending chain property,
i.e. that there is no infinite sequence of security levels

k1 ⊏ k2 ⊏ k3 . . .

it follows from the monotonicity of the typing rules that the analysis terminates.
We conclude this section by mentioning that there are alternatives to the defini-

tion of typable methods, and to verifying typability. One dimension of choice lies
in the precision in the analysis: whereas our analysis is monovariant, our earlier
work [Barthe et al. 2004] adopted a polyvariant analysis in which types assign to
each program point a set of stack types. Polyvariant analyses rely on the finiteness
of the set of stack types to guarantee termination. They type more programs, but
yield less compact types.

2.4 Proving type soundness

For each of the fragment of the JVM considered in this paper, we adopt a similar
strategy to prove soundness of the type system. The proof of soundness is based on
some assumptions concerning the cdr information, two unwinding lemmas and two
lemmas about preserving high context.

The unwinding lemmas show that execution of typable programs does not reveal
secret information. They are stated relative to the small-step semantics ; and to
a notion of state indistinguishability that is defined component-wise, i.e. two states
s and t are indistinguishable if and only if their heaps, local variable maps, and

ACM Transactions on Computational Logic, Vol. V, No. N, September 2007.
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operand stacks are indistinguishable. As shall be explained in Section 4, indistin-
guishability between operand stacks is defined relative to stack types S and T , and
hence we must also defined state indistinguishability relative to stack types. In the
sequel, we write s ∼S,T t whenever s and t are equivalent w.r.t. S and T .

The unwinding lemmas deal with a program P that come equipped with its
method signature table and a particular method m of P that comes equipped with
its cdr structure (region, jun) and security environment se. We say that a type stack
S ∈ S⋆ is high if all levels in S are not lower than kobs. We say that the security
environment se is high in region region(i) if se(j) 6≤ kobs for all j ∈ region(i).

— locally respects: if s ∼S,T t, and pc(s) = pc(t) = i, and s ; s′, t ; t′,
i ⊢ S ⇒ S′, and i ⊢ T ⇒ T ′, then s′ ∼S′,T ′ t′.

— step consistent: if s ∼S,T t and s ; s′ and pc(s) ⊢ S ⇒ S′, and security
environment at program point pc(s) is high, and S is high, then s′ ∼S′,T t.

In addition, we also need additional results that enable to repeatedly apply unwind-
ing lemmas to sequences of execution steps. The first family of results deals with
preservation of high contexts.

— high branching: if s ∼S,T t with pc(s) = pc(t) = i and pc(s′) 6= pc(t′), if
s ; s′, t ; t′, i ⊢ S ⇒ S′ and i ⊢ T ⇒ T ′, then S′ and T ′ are high and se is high
in region region(i).

— high step: if s ; s′, and pc(s) ⊢ S ⇒ S′, and security environment at program
point pc(s) is high, and S is high, then S′ is high.

The second family of results deals with monotonicity of indistinguishability.

— high stack type sub-typing: if S′ is a high type stack and S′ ⊑ T ′ then T’ is
high.

— indistinguishability double monotony: if s ∼S,T t, S ⊑ U and T ⊑ U then
s ∼U,U t.

— indistinguishability single monotony: if s ∼S,T t, S ⊑ S′ and S is high then
s ∼S′,T t.

The combination of the unwinding lemmas, the high context lemmas, the mono-
tonicity lemmas and the SOAP properties enable to prove that typable programs
are non-interfering. The proof will be sketched in the next section. In addition,
we prove that the SOAP properties, as well as the typability of programs, can be
verified automatically. Summarizing, the main result of the paper is to prove for
JVM fragments of increasing complexity, the following:

Theorem 2.4.1. Let P be a program in which each method comes equipped with
its method signature, it cdr structure (region, jun) and its security environment.

(1 ) If all cdr structures satisfy the SOAP properties and all methods are typable
with their signature, then each method is safe, and in particular the program is
non-interfering (i.e. it main method is safe).

(2 ) The SOAP properties can be verified automatically for each method and asso-
ciated cdr structure.

(3 ) The typability of a method against its signature can be verified automatically.

2.5 Exceptions

Extending the outline of the previous section to exceptions is an important issue,
because exceptions are pervasive in Java programs. However, accommodating the
Java exception mechanism in information flow analyses raise significant challenges.

First, exceptions introduce several potential sources of information leakage; in
particular, attackers may infer sensitive information from the termination mode of
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programs. This possibility must be reflected both in the notion of state indistin-
guishability, and of method signatures, which become significantly more complex.
For example, method signatures become of the form

~kv
kh−→ ~kr

with the output signature ~kr now being of the form

{n : kn, e1 : ke1 , . . . en : ken
}

where kn is the security level of the return value and ei is an exception class
that might be propagated by the method in a security environment (or due to
an exception-throwing instruction) of level ki.

Second, exceptions have an enormous impact on the control flow graph of pro-
grams, since many instructions become branching instructions. Curbing this explo-
sion in the control flow graph is essential for maintaining a minimum of precision
in the information flow analysis; therefore, the analysis must be performed in three
successive phases:

(1) the PA (pre-analysis) analyser computes information that can be used to reduce
the control flow graph and to detect branches that will never be taken. The PA
analyser performs analyses of null pointers (to predict unthrowable null pointer
exceptions), classes (to predict target of throws instructions), array accesses
(to predict unthrowable out-of-bounds exceptions), and exceptions (to over-
approximate the set of throwable exceptions for each method).

(2) the CDR analyser computes control dependence regions (cdr), using the results
of the PA analyser to minimize the size of regions. In order to maximize ac-
curacy, regions are defined relative to an exception class. Then, soundness is
established relative to an extended set of SOAP properties.

(3) the IF (Information Flow) analyser performs information flow checking, using
typing rules that exploit the information from the PA and CDR analyses to
eliminate premises about branches that are provably unreachable from the pro-
gram point being typed.

2.6 Summary of subsequent sections

The subsequent sections analyze in turn increasingly complex fragments of the JVM:

— the machine JVMI , studied in Section 4, includes basic operations to manipu-
late operand stacks as well as conditional and unconditional jumps, and is expressive
enough for compiling programs written in a simple imperative language. In this sec-
tion, we define and discuss operand stack indistinguishability. The definitions and
type system for JVMI are adapted from our earlier work [Barthe et al. 2007];

— the machine JVMO, studied in Section 5, is an object-oriented extension of
JVMI which includes features such as dynamic object creation, instance field ac-
cesses and updates, and is expressive enough for compiling intra-procedural state-
ments from [Banerjee and Naumann 2005]. In this section, we define and discuss
heap indistinguishability. The definitions and type system for JVMI are adapted
from our earlier work [Barthe and Rezk 2005];

— JVMC , studied in Section 6, is a procedural extension of JVMO with method
calls, and is expressive enough to compile the language of [Banerjee and Naumann
2005]. The main difficulty is to handle information leakages caused by dynamic
method dispatch;

— JVMG , studied in Section 7, extends JVMC with exceptions. The main diffi-
culty is to handle information leakages caused by exceptions, especially when they
escape the scope of the method in which they are raised.
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— JVMA, studied in Section 8, extends JVMO with arrays (for readability, we
do not deal with exceptions nor methods in the presentation). The main difficulty
is to propose a sufficiently fine type system which allows public arrays to handle
secret informations.

For each fragment, we shall define programs, states, and semantics. Then we shall
formulate the security policy and the typing rules; the unwinding lemmas are given
in appendices. We also provide a detailed proof of the unwinding lemmas for the
JVMG in the appendix.

The final sections of the paper discuss issues that are transversal to the fragments
considered: Section 11 provides an overview of related work, whereas Section 9
addresses more specifically the relation with information flow type systems for Java.
Section 10 provides additional details on the formal proof developed in Coq.

3. CONTROL DEPENDENCE REGIONS

Our type system relies on the existence of control dependence regions that satisfy
the SOAP properties. The purpose of this section is first to present these properties
and explain how verify them efficiently. We will then relate the existence of CDRs,
as used in this paper, and control dependence regions that are used in compilers.
More precisely, we shall show how to define CDRs that comply SOAP using standard
compilers techniques.

For the purpose of this section, we abstract away from the syntax of programs
and consider given a set P of program points, a set Pr of return points, and a
successor relation 7→⊆ P ×P , subject to the constraint that for every i ∈ Pr, there
is no j ∈ P such that i 7→ j. In a first instance, we do not consider exceptions, i.e.
we only consider one kind of return point. The cdr definition will then be extended
to exceptions in Section 7. In order to be more precise, we will associate a region
for each branching point and exception.

3.1 SOAPs: Safe Over Approximation Properties

Since information flow type checking of programs is performed w.r.t. control depen-
dence regions, we assume that the cdr information comes bundled with the program,
and its correctness is verified by a cdr checker that is included in the TCB2 (see
Section 10 for a detailed discussion on TCB).

Thus, we assume that the cdr information is given by functions region and jun.
To guarantee the correctness of the information that they provide, these functions
should satisfy the set of properties given below. Informally, the properties state
that any successor of i either belongs to the region of i, or are equal to jun(i) (if
defined), and jun(i) is the sole exit to the region of i; in particular if jun(i) is defined
there should be no return instruction in region(i).

Definition 3.1.1. A cdr structure (region, jun) satisfies the SOAP (Safe Over AP-
proximation) properties if the following properties hold:

SOAP1. for all program points i and all successors j, k of i (i 7→ j and i 7→ k)
such that j 6= k (i is hence a branching point), k ∈ region(i) or k = jun(i);

SOAP2. for all program points i, j, k, if j ∈ region(i) and j 7→ k, then either
k ∈ region(i) or k = jun(i);

SOAP3. for all program points i, j, if j ∈ region(i) and j 7→ then jun(i) is unde-
fined.

In order to provide the reader with some intuition, we provide in Figure 1 exam-
ples of regions of two compiled programs, and show that with such definitions, we
achieve the desired effect.

2Unlike what is claimed in e.g. [Yu and Islam 2006], the cdr information itself is not trusted.
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region(i)

jun(i)

i

jun(i)

region(i)

i

Fig. 1. Example of cdr for a while and an if construct.

Our motivations to bundle the cdr information with programs is that it stream-
lines the presentation and that it allows us to focus on the information flow analysis
itself. However, it is by no means necessary that programs come equipped with
their cdr information. In fact, the cdr information can be computed by an analyzer
using standard graph algorithms, as it is explained in Section 3.3 but checking cdr
can be done very efficiently with a simple algorithm we present now.

3.2 Checking cdr with a linear complexity

We note n the number of program point and b the maximum degree of node in
the control flow graph. We suppose the cdr structure satisfies the intersection
property, that is for all program points i, j such that region(i) ∩ region(j) 6= ∅,
region(i) ⊆ region(j) or region(i) ⊇ region(j). This assumption is not necessary
to ensure the validity of our algorithm, only to obtain a linear complexity, so we
don’t need to check if a given cdr respects the intersection pretty. This is a natural
property for program obtained by standard compilers.

A cdr structure satisfies the inclusion property if for all program points i, j such
that j ∈ region(i) the following properties hold

IP1 region(j) ⊆ region(i);

IP2 if jun(j) is undefined then jun(i) is undefined too;

IP3 if jun(j) is defined then it belongs to region(i) or is equal to jun(i).

Verifying if a given cdr respects the inclusion property can be done with a linear
complexity if we use an adequate representation of cdr. For this purpose we repre-
sent each region region(i) by giving only the points which belong to region(i) but all
the other regions they belong to contain region(i). If we note compressed region(i)
this set, region(i) is implicitly defined by

region(i) =
⋃

j∈compressed region(i)

region(j)

Using this representation, IP1 is true by construction. To check IP2 and IP3 we
examine all points i′ in each compressed region(i). If jun(i′) is undefined we check
that jun(i) is undefined too. If jun(i′) is defined, we check it belongs to region(i) or
is equal to jun(i). Since the cdr verify the intersection property we have necessary

compressed region(i) ∩ compressed region(j) = ∅ ∀i, j ∈ PP
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Hence the sets (compressed region(i))i∈PP is a partition of the set of program point
of a program. The verification of the inclusion property has hence a complexity
O(n).

SOAP1 is checked by enumerating all branching points and checking all their
successors. This verification has hence a complexity O(b · n).

SOAP2 is checked by examining region in increasing order of size. For a given re-
gion region(i) we should at first view examine all points in the region and test if their
successors are in the same region or are equal to its junction point. This exhaus-
tive enumeration is superfluous because points that are themselves in a subregion
region(i′) of region(i) doesn’t need to be checked. Indeed if j is a point in region(i′)
and k is one of its successors, we have necessarily k ∈ region(i′) or k = jun(i′) since
region(i′) is a strict subregion which respects SOAP2. But since we suppose the cdr
structure respects the inclusion property, k ∈ region(i) or k = jun(i). As a conse-
quence for each region we only examine points that belongs to the region but not to
any other subregions. If the cdr verify the intersection property, we hence globally
only check one time each points and the verification has a complexity O(n).

Finally, SOAP3 is checked in a similar way by examining region in increasing
order of size. Again we don’t need an exhaustive enumeration because if a subregion
region(i′) of a region region(i), verified SOAP3 then for all return point j ∈ region(i′),
jun(i′) is necessarily undefined and since we suppose the cdr structure respects the
inclusion property, jun(i) is undefined too. We hence globally only check one time
each points and the verification has again a complexity O(n).

3.3 Relating SOAP to the post-dominator notion

Following standard work in compilers, we define that a program point j post-
dominates another program point i, written j ⊳ i, if i 6= j and for every return
point k, all paths from i to k go through j. Then, we say that j is the junction
point of i, written jun(i), if i is a branching point and j is post-dominated by all
post-dominators of i. With such a definition, the junction point is a partial func-
tion: for example, a branching point that contains a return statement in one of its
branches does not have a junction point.

Finally, we define region(i) as the set of points that can be reached from i and
that are post-dominated by jun(i), i.e. j ∈ region(i) iff i 7→⋆ j and jun(i) ⊳ j—in
particular, jun(i) is defined; if not j ∈ region(i) iff i 7→⋆ j.

Using the above definitions, it is reasonably easy to prove that the SOAP prop-
erties hold.

3.4 Type soundness generic proof technique

We now explain how the combination of the unwinding lemmas, the high context
lemmas, the monotonicity lemmas (all presented in Section 2.4) and the SOAP
properties enable to prove that typable programs are non-interfering.

In the induction step3 we have two executions s0 ; · · · ; sn and s′0 ; · · · ; s′m
such that pc(s0) = pc(s′0) and s0 ∼Spc(s0),Spc(s′

0
)

s′0 and we want to establish that

states sn and s′m are indistinguishable:

sn ∼Spc(sn),Spc(s′m)
s′m

or both stack types Spc(sn) and Spc(s′
m) are high.

We assume the property holds for any strictly shorter execution paths (induction
hypothesis) and suppose n > 0 and m > 0. We note i0 = pc(s0) = pc(s′0). We first
remark that by the locally respects lemma and typability hypothesis, s1 ∼st,st ′ s′1
for some stack types st and st ′ such that i0 ⊢ Si0 ⇒ st , st ⊑ Spc(s1), i0 ⊢ Si0 ⇒ st ′,
st ′ ⊑ Spc(s′

1).

3Base cases depend on technical properties about return points that we omit in this Section.

ACM Transactions on Computational Logic, Vol. V, No. N, September 2007.



14 · Gilles Barthe, David Pichardie and Tamara Rezk

instr ::= binop op binary operation on stack
| push c push value on top of stack
| pop pop value from top of stack
| swap swap the top two operand stack values
| load x load value of x on stack
| store x store top of stack in variable x
| ifeq j conditional jump
| goto j unconditional jump
| return return the top value of the stack

where op ∈ {+,−,×, /}, c ∈ Z, x ∈ X , and j ∈ PP.

Fig. 2. Instruction set for JVMI

— If pc(s1) = pc(s′1) we can apply the indistinguishability double monotony
lemma to establish that s1 ∼Spc(s1),Spc(s′1)

s′1 and conclude by induction hypothe-

sis.

— If pc(s1) 6= pc(s′1) we know by the high branching lemma that se is high
in region region(i0) and st and st ′ are high. Thanks to the high stack type sub-
typing lemma it implies that both Spc(s1) and Spc(s′

1) are high. By SOAP1 we
know that pc(s1) ∈ region(i0) or pc(s1) = jun(i0). Now by induction on the path
s1 ; · · · ; sn we easily show that either there exists k, 1 ≤ k ≤ n such that
k = jun(i0) and sk ∼Spc(sk),Si0

s′0 (the high path reaches the junction point) or

pc(sn) ∈ region(i0) and Spc(sn) is high (the high path stays in the region). This is
proved thanks to SOAP2, high step lemma and indistinguishability single monotony
lemma. Note that in the second case where pc(sn) ∈ region(i0), we have necessarily
jun(i0) undefined by SOAP3. A similar property holds for path s′1 ; · · · ; s′m and
we can group the make different cases in two main cases:
(1) jun(i0) is defined and there exists k, k′, 1 ≤ k ≤ n and 1 ≤ k′ ≤ m such that

k = k′ = jun(i0) and sk ∼Spc(sk),Si0
s′0 s0 ∼Si0 ,Spc(s′

k′ )
s′k′ . Since s0 ∼Si0 ,Si0

s′0

we have by transitivity and symmetry of ∼, sk ∼Spc(sk),Spc(s′
k′ )

s′k′ with pc(sk) =

pc(s′k′ ) and we can conclude by induction hypothesis.
(2) jun(i0) is undefined and both Spc(sn) and Spc(s′

m) are high.

This proof technique can be adapted to the different JVM presented in this article.
The details of the JVMG type soundness proof are given in appendix.

4. THE JVMI SUBMACHINE

In this section, we define an information flow type system for a fragment of the
JVM with conditional and unconditional jumps and operations to manipulate the
stack.

4.1 Programs, memory model and operational semantics

Programs. In this fragment, a program consists of a single, non-recursive method.
Thus we consider that a JVMI program P is given by its list of instructions, taken
from the instruction set of Figure 2. We let the set X be the set of local variables
and V the set of values.

States. In this fragment, states do not feature a heap. Thus, the set StateI of
JVMI states is defined as the set of triples 〈i, ρ, os〉, where i ∈ PP is the program
counter that points to the next instruction to be executed; ρ ∈ X ⇀ V is a partial
function from local variables to values (that can be view as an array of values)
where the set V of values is defined as Z, and os ∈ V⋆ is an operand stack.

Operational semantics. The small-step operational semantics of the JVMI , is
given in Figure 3 as a relation ;⊆ StateI × (StateI +V). This relation is implicitly
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P [i] = push n

〈i, ρ, os〉 ; 〈i + 1, ρ, n :: os〉

P [i] = binop op n2 op n1 = n

〈i, ρ, n1 :: n2 :: os〉 ; 〈i + 1, ρ, n :: os〉

P [i] = pop

〈i, ρ, v :: os〉 ; 〈i + 1, ρ, os〉

P [i] = swap

〈i, ρ, v1 :: v2 :: os〉 ; 〈i + 1, ρ, v2 :: v1 :: os〉

P [i] = return

〈i, ρ, v :: os〉 ; v

P [i] = load x

〈i, ρ, os〉 ; 〈i + 1, ρ, ρ(x) :: os〉

P [i] = store x x ∈ dom(ρ)

〈i, ρ, v :: os〉 ; 〈i + 1, ρ⊕{x 7→ v}, os〉

P [i] = ifeq j

〈i, ρ, 0 :: os〉 ; 〈j, ρ, os〉

P [i] = ifeq j n 6= 0

〈i, ρ, n :: os〉 ; 〈i + 1, ρ, os〉

P [i] = goto j

〈i, ρ, os〉 ; 〈j, ρ, os〉

Fig. 3. Operational Semantics for JVMI

parameterized by a program P . op denotes here the standard interpretation of
operation of op in the domain of values V . The semantics of each instruction is
quite standard. Instruction push c, pushes a constant c on top of the operand
stack. Instruction binop op pops the two top operands of the stack and push the
result of the binary operation op using these operands. Instruction pop, just pops
the top of the operand stack. Instruction swap, swaps the top two operand stack
values. Instruction return ends the execution with the top value of the operand
stack. Instruction load x pushes the value currently found in local variable x, on
top of the operand stack. Instruction store x pops the top of the stack and stores
it in local variable x. Instruction ifeq j pops the top of the stack and depending on
weather it is a null value or not, it jumps to the program point j or continue to the
next program point. Instruction goto j unconditionally jumps to program point j.
For clarity reasons, we hide program points in program examples and use labels to
design jump targets.

The transitive closure of ; to a final value is inductively defined by:

〈i, ρ, os〉 ; v

〈i, ρ, os〉 ⇓ v

〈i, ρ, os〉 ; 〈j, ρ′, os′〉 〈j, ρ′, os′〉 ⇓ v

〈i, ρ, os〉 ⇓ v

The evaluation of a program ρ ⇓ v, from an array of initial local variables ρ to
final value is then defined by

ρ ⇓ v ≡ 〈1, ρ, ε〉 ⇓ v

because execution start at program point 1 with an empty operand stack.

Successor relation. The successor relation 7→⊆ PP × PP of a program P is
defined by the clauses:

— if P [i] = goto j, then i 7→ j;

— if P [i] = ifeq j, then i 7→ i + 1 and i 7→ j;

— if P [i] = return, then i has no successors, and we write i 7→;

— otherwise, i 7→ i + 1.

4.2 Non-Interference

In this fragment, there is no global policy, and a single local policy for the sole
method of the program. Furthermore, the local policy does not refer to heap effect,
and is thus of the form ~kv −→ kr.

The first step to define the security policy is to introduce a notion of indistin-
guishability between values. In this case, value indistinguishability is trivial.
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P [i] = push n

i ⊢ st ⇒ se(i) :: st

P [i] = binop op

i ⊢ k1 :: k2 :: st ⇒ (k1 ⊔ k2 ⊔ se(i)) :: st

P [i] = pop

i ⊢ k :: st ⇒ st

P [i] = swap

i ⊢ k1 :: k2 :: st ⇒ k2 :: k1 :: st

P [i] = store x se(i) ⊔ k ≤ ~kv(x)

i ⊢ k :: st ⇒ st

P [i] = load x

i ⊢ st ⇒
“

~kv(x) ⊔ se(i)
”

:: st

P [i] = goto j

i ⊢ st ⇒ st

P [i] = return se(i) ⊔ k ≤ kr

i ⊢ k :: st ⇒

P [i] = ifeq j ∀j′ ∈ region(i), k ≤ se(j′)

i ⊢ k :: st ⇒ liftk(st)

Fig. 4. Transfer rules for instructions in JVMI

Definition 4.2.1 Low value indistinguishability. Two values v and v′ are (low)-
indistinguishable, written v ∼ v′, iff v = v′.

Then, indistinguishability is extended to local variable maps.

Definition 4.2.2 Local variables indistinguishability. For ρ, ρ′ : X ⇀ V , we have
ρ ∼ ρ′ if ρ and ρ′ have the same domain and ρ(x) ∼ ρ′(x) for all x ∈ dom(ρ) such

that ~kv(x) ≤ kobs.

Strictly speaking, we should write ∼ ~kv
, but usually we simply write ∼ since there

is no risk of confusion.

Definition 4.2.3 Non-interferent JVMI program. A program P is non-interferent
w.r.t. its policy ~kv −→ kr, if for every ρ1, ρ2, v1, v2 such that ρ1 ⇓ v1 and ρ2 ⇓ v2

and ρ1 ∼ ~kv
ρ2 and kr ≤ kobs, we have v1 ∼ v2, i.e. v1 = v2.

4.3 Typing rules

Figure 4 presents a set of typing rules that guarantee non-interference for JVMI . ⊔
denotes the lub of two security levels, and for every k ∈ S, liftk is the point-wise
extension to stack types of λl. k ⊔ l. All rules are implicitly parameterized by a cdr
region, a security environment se and a signature ~ka −→ kr.

Below we comment on some essential rules:

— The transfer rule for an instruction push n prevents direct flows by requiring
that the value pushed on top of the operand stack has a security level greater than
the security environment at the current program point. The following example,
compiled from the source program return yH ? 0 : 1;, illustrates the need for this
constraint:

load yH

l1 : ifeq l2
push 0
goto l3

l2 : push 1







region(l1)

l3 : return

The program is interferent with respect to the policy (yH : H) −→ L, but not
typable. Typing rule for return instruction reject this program because the top of
the stack type is high. Indeed, instruction push 0 and push 1 are in the region of
the branching instruction ifeq l1 and security environment se is high at this point.
A similar constraint appears in the typing rule for binop for the same reasons.

— the typing rule for ifeq requires the stack type on the right hand side of ⇒
to be lifted by the level of the guard, i.e. the top of the input stack type. It is
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necessary to perform this lifting operation to avoid illicit flows through operand
stack leakages. The following example illustrates why we need to lift the operand
stack. This is a contrived example because it does not correspond to any simple
source code, but it is nevertheless accepted by a standard bytecode verifier.

push 0
push 1
load yH

l1 : ifeq l2
swap
pop
goto l3

l2 : pop















region(l1)

l3 : store xL

In this example, the final value of variable xL is equal to the value of yH . So the
program is interferent. It is nevertheless rejected by our type system, thanks to the
lift of the operand stack at point l1 that constrain the top of the stack at point l3
to be a high value (store rule then prevents the assignment from high to low).
One may argue that lifting the entire stack is too restrictive, as it leads the typing
system to reject safe programs; indeed, it should be possible, at the cost of added
complexity, to refine the type system to avoid lifting the entire stack.
One may also argue that lifting the stack is unnecessary, because in most programs4

the stack at branching points only has one element, in which case a more restrictive
rule of the form below is sufficient:

P [i] = ifeq j ∀j′ ∈ region(i).k ≤ se(j′)

i ⊢ k :: ǫ ⇒ ǫ

— The transfer rule for return requires se(i) ≤ kr that avoids return instructions
under the guard of expressions with a security level greater than kr. In addition, the
rule requires that the value on top of the operand stack has a security level above
kr, since it will be observed by the attacker. The following example illustrates the
need for preventing return instructions in high regions. It corresponds to a source
program like if (yH) {return 0; } else {return 1; }.

load yH

l1 : ifeq l2
push 0
return

l2 : push 1
return















region(l1)

This program is interferent because there is a return in a high ifeq. This program
is rejected by the type system thanks to the ifeq rule which lifts the security envi-
ronment, and the return rule which prevents the program from returning in a high
security environment.

On a more general note, our type system does not support context sensitivity, as
the security level of local variables is fixed throughout execution. As a consequence
of context insensitivity, the type system restricts the possibilities of local variable
reuse. However, Leroy [Leroy 2002] argues that removing local variable polymor-
phism for Java bytecode is important for efficient on-device verification and that
it has a negligible impact on performance and resource usage. We believe that his
observations remain applicable to our information flow type system.

4And even if this condition does not hold, code transformation is able to obtain an equivalent
program respecting it [Leroy 2002].
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4.4 Type system soundness

The type system is sound, in the sense that if a program is typable then it is
non-interferent.

Theorem 4.4.1. Let P be a JVMI program and (region, jun) a safe cdr for P

(according to SOAP properties). Suppose P is typable with respect to region and to a

signature ~ka −→ kr. Then P is non-interferent with respect to the policy associated
with ~ka −→ kr.

Soundness proof follows the method sketched in Section 2. The four base lemmas,
are based on the notion of state indistinguishability. The main difficulty in defining
state indistinguishability resides in defining a good notion of operand stack indistin-
guishability: in order to account for high branching instructions, indistinguishability
between states must encompass states that have operand stacks of different length.
Indistinguishability between operand stacks is needed to establish the lemmas that
claim that during execution indistinguishability of states is invariant.

We require operand stacks to be indistinguishable point-wise on some common
top part, and then to be high in the bottom part on which they may not coincide
as shown in Figure 5. High operand stacks are defined relative to a stack type:
formally, let os ∈ V⋆ be an operand stack and st ∈ S⋆ be a stack type; we write
high(os, st) if os and st have the same length n and st[i] 6≤ kobs for every 1 ≤ i ≤ n.

Definition 4.4.2 Operand stack indistinguishability. Let os, os′ ∈ V⋆ and st, st′ ∈
S⋆. Then os ∼st,st′ os′ is defined inductively as follows:

high(os, st) high(os′, st′)

os ∼st,st′ os′

os ∼st,st′ os′ v ∼ v′ k ≤ kobs

v :: os ∼k::st,k::st′ v′ :: os′

os ∼st,st′ os′ k 6≤ kobs k′ 6≤ kobs

v :: os ∼k::st,k′::st′ v′ :: os′

Note that in the second rule the top of the two stack types are necessary equal (and
low), while in the last rule they can be distinct (but not low). This distinction is
necessary because we handle an arbitrary lattice of security levels.

Assuming that programs pass bytecode verification, one can simplify a bit the
above definition. Indeed, bytecode verification requires that at each program point
the height of the operand stack be fixed. Under this assumption, operand stack
equivalence only requires that any two high operand stacks are equivalent and that
operand stacks of the same height are equivalent if they are point-wise equivalent.

State indistinguishability can then be defined component-wise on state structure.

Definition 4.4.3 State indistinguishability. Two states 〈i, ρ, os〉 and 〈i′, ρ′, os′〉 are
indistinguishable w.r.t. st, st′ ∈ S⋆, denoted 〈i, ρ, os〉 ∼st,st′ 〈i′, ρ′, os′〉, iff os ∼st,st′

os′ and ρ ∼ ρ′ hold.

Appendix A presents the four basic lemmas necessary for the soundness proof of
theorem 4.4.1. The non-interference theorem is then proved following the method
proposed in Section 2.4.

5. JVMO: THE OBJECT-ORIENTED EXTENSION OF JVMI

The object-oriented extension of JVMI , namely JVMO, includes instance fields,
creation of new instances, and null pointers. We assume that programs are not
enabled to do pointer arithmetic in JVMO (pointer arithmetic is prevented by stan-
dard bytecode verification).
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Operand stack Legend
indistinguishability

High values

Low values

Fig. 5. Operand stack indistinguishability

instr ::= . . .
| new C create new object in the heap

| getfield f load value of field f on stack
| putfield f store top of stack in field f

where C ∈ C and f ∈ F .

Fig. 6. Additional instruction set for JVMO

5.1 Programs, memory model and operational semantics

Programs. JVMO programs are as JVMI programs, but also come equipped with
a set C of class names, and a set F of identifiers representing field names. Programs
use an extended set of instructions, given in Figure 6.

States. Compared to JVMI , the set of JVMO values is extended to V = Z ∪ L ∪
{null}, where L is an (infinite) set of locations and null denotes the null pointer.
A JVMO state is now of the form 〈i, ρ, os, h〉, where i, ρ, and os are defined as in
JVMI and h is a heap, that accommodates dynamically created objects. Heaps are
modeled as partial functions h : L ⇀ O, where the set O of objects is modeled
as C × (F ⇀ V), i.e. each object o ∈ O posses a class (noted class(o)) and a
partial function to access field values. We note o.f the access to the value of field f ,
o⊕{f 7→ v} denotes the update of an object o at field f with a value v (h⊕{l 7→ o}
is used in the same way for heap update) and Heap is the set of heaps.

Operational semantics. The operational semantics for the new instructions of
JVMO relies on an allocator function fresh : Heap → L that given a heap returns
the location for that object, and on a function default : C → O that returns for each
class a default object of that class. default is specified according to the standard
Java convention5: for all defined field f ∈ F of a class C ∈ C,

default(C).f =

{

0 if f has a numeric type
null if f has a object type

The semantics is given in Figure 7 as a relation ; ⊆ StateO×(StateO+(V×Heap)).
Instruction new C pushes a fresh location on top of the operand stack associated

to a new initialized object. The heap is updated with this new object. Instruction
getfield f pops a location l from the operand stack. The value of the field f in
location l is fetched and pushed onto the operand stack. Instruction putfield f uses
the top of the stack to update the object associated with the location in second

5We assume each field f has a declared type.
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P [i] = new C l = fresh(h)

〈i, ρ, os, h〉 ; 〈i + 1, ρ, l :: os, h⊕{l 7→ default(C)}〉

P [i] = getfield f l ∈ dom(h)

〈i, ρ, l :: os, h〉 ; 〈i + 1, ρ, h(l).f :: os, h〉

P [i] = putfield f l ∈ dom(h) f ∈ dom(h(l))

〈i, ρ, v :: l :: os, h〉 ; 〈i + 1, ρ, os, h⊕{l 7→ h(l)⊕{f 7→ v}}〉

P [i] = return

〈i, ρ, v :: os, h〉 ; v, h

Fig. 7. Operational Semantics for additional JVMO instructions

position on the operand stack. Instruction return now returns the top of the operand
stack, and the current heap.

As for JVMI , we let ⇓ denote the transitive closure of ; as in JVMO and write
ρ, h ⇓ v, h′ as a shorthand for 〈1, ρ, ǫ, h〉 ⇓ (v, h′).

Successor relation. The successor relation is extended with the clause i 7→ i + 1
for all new instructions.

5.2 Non-Interference

Indistinguishability for JVMO states is extended and defined relative to a global
mapping ft : F → S that maps fields to security levels. ft will be left implicit in
the rest of the paper. In order to extend the notion of indistinguishability to heaps
we follow [Banerjee and Naumann 2005]. We consider that heaps with different
allocations of “high” objects (i.e. objects that have been created in a high security
environment) are indistinguishable by an attacker; therefore indistinguishability
is defined relative to a bijection β on (a partial set of) locations in the heap. The
bijection maps low objects (low objects are objects whose references might be stored
in low fields or variables) allocated in the heap of the first state to low objects
allocated in the heap of the second state. The objects might be indistinguishable,
even if their locations are different during execution. Since values can now also be
locations, definition of value indistinguishability is defined also relative to bijection
β.

Definition 5.2.1 Value indistinguishability. Given two values v1, v2 ∈ V , and a
partial function β ∈ L ⇀ L value indistinguishability v1 ∼β v2 is defined by the
clauses:

null ∼β null
v ∈ N
v ∼β v

v1, v2 ∈ L β(v1) = v2

v1 ∼β v2

Operand stack indistinguishability and local variables indistinguishability are now
parameterized by β since values on top of the operand stack and in variables can
also be locations.

Definition 5.2.2 Local variables indistinguishability. For ρ, ρ′ : X ⇀ V and a
partial function β ∈ L ⇀ L , we have ρ ∼β ρ′ if ρ and ρ′ have the same domain and

ρ(x) ∼β ρ′(x) for all x ∈ dom(ρ) such that ~kv(x) ≤ kobs.

Definition 5.2.3 Operand stack indistinguishability. Let os, os′ ∈ V⋆, st, st′ ∈ S⋆

and a partial function β ∈ L ⇀ L. Then os ∼st,st′,β os′ is defined inductively as
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follows:

high(os, st) high(os′, st′)

os ∼st,st′,β os′

os ∼st,st′,β os′ v ∼ v′ k ≤ kobs

v :: os ∼k::st,k::st′,β v′ :: os′

os ∼st,st′,β os′ k 6≤ kobs k′ 6≤ kobs

v :: os ∼k::st,k′::st′,β v′ :: os′

The definition of object indistinguishability says that two objects are indistin-
guishable if they have the class and their field values are indistinguishable.

Definition 5.2.4 Object indistinguishability. Two objects o1, o2 ∈ O are indistin-
guishable with respect to a function β ∈ LL ⇀ LL if and only if o1 and o2 are
objects of the same class and for all fields f ∈ dom(o1) such that ft(f) ≤ kobs,
o1.f ∼β o2.f .

Note that because o1 and o2 are objects of the same class we have dom(o1) =
dom(o2) and o2(f) is well defined.

Heap indistinguishability requires β to be a bijection between the low domains
(i.e. locations that might be reachable from low local variables/fields) of the con-
sidered heaps.

Definition 5.2.5 Heap indistinguishability. Two heaps h1 and h2 are indistin-
guishable with respect to a partial function β ∈ L ⇀ L, written h1 ∼β h2, if
and only if:

— β is a bijection between dom(β) and rng(β);

— dom(β) ⊆ dom(h1) and rng(β) ⊆ dom(h2);

— for every l ∈ dom(β), h1(l) ∼β h2(β(l));

As in JVMI , state indistinguishability can then be defined component-wise on
state structure.

Definition 5.2.6 State indistinguishability. Two states 〈i, ρ, os, h〉 and 〈i′, ρ′, os′, h′〉
are indistinguishable with respect to a partial function β ∈ L ⇀ L and two stack
types st, st′ ∈ S⋆, denoted 〈i, ρ, os, h〉 ∼st,st′,β 〈i′, ρ′, os′, h′〉, iff os ∼st,st′,β os′,
ρ ∼β ρ′ and h ∼β h′ hold.

Finally, non-interference in JVMO is extended using the relations defined above.

Definition 5.2.7 Non-interferent JVMO program. A program P is non-interferent
w.r.t. its policy ~kv −→ kr, if for every partial function β ∈ L ⇀ L and ev-
ery ρ1, ρ2 ∈ X ⇀ V , h1, h2, h

′
1, h

′
2 ∈ Heap, v1, v2 ∈ V such that ρ1, h1 ⇓ v1, h

′
1,

ρ2, h2 ⇓ v2, h
′
2 and h1 ∼β h2, ρ1 ∼ ~kv,β

ρ2, there exists a partial function β′ ∈ L ⇀ L

such that β ⊆ β′, h1 ∼β′ h2 and kr ≤ kobs implies v1 ∼β′ v2.

Here β ⊆ β′ means that dom(β) ⊆ dom(β′) and for all locations l ∈ dom(β),
β(l) = β′(l). The definition of non-interference allows for β to be extended, in
order to handle objects that are dynamically created during execution.

In order to better understand the notion of partial function β in the definition of
secure method, we end this section with a simpler property verified by particular
non-interferent JVMO programs.

Lemma 5.2.1. Let p a program returning a numerical value and which is non-
interferent with respect to a policy ~ka−→kr. Let h0, h1, h2 some heaps, ρ1, ρ2 two
arrays of local variables such that for all variable x, ft(x) ≤ kobs implies ρ1(x) =
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P [i] = new C

i ⊢ st ⇒ se(i) :: st

P [i] = putfield f k1 ⊔ se(i) ⊔ k2 ≤ ft(f)

i ⊢ k1 :: k2 :: st ⇒ st

P [i] = getfield f

i ⊢ k :: st ⇒ (k ⊔ ft(f) ⊔ se(i)) :: st

Fig. 8. Additional typing transfer rules for JVMO

ρ2(x) (parameter are equal for low variables) and n1, n2 two numeric values such
that

ρ1, h ⇓ (n1, h1) and ρ2, h ⇓ (n2, h2)

Then, if kr ≤ kobs, both returned values are equals: n1 = n2.

5.3 Typing rules

The abstract transition system of the JVMO extends that of the JVMI with the
typing transfer rules of Figure 8. As in JVMI , all rules are implicitly parameterized
by a cdr region, a security environment se and a signature ~ka −→ kr.

— The transfer rule for new adds to the stack type the security level of the current
program point, which imposes a constraint on security level from which the object
can be accessed. For example, if new is executed in a high security environment,
then the reference to the object cannot be accessed from a low variable. However,
if the object is created in a low security environment it can either be stored in a
high or low variable/field.

— The transfer rule for putfield requires that k1 ≤ ft(f) (where k1 is the security
type of the object of the field) in order to prevent an explicit flow from a high value
to a low field. The constraint se(i) ≤ ft(f) prevents an implicit flow caused by an
assignment to a low field in a high security environment. Finally, the constraint
k2 ≤ ft(f) prevents modifying low fields of high objects that are alias to a low
object.
The following example illustrates this last point. It corresponds to a source program
like

C xL = new C();
zH = yH ? new C() : xL;
zH.fL = 1;

We assume that C is a class that has a low field named fL. Let xL be a low variable
and yH , zH high variables.

new C

store xL

load yH

l1 : ifeq l2
new C

goto l3
l2 : load xL







region(l1)

l3 : store zH

load zH

push 1
putfield fL

In this program, depending on the test on yH , variable xL and zH might be aliases
to the same object (of class C). Hence, the assignment to field fL might have
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side effect on the object in xL. This program is rejected thanks to the putfield
rule which avoids this type of leaks due to alias (with the constraint k2 ≤ ft(f)
preventing assignments to low fields from high target objects).

— In the rule for getfield f the value pushed on the operand stack has a security
level at least greater than ft(f) and the level k of the location (to prevent explicit
flows) and at least greater than se(i) for implicit flows.

5.4 Type system soundness

Theorem 5.4.1. Let P be a JVMO program and (region, jun) a safe cdr for P

(according to SOAP properties). Suppose P is typable with respect to region and to a

signature ~kv −→ kr. Then P is non-interferent with respect to the policy associated
with ~kv −→ kr.

The soundness proof closely follows the JVMI soundness proof , except that now
we have to manipulate heaps and some partial function β.

The four basic lemmas necessary for the soundness proof of theorem 5.4.1 are
listed in Appendix B. In the first case, the partial function β may be extended
if P [i] is of the form new C and the context is low (se(i) ≤ kobs). Note that we
do not need to extend partial function β when the step occurs in a high context
(se(i) 6≤ kobs).

6. JVMC : THE METHOD EXTENSION OF JVMO

The purpose of this section is to extend our analysis to methods. The extension is
compatible with bytecode verification, in the sense that the analysis is modular.

6.1 Programs, memory model and operational semantics

Programs. Each program comes equipped with a set M of method names, and a
set C of classes, as in JVMO. The set of classes is now organised as a hierarchy to
model the inheritance of class. This hierarchy will be used to resolve virtual calls.

Each method m possesses a list of instructions Pm. For simplicity, we impose
that all methods return a value. The set of instructions of JVMO is extended with
the new instruction invokevirtual mID for calling a virtual method. Here mID is a
method identifier which may correspond to several methods in the class hierarchy
according to overriding of methods. We assume there is a function lookupP attached
to each program P that takes a method identifier and a class name and returns the
method to be executed.

States. While JVM states contain a frame stack to handle method invocations, it
is convenient for showing the correctness of static analyzes to rely on an equivalent
semantics where method invocation is performed in one big step transition. Hence
a JVMC state is defined as in JVMO.

Operational semantics. While small-step semantics uses a call stack to store the
calling context and retrieve it during a return instruction, the big step semantics
directly calls the full evaluation of the called method from an initial state to a return
value and uses it to continue the current computation. The big-step operational
semantics is given in Figure 9. As can be seen in the first rule, semantics of instruc-
tions is like in JVMO, except for the new instruction invokevirtual. The second rule
gives the semantics of the virtual call. The location l is used to resolve the virtual
call. Thanks to the class of l and the identifier mID, a method m′ is found in the
class hierarchy (trough the lookup operator). The transitive closure of ;m is then
used to obtain the result of the execution of m′. Execution of m′ is initialised with
location l for the reserved variable this and the elements of the operand stack os1
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Pm[i] = ins ins 6= invokevirtual mID 〈i, ρ, os, h〉 ;JVMO
〈i′, ρ′, os′, h′〉

〈i, ρ, os, h〉
(0)
;m 〈i′, ρ′, os′, h′〉

Pm[i] = invokevirtual mID m′ = lookupP (mID, class(h(l)))

l ∈ dom(h) length(os1) = nbArguments(mID)

〈1, {this 7→ l, ~x 7→ os1}, ǫ, h〉 ⇓
(n)

m′ v, h′

〈i, ρ, os1 :: l :: os2, h〉
(n+1)

; m 〈i + 1, ρ, v :: os2, h′〉

〈i, ρ, os, h〉 ;JVMO
v

〈i, ρ, os, h〉 ⇓(0)
m v

〈i, ρ, os, h〉
(n)
;m 〈j, ρ′, os′, h′〉 〈j, ρ′, os′, h′〉 ⇓(p)

m v

〈i, ρ, os, h〉 ⇓(n+p)
m v

Fig. 9. Operational Semantics for JVMC

for the other variables6.
We opt for a big-step operational semantics because it simplifies the notion of

indistinguishability between states. In the presence of a small-step semantics states
possess stack of frames (one frame corresponding to each method in the calling
chain) and hence indistiguishability must take account of frames of high and low
methods which can throw and propagate low and high exceptions. It is also needed
for indistiguishability to state if the method is invoked in a low or high target
object. Using this alternative semantics has brought a significant simplification to
the proofs of the analysis.

The relation ; is now parameterized by a counter representing the number of
method calls occurring between two consecutive steps. The transitive closure of ;

is simultaneously defined with a similar counter.

As in other JVM fragments, we note ρ, h ⇓
(n)
m v, h′ when 〈1, ρ, ǫ, h〉 ⇓

(n)
m v, h′. We

note ρ, h ⇓m v, h′ for ∃n, ρ, h ⇓
(n)
m v, h′.

Successor relation. We extend the successor relation of JVMO with the clause
i 7→ i+1 for the new instruction invokevirtual. It illustrates our modular verification
technique : cdr is computed method by method.

6.2 Non-Interference

Non-Interference for a JVMC program is given by local policies defined by security
signatures for every method and a global policy defined by a mapping of fields to
security levels, namely ft.

As mentioned in Section 2, method signatures are of the form

~kv
kh−→ kr

where ~kv provides the security level of the method arguments (and to all interme-
diate variables used in the method), kh is the effect of the method on the heap and
kr is the security level of the result of the method.

The heap effect level kh is needed to make a modular analysis. It represents a
lower bound for security levels of fields that are affected during execution of the
method.

A method is allowed to perform field updates only on fields whose level is greater
than kh. We formally define this notion of side effect preorder.

Definition 6.2.1 Side effect preorder. Two heaps h1, h2 ∈ Heap are side effect
preordered with respect to a security level k ∈ S (noted h1 �k h2) if and only if

6We assume all other variable used for local computation in the method are initialised by a default
value according to their type
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dom(h1) ⊆ dom(h2) and for all location l ∈ dom(h1) and all fields f ∈ F such that
k 6≤ ft(f), h1(l).f = h2(l).f .

This allows to define the notion of side-effect-safe method.

Definition 6.2.2. A method m is side-effect-safe with respect to a security level
kh if for all local variable ρ ∈ X ⇀ V , all heaps h, h′ ∈ Heap and value v ∈ V ,
ρ, h ⇓m v, h′ implies h �kh

h′.

The notion of non-interferent method can be stated using the same indistiguisha-
bility relation as in JVMO. A method m is called non-interferent for signature
~kv−→kr if every time it is executed with indistinguishable arguments according to
~kv and indistiguishable heaps according to the global policy ft, then the results of
the method by normal termination are indistinguishable by kr and its heaps are
indistiguishable according to the global policy.

Definition 6.2.3 Non-interferent JVMC method. A method m is non-interferent
w.r.t. a policy ~kv−→kr, if for every partial function β ∈ L ⇀ L and every ρ1, ρ2 ∈
X ⇀ V , h1, h2, h

′
1, h

′
2 ∈ Heap, v1, v2 ∈ V such that ρ1, h1 ⇓m v1, h

′
1, ρ2, h2 ⇓m v2, h

′
2

and h1 ∼β h2, ρ1 ∼ ~kv,β
ρ2, there exists a partial function β′ ∈ L ⇀ L such that

β ⊆ β′, h1 ∼β′ h2 and kr ≤ kobs implies v1 ∼β′ v2.

The notion of safe method is then defined by conjunction of the two previous
definitions.

Definition 6.2.4 Safe JVMC method. A method m is safe w.r.t. a policy ~kv
kh−→

kr if m is side-effect-safe with respect to kh and m is non-interferent with respect
to ~kv−→kr.

Let Γ be a table of method signatures. This table associates to each method
identifier7 mID and security level k ∈ S, a security signature Γm[k]. This signature
gives the security policy of the method m called on object of level k (as in [Banerjee
and Naumann 2005] for source program). The set of security signature of a method
m is defined as PoliciesΓ(m) = { Γm[k] | k ∈ S }. In the rest of the paper Γ will
often be left implicit. We use it to define the notion of safe program.

Definition 6.2.5 Safe JVMC program. A program is safe with respect to a table
of method signatures Γ if for all its method m, m is safe with respect to all policies
in PoliciesΓ(m).

Example 6.2.6. Let P be a program that includes a method m and a class C

with field f . Let m have variables x1, x2, y and no handlers defined. Let the non-

interference policy for P be given by a security signature L, L, H
L

−→ H for m and

a security signature
L

−→ L for main, and a global mapping ft such that ft(f) = L.
If the code of m is defined by:

new C

store x2

load x1

ifeq l1
load x2

push 1
putfield f

l1 : load x2

getfield f

return

7Associating signatures with method identifiers instead of methods allows to enforce that method
overriding preserves declared security signatures.
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Pm[i] = putfield f k1 ⊔ se(i) ⊔ k2 ≤ ft(f) kh ≤ ft(f)

region, se, ~ka

kh−→ kr , i ⊢ k1 :: k2 :: st ⇒ st

Pm[i] = invokevirtual mID ΓmID
[k] = ~k′

a

k′
h−→ k′

r

k ⊔ kh ⊔ se(i) ≤ k′
h length(st1) = nbArguments(mID)

k ≤ ~k′
a[0] ∀i ∈ [0, length(st1) − 1], st1[i] ≤ ~k′

a[i + 1]

region, se, ~ka

kh−→ kr , i ⊢ st1 :: k :: st2 ⇒ (k′
r ⊔ k ⊔ se(i)) :: st2

Fig. 10. New transfer rules for instructions of JVMC

then method m is non-interferent because: starting from equal values for x (x
represents the low part of the state, since the security signature says that x is
low), the result of the method will always be the value of the low field f that is 1,
hence every results are indistiguishable by L, as stated in the signature of m. The
method cannot terminate abnormally since new C is not a null value and there are
no affections to the high fields. This respects the low write effect of the method
required by the policy.

Now assume that in program point 6 there is an instruction load y instead of
load x2. Since according to the local policy, y is a high variable, its value might
be different for 2 different indistinguishable states. For example assume that for
two states with value of x equal to 1 variable y has values null and a location in
the domain of the heap that points to an object of class C. Then m will terminate
abnormally in the first case, and normally in the second. Since this depends on the
value of high variable y, the results are not indistinguishable by L as stated by the
security signature (exceptional effect). Hence, m is interferent.

6.3 Typing rules

The information flow type system enforces a method-wise verification strategy, using
method signatures in the transfer rule for method invocation. All typing rules are
those of the JVMO typing rules, except for putfield which needs a modification and
the virtual call rule which is new. This two rules are given in Figure 10.

Concerning putfield only one constraint is added w.r.t. the previous JVMO rule.
The new constraint kh ≤ ft(f) prevents modification of fields with a level not greater
than the heap effect of the current method.

The typing rule for virtual call contains several constraints. The heap effect level
of the called method is constrained in several ways. The goal of the constraint
k ≤ k′

h is to avoid invocation of methods with low effect on the heap with high
target objects. Two different target objects (in two executions) may mean that the
body of the method to be executed is different in each execution. If the effect of
the method is low (kh ≤ kobs), then low memory is differently modified in both
executions, leading to information leak. The constraint se(i) ≤ k′

h prevents implicit
flows (low assignment in high regions) during execution of the called method. The
constraint kh ≤ k′

h prevents the called method to update field with a level lower
that kh.

The security level of the return value is (k′
r ⊔ k ⊔ se(i)). The security level k′

r in
(k′

r ⊔ k ⊔ se(i)), obtained from the signature of mID , prevents that its result flows
to variables or fields with lower security level. The security level k prevents flows
due to execution of two distinct methods.

We include here an example that illustrates how object-oriented features can lead
to interference. We refer to [Banerjee and Naumann 2005] for further examples.

Example 6.3.1. Let class C be a super class of a class D. Let method foo be
declared in D, and a method m declared in C and overridden in D as illustrated
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by the following source program8:

class C {
int m() {return 0; }

}
class D extends C {
int m() {return 1; }
int foo(boolean yH) {return (yH ? new C() : this).m(); }

}

D.foo : C.m : D.m :
load yH push 0 push 1
ifeq l1 return return
new C

goto l2
l1 : load this

l2 : invokevirtual m

return

At run time, either code C.m or code D.m is executed depending on the value of
high variable yH . Information about yH may be inferred by observing the return
value of method m.

6.4 Type system soundness

Theorem 6.4.1. Let P be a JVMC program, Γ a table of signatures and for all
method m in P , (regionm, junm) a safe cdr for m (according to SOAP properties).
Suppose all methods m in P are typable with respect to regionm and to all signatures
in PoliciesΓ(m). Then P is safe with respect to Γ.

Main proof steps are given in Appendix C.

7. JVMG : THE EXCEPTION-HANDLING EXTENSION OF JVMC

In this section we show how JVMC is extended with an exception handling mecha-
nism. The extension of the type system to multiple exceptions is achieved by a fine-
grained definition of control dependence regions that is parameterized by a class-
analysis and an exception-analysis (which form a part of the PA analyser introduced
in Section 2). The class analysis returns an over-approximation of classes of excep-
tions of a program point, and the exception analysis returns an over-approximation
of escaping exceptions of a method. For the soundness of the information flow type
system, we assume that both the class-analysis and the exception-analysis are in
the Trusted Computing Base. Thus, the type system exploits the information of the
class analysis and signature of methods (that coincides with the exception-analysis
results) to add constraints on the security environment according to adequate re-
gions for the type of escaping exceptions (if any).

7.1 Programs, memory model and operational semantics

Programs. Programs are similar to those in the JVMC model. However, the
instruction set of the JVMC is extended with the bytecode throw.

Furthermore, we assume that programs come equipped with a partial function9

Handlerm : PP × C ⇀ PP that for each method m selects the appropriate handler
for a given program point. If an exception of class C ∈ C is thrown at program

8We omit the call of the initializer.
9This opaque handling function hides the notions of handler list and sub-class used in Java.
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point i ∈ PP then, if Handlerm(i, C) = t, then the control will be transfered to
program point t, and if Handlerm(i, C) is undefined (noted Handlerm(i, C) ↑), the
exception is uncaught in method m.

States. JVMG states include JVMC states and extend them with new final states.
We model final states as (V + L) ×Heap: a final state is either of the form (v, h) ∈
V × Heap for normal termination, or of the form (〈l〉, h) ∈ L × Heap for abrupt
termination by an uncaught exception pointed by a location l in the heap h.

Operational semantics. We give in Figure 11 the semantics of exception-throwing
instructions in JVMG . Rules for the rest of the instructions are as in JVMC . There
are three more rules for the virtual call instruction. The first and the second model
the cases where execution of the called method terminates by an uncaught exception.
In the first rule the thrown exception is caught in method m while in the second rule
it is uncaught and m then terminates abnormally. In both cases, we impose that
the thrown exception has been statically predicted by the excAnalysis(mID) result
of the exception analysis10. The third rule corresponds to a null pointer exception
thrown because the virtual call occurred on a null reference. We use np as the class
associated to the null pointer exception. When a native exception np is thrown the
catching mechanism is modeled by the function RuntimeExceptionHandling. Each
instruction which performs an access on a reference (getfield f , putfield f and throw)
have a similar semantics. The last two rules concern the new instruction throw which
throws the exception pointed by the reference on top of the stack. Transitions are
now parameterized by a tag τ ∈ {∅}+C to describe the nature of the transition (see
the successor relation below). We will sometimes omit the tag τ in the notation
(n)
;m,τ for clarity.

Successor relation. The successor relation is now decorated by an element (called
tag) in {∅} + C in order to reflect the nature of the underlying semantics step: ∅
for a normal step (as in JVMC) and c ∈ C for a step where an exception of class
C has been thrown. The definition of this new relation is given in Figure 12. This
relation can be statically computed thanks to the handler function of each method.
Successors of a throw instruction are approximated thanks to the class analysis
result and successors of a invokevirtual thanks to the exception analysis result of the
called method.

SOAP properties. Cdr results are now associated not only to program points but
also to tags:

regionm : PP × ({∅} + C) → ℘(PP) junm : PP × ({∅} + C) ⇀ PP

We call return point a point i such that there exists τ ∈ {∅} + C with i 7→τ . When
possible we will write i 7→ j for ∃τ, i 7→τ j.

SOAP1:. for all program points i, j, k and tag τ such that i 7→ j, i 7→τ k and
j 6= k (i is hence a branching point), k ∈ region(i, τ) or k = jun(i, τ);

SOAP2:. for all program points i, j, k and tag τ , if j ∈ region(i, τ) and j 7→ k,
then either k ∈ region(i, τ) or k = jun(i, τ);

SOAP3:. for all program points i, j and tag τ , if j ∈ region(i, τ) (or i = j) and j

is a return point then jun(i, τ) is undefined;

SOAP4:. for all program points i and tags τ1, τ2, if jun(i, τ1) and jun(i, τ2) are de-
fined and jun(i, τ1) 6= jun(i, τ2) then jun(i, τ1) ∈ region(i, τ2) or jun(i, τ2) ∈ region(i, τ1);

10This hypothesis is directly put as precondition of the semantics rules, in the same way that only
well-typed states are considered when assuming a program is byte-code verified. It is straight-
forward to show that our instrumented semantics coincides with the standard semantics if the
exception analysis is safe.
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〈i, ρ, os, h〉
(n)
;m 〈i′, ρ′, os′, h′〉 in JVMC semantics

〈i, ρ, os, h〉
(n)
;m,∅ 〈i′, ρ′, os′, h′〉

Pm[i] = invokevirtual mID m′ = lookupP (mID, class(h(l)))

l ∈ dom(h) length(os1) = nbArguments(mID)

〈1, {this 7→ l, ~x 7→ os1}, ǫ, h〉 ⇓
(n)

m′ 〈l′〉, h′

e = class(h′(l′)) Handlerm(i, e) = t e ∈ excAnalysis(mID)

〈i, ρ, os1 :: l :: os2, h〉
(n+1)

; m,e 〈t, ρ, l′ :: ǫ, h′〉

Pm[i] = invokevirtual mID m′ = lookupP (mID, class(h(l)))

l ∈ dom(h) length(os1) = nbArguments(mID)

〈1, {this 7→ l, ~x 7→ os1}, ǫ, h〉 ⇓
(n)

m′ 〈l′〉, h′

e = class(h′(l′)) Handlerm(i, e) ↑ e ∈ excAnalysis(mID)

〈i, ρ, os1 :: l :: os2, h〉
(n+1)

; m,e 〈l′〉, h′

Pm[i] = invokevirtual mID l′ = fresh(h) length(os1) = nbArguments(mID)

〈i, ρ, os1 :: null :: os2, h〉
(0)
;m,np RuntimeExceptionHandling(h, l′, np, i, ρ)

Pm[i] = getfield f l′ = fresh(h)

〈i, ρ, null :: os, h〉
(0)
;m,np RuntimeExceptionHandling(h, l′, np, i, ρ)

Pm[i] = putfield f l′ = fresh(h)

〈i, ρ, v :: null :: s, h〉
(0)
;m,np RuntimeExceptionHandling(h, l′, np, i, ρ)

Pm[i] = throw l′ = fresh(h)

〈i, ρ, null :: s, h〉
(0)
;m,np RuntimeExceptionHandling(h, l′, np, i, ρ)

Pm[i] = throw l ∈ dom(h) e = class(h(l))

Handlerm(i, e) = t e ∈ classAnalysis(m, i)

〈i, ρ, l :: os, h〉
(0)
;m,e 〈t, ρ, l :: ǫ, h〉

Pm[i] = throw l ∈ dom(h) e = class(h(l))

Handlerm(i, e) ↑ e ∈ classAnalysis(m, i)

〈i, ρ, l :: os, h〉
(0)
;m,e 〈l〉, h

with RuntimeExceptionHandling : Heap × L × C × PP × (X ⇀ V) → State + (L × Heap) defined by

RuntimeExceptionHandling(h, l
′
, C, i, ρ) =



〈t, ρ, l′ :: ǫ, h ⊕{l′ 7→ default(C)}〉 if Handlerm(i, C) = t

〈l′〉, h⊕{l′ 7→ default(C)} if Handlerm(i, C) ↑

Fig. 11. New operational semantics rules for JVMG

i 7→JVMC
j

i 7→∅ j

i 7→JVMC

i 7→∅

Pm[i] ∈ {getfield f, putfield f, throw, invokevirtual mID} Handler(i, np) = t

i 7→np t

Pm[i] ∈ {getfield f, putfield f, throw, invokevirtual mID} Handler(i, np) ↑

i 7→np

Pm[i] = throw C ∈ classAnalysis(m, i) Handler(i, C) = t

i 7→C t

Pm[i] = throw C ∈ classAnalysis(m, i) Handler(i, C) ↑

i 7→C

Pm[i] = invokevirtual mID C ∈ excAnalysis(mID) Handler(i, C) = t

i 7→C t

Pm[i] = invokevirtual mID C ∈ excAnalysis(mID) Handler(i, C) ↑

i 7→C

Fig. 12. Successor relation for JVMG
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SOAP5:. for all program points i, j and tag τ , if j ∈ region(i, τ) (or i = j) and
j is a return point then for all tag τ ′ such that jun(i, τ ′) is defined, jun(i, τ ′) ∈
region(i, τ).

Junction points uniquely delimits ends of regions. SOAP1 expresses that succes-
sors of branching points belongs (or ends) the region associated with the same kind
as their successor relation. SOAP2 says that a successor of a point in a region is
either still in the same region or at this end. SOAP3 forbids junction points for a
region which contains (or start with) a return point. SOAP4 and SOAP5 express
properties between regions of a same program point but with different tags. SOAP4
says that if two differently tagged regions end in distinct points, the junction point
of one must belong to the region of the other. SOAP5 imposes that the junction
point of a region must be within every region which contains (or starts with) a
return point and is decorated with a different tag.

Figure 13 presents an example of safe cdr for an abstract transition system.

i

E2

region(i, E1)

region(i, ∅)

jun(i, E2)

jun(i, E1)

region(i, E2)

E1 ∅

jun(i, ∅)

Fig. 13. Example of cdr in JVMG . Only relevant tags are presented here.

7.2 Non-Interference

Method signatures are now of the form

~kv
kh−→ ~kr

where ~kv, kh are defined as in JVMC but ~kr (called output level) is now a list of
security levels of the form {n : kn, e1 : ke1 , . . . en : ken

}, where kn is the security
level of the return value and ei is an exception class that might be propagated by
the method in a security environment (or due to an exception-throwing instruction)

of level ki. In the rest of the paper we will write ~kr[n] instead of kn and ~kr[ei]
instead of kei

.
This new notion of output level is associated with a new notion of output indis-

tinguishability.

Definition 7.2.1 Output indistinguishability. Given a partial function β ∈ LL ⇀

LL, an output level ~kr, indistinguishability of two final states in method m is defined
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by the clauses:

h1 ∼β h2
~kr[n] ≤ kobs ⇒ v1 ∼β v2

(v1, h1) ∼β, ~kr
(v2, h2)

h1 ∼β h2 class(h1(l1)) : k ∈ ~kr k ≤ kobs l1 ∼β l2

(〈l1〉, h1) ∼β, ~kr
(〈l2〉, h2)

h1 ∼β h2 class(h1(l1)) : k ∈ ~kr k 6≤ kobs

(〈l1〉, h1) ∼β, ~kr
(v2, h2)

h1 ∼β h2 class(h2(l2)) : k ∈ ~kr k 6≤ kobs

(v1, h1) ∼β, ~kr
(〈l2〉, h2)

h1 ∼β h2 class(h1(l1)) : k1 ∈ ~kr class(h2(l2)) : k2 ∈ ~kr

k1 6≤ kobs k2 6≤ kobs

(〈l1〉, h1) ∼β, ~kr
(〈l2〉, h2)

In each case, heaps must be indistinguishable. This definition implies that if indis-
tinguishability outputs are of different nature (like normal value/exception or two
exceptions from different classes) the security level of the corresponding exception

must be high in the output signature ~kr. When outputs are of similar nature (two
normal values or two exceptions of the same class) they are indistinguishable as

soon as the corresponding security level in ~kr is low.
The previous definition and the next definition of non-interference rely on indis-

tinguishability definitions already proposed for the JVMO (c.f. page 20).

Definition 7.2.2 Non-interferent JVMG method. A method m is non-interferent
w.r.t. a policy ~kv−→ ~kr, if for every partial function β ∈ L ⇀ L and every ρ1, ρ2 ∈
X ⇀ V , h1, h2, h

′
1, h

′
2 ∈ Heap, r1, r2 ∈ V + L such that ρ1, h1 ⇓m r1, h

′
1, ρ2, h2 ⇓m

r2, h
′
2 and h1 ∼β h2, ρ1 ∼ ~kv,β

ρ2, there exists a partial function β′ ∈ L ⇀ L such

that β ⊆ β′ and (r1, h1) ∼β′, ~kr
(r2, h2).

Like in JVMC , we impose a side-effect-safe (c.f. page 25 for a formal definition)
on methods. This notion is used when virtual call occur in a high context in order
to enforce that no modification is done on low information during the execution of
the called method.

Definition 7.2.3 Safe JVMG method. A method m is safe w.r.t. a policy ~kv
kh−→

~kr if m is side-effect-safe with respect to kh and m is non-interferent with respect
to ~kv−→ ~kr.

Definition 7.2.4 Safe JVMG program. A program is safe with respect to a table
of method signature Γ if for all its method m, m is safe with respect to all policies
in PoliciesΓ(m)11.

7.3 Typing rules

Typing rules for JVMC are extended (or sometimes modified) with rules given in
Figure 14. These rules concern only exception-throwing and branching instructions.
Rules for other instructions are as in JVMC .

Observe that the typing judgement is now parameterized by a tag τ ∈ {∅}+C. It
will be used to describe without ambiguity which typing constraint must be verified
according to the kind of execution performed in the semantics.

This notion of tag requires to update the notion of typable method.

Definition 7.3.1 Typable method. A method m is typable w.r.t. a method sig-
nature table Γ, a global field policy ft, a signature sgn, and a cdr regionm :

11PoliciesΓ(m) has been defined in page 25.
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Pm[i] = ifeq j ∀j′ ∈ region(i, ∅), k ≤ se(j′)

Γ, region, se, ~ka

kh−→ ~kr , i ⊢∅ k :: st ⇒ liftk(st)

Pm[i] = return k ⊔ se(i) ≤ ~kr [n]

Γ, region, se, ~ka

kh−→ ~kr, i ⊢∅ k :: st ⇒

Pm[i] = invokevirtual mID ΓmID
[k] = ~k′

a

k′
h−→ ~k′

r

k ⊔ kh ⊔ se(i) ≤ k′
h length(st1) = nbArguments(mID)

k ≤ ~k′
a[0] ∀i ∈ [0, length(st1) − 1], st1[i] ≤ ~k′

a[i + 1]

ke =
F

n

~k′
r [e] | e ∈ excAnalysis(mID)

o

∀j ∈ region(i, ∅), k ⊔ ke ≤ se(j)

Γ, region, se, ~ka

kh−→ ~kr , i ⊢∅
st1 :: k :: st2 ⇒ liftk⊔ke

“

( ~k′
r [n] ⊔ se(i)) :: st2

”

Pm[i] = invokevirtual mID ΓmID
[k] = ~k′

a

k′
h−→ ~k′

r

k ⊔ kh ⊔ se(i) ≤ k′
h length(st1) = nbArguments(mID)

k ≤ ~k′
a[0] ∀i ∈ [0, length(st1) − 1], st1[i] ≤ ~k′

a[i + 1]

e ∈ excAnalysis(mID) ⊔ {np} ∀j ∈ region(i, e), k ⊔ ~k′
r [e] ≤ se(j) Handler(i, e) = t

Γ, region, se, ~kv

kh−→ ~kr , i ⊢e
st1 :: k :: st2 ⇒ (k ⊔ ~k′

r [e]) :: ε

Pm[i] = invokevirtual mID ΓmID
[k] = ~k′

v

k′
h−→ ~k′

r

k ⊔ kh ⊔ se(i) ≤ k′
h length(st1) = nbArguments(mID)k ≤ ~k′

v [0]

∀i ∈ [0, length(st1) − 1], st1[i] ≤ ~k′
v [i + 1] e ∈ excAnalysis(mID) ⊔ {np}

k ⊔ se(i) ⊔ ~k′
r [e] ≤ ~kr [e] ∀j ∈ region(i, e), k ⊔ ~k′

r [e] ≤ se(j) Handler(i, e) ↑

Γ, region, se, ~kv

kh−→ ~kr , i ⊢e
st1 :: k :: st2 ⇒

P [i] = putfield f k1 ⊔ se(i) ⊔ k2 ≤ ft(f) kh ≤ ft(f)
∀j ∈ region(i, ∅), k2 ≤ se(j)

Γ, region, se, ~kv

kh−→ ~kr , i ⊢∅ k1 :: k2 :: st ⇒ liftk2
st

Pm[i] = putfield f k1 ⊔ se(i) ⊔ k2 ≤ ft(f)
∀j ∈ region(i, np), k2 ≤ se(j) Handler(i, np) = t

Γ, region, se, ~kv

kh−→ ~kr , i ⊢np k1 :: k2 :: st ⇒ k2 ⊔ se(i) :: ǫ

Pm[i] = putfield f k1 ⊔ se(i) ⊔ k2 ≤ ft(f)

k2 ≤ ~kr[np] ∀j ∈ region(i, np), k2 ≤ se(j) Handler(i, np) ↑

Γ, region, se, ~kv

kh−→ ~kr, i ⊢np k1 :: k2 :: st ⇒

Pm[i] = getfield f ∀j ∈ region(i, ∅), k ≤ se(j)

Γ, region, se, ~kv

kh−→ ~kr , i ⊢∅ k :: st ⇒ liftk((ft(f) ⊔ se(i)) :: st)

Pm[i] = getfield f ∀j ∈ region(i, np), k ≤ se(j) Handler(i, np) = t

Γ, region, se, ~kv

kh−→ ~kr, i ⊢np (k :: st ⇒ k ⊔ se(i)) :: ǫ

Pm[i] = getfield f ∀j ∈ region(i, np), k ≤ se(j) Handler(i, np) ↑ k ≤ ~kr [np]

Γ, region, se, ~kv

kh−→ ~kr, i ⊢np k :: st ⇒

Pm[i] = throw e ∈ classAnalysis(i) ∪ {np}
∀j ∈ region(i, e), k ≤ se(j) Handler(i, e) = t

Γ, region, se, ~kv

kh−→ ~kr , i ⊢e k :: st ⇒ k ⊔ se(i) :: ǫ

Pm[i] = throw e ∈ classAnalysis(i) ∪ {np}

k ≤ ~kr[e] ∀j ∈ region(i, e), k ≤ se(j) Handler(i, e) ↑

Γ, region, se, ~kv

kh−→ ~kr , i ⊢e k :: st ⇒

Fig. 14. Transfer rules for instructions of JVMG
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PP → ℘(PP) if there exists a security environment se : PP → S and a func-
tion S : PP → S⋆ such that S1 = ε and for all i, j ∈ PP , e ∈ {∅} + C:

(1) i 7→e j implies there exists st ∈ S⋆ such that Γ, ft, region, se, sgn, i ⊢e Si ⇒ st

and st ⊑ Sj ;

(2) i 7→e implies Γ, ft, region, se, sgn, i ⊢e Si ⇒

7.4 A typable example

Figure 15 presents an example of a typable method m, giving the corresponding
source code and the tagged flow graph. m may throw two kinds of exceptions: an
exception of class C depending on the value of x, and an exception of class np

depending on the values of x and y. Normal return depends on y because execution
terminates normally only if it is not null . The method m is typable with the signature

m : (this : L, x : L, y : H)
H
−→ {n : H, C : L, np : H} with the cdr (given only for

branching points), the type stacks and the security environment given in Figure 15.

int m(boolean x,C y) throws C

{

if (x) {throw new C();}

else {y.f = 3;};

return 1;

}

0 : load x
1 : ifeq 4
2 : new C
3 : throw

4 : load y
5 : push 3
6 : putfield f
7 : const 1
8 : return

0

1

2

3

4

5

6

7

8

∅

∅

∅

C

∅

∅

∅
np

∅

∅
∅

i S(i) se(i)

0 ε L
1 L :: ε L
2 ε L
3 L :: ε L
4 ε L
5 H :: ε L
6 L :: H :: ε L
7 ε H
8 H :: ε H

region(1, ∅) = {2, 3, 4, 5, 6, 7, 8} jun(1, ∅) undef.

region(6, ∅) = ∅ jun(6, ∅) = 7 region(6, np) = {7, 8} jun(6, np) undef.

Fig. 15. Typable methods at source and bytecode level

Figure 16 gives another example12 where fine grain exception handling is neces-
sary for the code to be typable. Here the update tL = 1 at point 6 is accepted if and

0 : load oL

1 : load yH

2 : load xL

3 : invokevirtual m
4 : store zH

5 : push 1
6 : store tL

handler : [0, 3],NullPointer → 4

0 1 2

3

4

5

6

np

∅ ∅

∅
C

∅

∅

∅

i S(i) se(i)

0 ε L

1 L :: ε L
2 L :: L :: ε L
3 L :: H :: L :: ε L
4 H :: ε L
5 ε L
6 L :: ε L

region(3, ∅) = region(3, np) = ∅ jun(3, ∅) = jun(3, np) = 4
region(3, C) = {4, 5, 6, . . .} jun(3, C) undef.

Fig. 16. Typable fragment with virtual call

only if se(6) is low. This fragment is accepted by our type system since, thanks to
the fine grain regions, typing rule for virtual call only propagates exception levels
~kr[np] = H in the region region(3,np) (instead of region(3, C)).

12To keep the example short here we give compressed version of a compiled code.
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instr ::= . . .
| newarray t create new array of element of type t in the heap
| arraylength get the length of an array
| arrayload load value from an array
| arraystore store value in array

Fig. 17. Additional instruction set for JVMA

7.5 Type system soundness

Theorem 7.5.1. Let P be a JVMG program, Γ a table of signatures, ft a global
field policy, and for all method m in P , (regionm, junm) a safe cdr for m (according
to SOAP properties). Suppose all methods m in P are typable with respect to Γ, ft,
regionm and to all signatures in PoliciesΓ(m). Then P is safe with respect to Γ.

Full proofs are given in Appendix D.

8. JVMA: THE ARRAY-HANDLING EXTENSION OF JVMO

The purpose of this section is to extend our analysis to arrays. To keep a digest level
of detail we focus on a restricted JVM similar to JVMO (i.e. without exceptions
or method calls) but the Coq development handles arrays directly on the complete
JVMG .

8.1 Programs, memory model and operational semantics

Programs. We first extend the set of instruction of JVMO programs. New in-
structions are presented in Figure 17.

States. JVMA extends JVMO semantic domains only at the heap level. Heaps
now not only contains objects but also arrays. They are now modeled as partial
functions h : L ⇀ O + A, where the set A of arrays is modeled as N × (N ⇀

V) × PP , i.e. each array a ∈ A posses a length (noted a.length), a partial function
to access array values and a creation point. Strictly speaking, this last information
is useless to present JVM semantics but we use it as a safe formalisation facility
in the style followed by Freund and Mitchell to formalise Java bytecode object
initialisation [Freund and Mitchell 2003]. Given a heap h, we note domO(h) the set
of location associated with an object in h and domA(h) the set of location associated
with an array.

Operational semantics. The operational semantics of the new instructions of
JVMA is given in Figure 18. We only give here the normal execution cases but
we should add all the cases where an exception is thrown (null pointer exception,
array out-of-bound exception or wrong typed array store exception). Instruction
newarray t pops a positive integer n from the operand stack to create a new initial-
ized array and pushes the corresponding fresh location on top of the operand stack.
The heap is updated with this new array including it length n and its creation point
(m, i). Instruction arraylength pops a location l from the operand stack and pushes
the length of the corresponding array. Instruction arrayload pops an index j and a
location l from the operand stack. The content of the array at index j abd location
l is fetched and pushed onto the operand stack. Instruction arraystore uses the top
of the stack to update the array associated with the location in third position on
the operand stack, at position pointed by the index in second position.

Successor relation. The successor relation is extended with the clause i 7→ i + 1
for all new instructions.
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P [i] = newarray t l = fresh(h) n ≥ 0

〈i, ρ, n :: os, h〉 ; 〈i + 1, ρ, l :: os, h⊕{l 7→ (n, defaultArray(n, t), i)}〉

P [i] = arraylength l ∈ dom(h)

〈i, ρ, l :: os, h〉 ; 〈i + 1, ρ, h(l).length :: os, h〉

P [i] = arrayload l ∈ dom(h) 0 ≤ j < h(l).length

〈i, ρ, j :: l :: os, h〉 ; 〈i + 1, ρ, h(l)[j] :: os, h〉

P [i] = arraystore l ∈ dom(h) 0 ≤ j < h(l).length

〈i, ρ, v :: j :: l :: os, h〉 ; 〈i + 1, ρ, os, h⊕{l 7→ h(l)⊕{j 7→ v}}〉

Fig. 18. Operational Semantics for additional JVMA instructions

8.2 Non-Interference

The information flow type system we proposed for arrays follows the recommen-
dations from Askarov and Sabelfeld [Askarov and Sabelfeld 2005] who argue that
public arrays must be allowed to handle secret informations in order to achieve any
realistic case study like the mental poker they have programmed in Jif [Myers 1999].
As a consequence the basic security level domain S of our previous type system is
extended to a set Sext inductively defined by

k ∈ S

k ∈ Sext

k ∈ S kc ∈ Sext

k[kc] ∈ Sext

The idea is to use an extended level of the form k[kc] to represent the security
level of an array reference, distinguishing the level kc of the content of the array
(which could be itself arrays) and k the level of the length of the array and the
reference on the array. Simple level k ∈ S are still used to represent levels of object
locations and numerical values. An extended level k[kc] is considered to be low
(noted k[kc] ≤ kobs) if k ≤ kobs.

Indistinguishability for JVMG states is extended and defined relative to a global
mapping at : PP → Sext that maps creation point of arrays to security levels for
their contents. at will be left implicit in the rest of the paper. We will abusively
note at(a) the level associates with the creation point of an array a. The definition
of array indistinguishability says that two arrays are indistinguishable if they have
the same length and if their contents are indistinguishable when their level is low.

Definition 8.2.1 Array indistinguishability. Two arrays a1, a2 ∈ A are indistin-
guishable with respect to a function β ∈ LL ⇀ LL if and only if a1.length =
a2.length, at(a1) = at(a2) and if at(a1) ≤ kobs implies, for all index i such that
0 ≤ i < a1.length, a1[i] ∼β a2[i].

Heap indistinguishability follows the definition given for JVMO.

Definition 8.2.2 Heap indistinguishability. Two heaps h1 and h2 are indistin-
guishable with respect to a partial function β ∈ L ⇀ L, written h1 ∼β h2, if
and only if:

— β is a bijection between dom(β) and rng(β);

— dom(β) ⊆ dom(h1) and rng(β) ⊆ dom(h2);

— for every l ∈ dom(β), either l ∈ domO(h1) ∩ domO(h2) and h1(l) ∼β h2(β(l)),
or l ∈ domA(h1) ∩ domA(h2) and h1(l) ∼β h2(β(l));

The definition of non-interferent JVMA program is then exactly the same as for
JVMO program.
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P [i] = newarray t k ∈ S

i ⊢ k :: st ⇒ k[at(i)] :: st

P [i] = arraylength k ∈ S kc ∈ Sext

i ⊢ k[kc] :: st ⇒ k :: st

P [i] = arrayload k1, k2 ∈ S kc ∈ Sext

i ⊢ k1 :: k2[kc] :: st ⇒ ((k1 ⊔ k2)⊔extkc) :: st

P [i] = arraystore ((k2 ⊔ k3)⊔extk1)≤extkc k2, k3 ∈ S k1, kc ∈ Sext

i ⊢ k1 :: k2 :: k3[kc] :: st ⇒ st

Fig. 19. Additional typing transfer rules for JVMA

8.3 Typing rules

Figure 8.3 presents the typing transfer rules for JVMA specific instructions.

— The transfer rule for newarray creates a new security level for the new created
array, combining the length level k length and the content level at(i).

— The transfer rule for arraylength only uses the length level k of the extended
level k[kc] found on top of the stack type to give a security level to the length of an
array.

— The transfer rule for arrayload pushes on top of the stack a security level
(k1 ⊔ k2)⊔extkc. ⊔ext ∈ S × Sext → Sext is defined by k′⊔extk = k′ ⊔ k when
k, k′ ∈ S and k′⊔extk[kc] = (k′⊔k)[kc] when k, k′ ∈ S and kc ∈ Sext. Here k1 allows
to prevent implicit flows trough a high index and k2 trough alias.
The following example illustrates this first point. It corresponds to a source program
like

int xL = aL[L][iH];

Let xL be a low variable, aL[L] a low array variable (both for reference and content
levels) and iH a high integer variable.

load aL[L]

load iH
arrayload yH

store xL

In this program, if the low array aL[L] only contents distinct elements, an attacker
could learn the value of iH by looking at the result of aL[L][iH]. This program is
rejected by our type system because aL[L][iH] receives a type H in the arrayload rule
and storing a high value in a low variable is impossible thanks to the store rule.
The second point corresponds to an access aH[L][iL] where aH[L] may be either aliased
to a low array a0

L[L] containing only the 0 integer or aliased to a low array a1
L[L]

containing only the 1 integer. Hence observing the value of aH[L][iL] would allow an
attacker to know which of this array is aliased to aH[L].

— The transfer rule for arraystore uses the partial order ≤ext on Sext which is
inductively defined by

k ≤ k′ k, k′ ∈ S

k≤extk′

k ≤ k′ k, k′ ∈ S kc ∈ Sext

k[kc]≤
extk′[kc]

The rule constrains k1 and kc to prevent an explicit flow from a high value to an array
declared with a low content. It constrains also k2 and kc to prevent information
leak by updating a low array content with a high index. Without it, an assignment
of the form aL[L][iH] = 1 in a low array aL[L] only containing the 0 integer would
allow to reveal the value of iH.
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Finally, the constraint between k3 and kc prevents modifying low array contents of
high array reference that may be alias to a low array. This is for example necessary
if an array aH[L] may be aliased to two distinct low array a0L[L] and a1L[L]. Observing

which of these low arrays is modified by side effect of the affectation aH[L][iL] = vL
would allow an attacker to learn which of these arrays is effectively equal to aH[L].

8.4 Type system soundness

Theorem 8.4.1. Let P be a JVMA program and (region, jun) a safe cdr for P

(according to SOAP properties). Suppose P is typable with respect to region and to a

signature ~kv −→ kr. Then P is non-interferent with respect to the policy associated
with ~kv −→ kr.

This soundness proof is similar to the previous proofs.

9. RELATION WITH INFORMATION FLOW TYPE SYSTEMS FOR JAVA

While the development of information flow checkers for Java bytecode has received
relatively little attention, there has been substantial interest in building information
flow type systems for Java. One of the earliest and still most active effort in this
direction is Jif, an extension of Java with information flow types developed by
Myers and co-workers. Jif builds upon the decentralized label model and offers a
flexible and expressive framework to define information flow policies. There are
some commonalities between our type system and the type system of Jif:

— the form of method signatures,

— the use of pre-analyses to reduce the control flow graph,

— the support for modular verification,

— public arrays are able to handle secret informations.

On the other hand, there are many features of Jif that are missing in our work; the
most prominent such features are:

— declassification: often non-interference is too strict to characterize confiden-
tiality policies where private information needs to be released at some point in the
program. Jif has support for declasification policies though a language construct,
namely declassify.

— label polymorphism: Jif implements label polymorphism, that allows methods
with generic information flow types, to be invoked in different contexts.

The rich set of features supported by Jif has proved useful in realistic case studies
such as an implementation of mental poker [Askarov and Sabelfeld 2005], but makes
it difficult to prove that the information flow type system is sound.

Banerjee and Naumann [Banerjee and Naumann 2005] develop a provably sound
information flow type system for a fragment of Java with objects and methods. The
type system is simpler than Jif since they omit language features such as exceptions
and arrays, and do not provide mechanism for declassification. Their type system
has been formally verified in PVS [Naumann 2005], and [Sun et al. 2004] present a
type inference algorithm that dispenses users of writing all security annotations.

The above discussion illustrates similarities and differences between our type
system for bytecode and previously defined information flow type systems for Java.
One interesting question is whether source Java programs that are accepted by an
information flow type system are compiled into bytecode programs that are accepted
by our checker. Such a type-preserving compilation result is interesting from a
theoretical perspective, since it allows to derive soundness of information flow type
systems for Jif-like languages from our results, and also from a practical perspective,
since it shows that our type system is sufficiently expressive to accept compiled
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versions of the examples of [Banerjee and Naumann 2005], and more generally that
(a useful fragment of) the experimental programming language JFlow [Myers 1999]
can be used to develop information-flow aware applications that are accepted by
our type system.

In [Barthe et al. 2006; Rezk 2006] it is shown that source and bytecode type sys-
tems are related. That is, a standard (non-optimizing) Java compiler will translate
programs that are typable in a Jif-like information-flow type system to programs
typable in our system.

To illustrate type-preserving compilation, we give an example of a JFlow typable
program, and show that its compiled bytecode is typable in our system. The com-
mented lines are the intermediate types needed to infer the whole program type
{n : L; nv : H ; rv : L; C : L; np : L}. The numbering before the types will relate to
the program points of the compiled code, given later.

try{ (0){n : L; nv : L; rv : L; C : L; np : L}
int zH = oH .m(xL, yH); (4){n : L; nv : H ; rv : L; C : L; np : H}

}catch(NullPointerException){
xH = 1; (7){n : H ; nv : H ; rv : L; C : L; np : L}

}; (7){n : L; nv : H ; rv : L; C : L; np : L}
int tL = 1;

(8){n : L; nv : H ; rv : L; C : L; np : L}

We recall that in JFlow, the symbol n represents normal termination of the
program, the symbol nv and rv represent the labels of the normal value of an
expression and the return value of a statement, respectively. Notice that we omit
symbol r in the types because it is only relevant for return statements.

The compiled code for the above program and its type is given in Figure 20.

foo :
0 load oH

1 load xL

2 load yH

3 invokevirtual m
4 store zH

5 goto 9
6 store zH

7 push 1
8 store xH

9 push 1

10 store tL
handler : [0, 5],NullPointer → 6

i S(i) se(i)

0 ε L
1 L :: ε L
2 L :: L :: ε L
3 H :: L :: L :: ε L
4 H :: ε H
5 ε H
6 H :: ε H
7 ε H
8 L :: ε H
9 ε L
10 L :: ε L

ε
region(3, np) = {4, 5, 6, 7, 8}
region(3, C) = {4, 5, 9, 10}
jun(3, np) = 9 jun(3, C) undef.

Fig. 20. Compiled program and its type

We informally show how the JFlow types translates into the bytecode type for
its compiled counterpart. That is, we show a connection between a JFlow type of
the form {n : L; nv : H ; rv : L; C : L; np : L} and a security enviromment se and a
stack type st for bytecode.

For the type in line (4), the security type in nv is equal to the type on top of the
stack type. Notice that the type of the method call in line (4) includes two paths
for exceptions, namely C and np, of type L and H respectively. At bytecode levels,
this is reflected in the control dependence regions of C and np for instruction 4.
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Fig. 21. Information flow analyser and checker

In fact, we can observe that in all security enviroments of successor instructions
of the invokevirtual, region(3,np) and region(3, C) are constrained. In particular
for all program points i in region(3,np), security enviroment at i is high. In line
(7), the JFlow type np is lowered to L, because of the try-catch typing rule. At
bytecode level, we have that the junction point of region(3,np) corresponds to the
point just after the catch. Hence the typing rule for invokevirtual does not constrain
this program point thought the security enviroment (se(9) is low). The symbol
n in a JFlow type can be seen as se(i) level in the bytecode code, where i is an
instructions that belongs to the compilation of the command of the type.

10. MACHINE-CHECKED PROOF

The IF checker, and to a lesser extent the CDR checker are complex programs that
form the cornerstone of the security architectures that we propose. It is therefore
fundamental that their implementation is correct, and therefore we have machine
checked their soundness in the proof assistant Coq. The purpose of this section is
to provide an overview of the architecture of the proof, and more importantly, to
discuss the benefits of using formal proofs.

10.1 Lightweight verification

The complexity of the analysis is a strong argument for adopting ideas of lightweight
verification, and to only require consumers to perform checking, as described on the
right part of Figure 21. Here it is assumed that programs are annotated with (part
of) the results of the PA, CDR, and IF analysers, that are performed by the code
producer on the left hand part of the Figure:

(1) the PA checker verifies that annotations provided by the PA analyser are correct.
Correctness is expressed as as an equivalence between the JVM semantics and an
instrumented semantics that manipulate programs annotated with the results
of the PA analyser;

(2) the CDR checker verifies that regions provided by the CDR analyser verify the
safe over-approximation properties (SOAP) of Section 3. Its correctness relies
on the correctness of the PA checker;

(3) the IF checker verifies type correctness in the style of lightweight bytecode
verification. In a nutshell, the idea is to check whether the types computed at
junction points are compatible with the declared type in the certificate, and to
follow the analysis with the latter if it is the case. As opposed to a dataflow
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Line of code

JVM semantics (Bicolano), bytecode program manipulation tools 4287
Non-Interference type checker

General non-interference proof 942
Unwinding lemmas 3527
Typing rules (definitions, properties, checker) 5236
Indistinguishability 2157

CDR checker 1003

Total 17152

Fig. 22. Size of the Coq development

analysis, which performs a fixpoint computation by repeating iterations over
the program, the IF checker performs the analysis in one pass.

10.2 Structure of the formal development

The whole Coq development is about 17,000 lines of definitions and proofs. Fig-
ure 22 presents the repartition of the development size. The core of the work is the
information flow type checker but the formal definition of the JVM semantics is in
itself a big piece of code. Is it available at

http://www.irisa.fr/lande/pichardie/iflow/

We have formalised in Coq several predicates:

(1) the security condition as SAFE;

(2) the correctness of program annotations as PA;

(3) the SOAP properties as CDR (given in Section 3);

(4) the information flow type checker as IF based on the notion of typable program.

We have machine-checked the following theorem which corresponds to the two
first items of Theorem 2.4.1.

Theorem 10.2.1.

(1 ) CDR and IF are decidable predicates.

(2 ) For every annotated program P ,

PA(P ) ∧ CDR(P ) ∧ IF(P ) =⇒ SAFE(P )

The first item is proved by formalising boolean-valued functions checkCDR and
checkIF that characterise the predicates CDR and IF respectively. The function
checkCDR performs a direct verification of the SOAP properties for each method.
What is left for future work is to define a decidable predicate checkPA that entails
PA.

The function checkIF uses lightweight bytecode verification techniques. It relies on
a formal semantics of the JVM in Coq, called Bicolano13, which has been developed
within the Mobius project to serve as a common basis for certification of proof
carrying code technologies in Coq.

Bicolano closely follows the official JVM specification—although some features
are omitted, e.g. initialization, subroutines (which shall soon disappear), multi-
threading, dynamic class loading, garbage collection, 64-bit arithmetic and floats.
As a consequence, the dynamic behavior of a bytecode program is described in term
of an elementary small-step relation · → · between states of the virtual machine. In
Bicolano, execution traces can terminate normally, diverge, or get stuck. It is the
role of (standard) bytecode verification to ensure progress, and thus to eliminate
programs whose execution may get stuck.

13http://mobius.inria.fr/bicolano
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The basic layer of Bicolano is complemented by additional layers that are used
between the non interference theorem and its proofs, as shown in Figure 23.

Bigstep semantics instrumented with annotations Non-interference Proof

Big step semantics ↓

Small step semantics Non-interference theorem

Fig. 23. The several semantic levels of the formalisation

The first layer is an adaptation of the small-step semantics where method calls
are performed in one step, as it has been presented in Section 6. Figure 24 presents
the small-step semantics rule for method calls and return which must be compared
to the big step semantics rule for virtual method invocation presented in Figure 9
(page 24). While small-step semantics uses a call stack to store the calling context
and retrieve it during a return instruction, the big step semantics directly calls the
full evaluation of the called method from an initial state to a return value and uses
it to continue the current computation.

Pm[i] = invokevirtual mID m′ = lookupP (mID, class(h(l)))
l ∈ dom(h) length(os1) = nbArguments(mID)

f ′ = [m′, 1, {this 7→ l, ~x 7→ os1}, ε] f ′′ = [m, pc, ρ, os2]

〈h, [m, pc, ρ, l :: os1 :: os2], sf 〉 → 〈h, f ′, f ′′ :: sf 〉

instrAt(m, pc, return)

〈h, [m, pc, ρ, v :: os], [m′, pc′, ρ′, os ′] :: sf 〉 → 〈h, [m′, pc′ + 1, ρ′, v :: os ′], sf 〉

Fig. 24. Small-step semantics rule for virtual method call

The alternative semantics is used in the proofs, but not in the final theorem where
we have used the equivalence between the two semantics to derive non-interference
for the small-step semantics. More formally, to prove non-interference for execution
expressed with the small-step semantics we prove that each iterative execution of the
JVM to a final value implies the corresponding judgment of the big step semantics.

(

〈h, [m, pc, ρ, os ], ε〉 →∗ 〈h′, [m, pc′, ρ′, v′ :: os ′], ε〉
with Pm[pc′] = return

)

=⇒
〈h, pc, l, s〉 ⇓m (h′, v′)

(1)

A similar result is necessary for execution terminating with an uncaught exception.
Using this alternative semantics has brought a significant simplification w.r.t.

the (unpublished) proof of [Barthe and Rezk 2005]: having only one frame, the
notion of state equivalence has been greatly simplified, especially concerning the
indistinguishability relation previously required for call stacks. The proofs are con-
sequently far easier to manage and to understand. However, a well-known defect
of the alternative semantics is that it is not immediate to extend our results to
multi-threading [Barthe et al. 2007].

The proof of non-interference relies on an instrumented semantics of annotated
programs. In such an instrumented semantics, extra properties taken from anno-
tation information are assumed in the premise of the transition rules. Figure 25
gives an example of instrumented transition. Annotations take the form of flags
safe attached to program points where the pre-analyser predict that no exception
may be thrown here. Exception hence only happens at program points which are
not annotated as safe. Assuming the annotations are correct, it is straightforward
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Pm[i] = getfield f l′ = fresh(h) annnotm[i] 6= safe

〈i, ρ,null :: os, h〉
(0)
;m,np RuntimeExceptionHandling(h, l′,np, i, ρ)

Fig. 25. Example of annotated semantic rule

to prove that each judgment of the big step semantics implies the corresponding
judgment of the instrumented big step semantics.

〈h, pc, l, s〉 ⇓m (h′, v′) ∧ Sound(annot) =⇒ 〈h, pc, l, s〉 ⇓annot
m (h′, v′) (2)

10.3 Benefits of using formal proofs

One evident benefit of formal proofs is to increase confidence in the correctness of
the type system. The need for machine-checked proofs is particularly important here
because non-interference proofs are particularly involved (w.r.t. say standard type
safety proofs discussed in [Aydemir et al. 2005]), and because of the complexity of
the fragment of the JVM considered. For example, some lemmas as locally respects
involve two parallel executions leading to an explosion of cases. For example, the
JVM virtual call has 5 different transitions (call on a null reference which generates
a null pointer exception caught or not, normal termination of the callee, termination
by an exception caught or not in the caller context) which required 15 distinct proofs
to be exhaustively confronted.

Another motivation for formal proofs is foundational proof carrying code [Appel
and Felty 2000] (FPCC), since the Trusted Computed Base is here relegated to the
Coq type checker and the formal definition of non-interference. Figure 26 presents
this TCB, updating the previous scheme of Figure 21 where formal proofs were not
mentioned. However, we depart from FPCC in our strategy to prove programs:
whereas FPCC uses deductive reasoning to encode proof rules or typing rules, we
provide a computational encoding that enables the use of reflective tactics and yields
compact certificates. Once we have defined a boolean-valued function checkPA that
entails PA, one can rewrite the main theorem as

checkPA(P ) = True ∧ checkCDR(P ) = True ∧ checkIF(P ) = True =⇒ SAFE(P )

Thus the certificate for an annotated program shall be of the form

〈refleq True, refleq True, refleq True〉

where refleq True is a proof of True = True.
Of course, much of the certificate is already in the annotations (that are in P ),

but in comparison with FPCC, we do not have a part of the certificate that encodes
deductively the type derivation for P .

Following the approach of proof carrying proof checkers [Besson et al. 2006],
it is also possible to extract certified checkers from Coq proofs, which opens up
the possibility of safely downloading proof checkers, adding flexibility to the PCC
infrastructure.

11. RELATED WORK

We refer to the survey article of Sabelfeld and Myers [Sabelfeld and Myers 2003]
for a more complete account of recent developments in language-based security, and
only focus on related work that deals with low-level languages, or develop ideas that
are relevant to consider in future work.

For convenience, we separate related work between works that deal with typed
assembly languages, and higher-order low-level languages and finally with the JVM
and Java. Then, we focus on issues of concurrency and information release, which
are not considered in the present work.
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Fig. 26. Information flow analyser and checker with Coq TCB

11.1 Typed assembly languages

The idea of typing low-level programs and ensuring that compilation preserves typ-
ing is not original to information flow, and has been investigated in connection with
type-directed compilation. Morrisett, Walker, Crary and Glew [Morrisett et al.
1999] develop a typed assembly language (TAL) based on a conventional RISC as-
sembly language, and show that typable programs of System F can be compiled
into typable TAL programs.

The study of non-interference for typed assembly languages has been initiated
by Medel, Bonelli, and Compagnoni [Bonelli et al. 2005], who developed a sound
information flow type system for a simple assembly language called SIFTAL. A
specificity of SIFTAL is to introduce pseudo-instructions that are used to enforce
structured control flow using a stack of continuations; more concretely, the pseudo-
instructions are used to push or retrieve linear continuations from the continuation
stack. Unlike the stack of call frames that is used in the JVM to handle method
calls, the stack of continuations is used for control flow within the body of a method.
The use of pseudo-instructions allows to formulate global constraints in the type
system, and thus to guarantee non-interference. More recent work by the same
authors [Medel et al. 2005] and by Yu and Islam [Yu and Islam 2006] avoids the
use of pseudo-instructions. In addition, Yu and Islam consider a richer assembly
language and prove type-preserving compilation for an imperative language with
procedures.

11.2 Higher-order low-level languages

Zdancewic and Myers [Zdancewic and Myers 2002] develop a sound information
flow type system for a CPS calculus that uses linear continuations and prove type-
preservation for a linear CPS translation from an imperative higher-order language
inspired from SLAM [Heintze and Riecke 1998] to their CPS language, provid-
ing thus one early type-preservation result for information flow. The use of linear
continuations in the CPS translation is essential to guarantee type-preserving com-
pilation.

In a similar line of work, Honda and Yoshida [Honda and Yoshida 2002] develop
a sound information flow type system for the π-calculus and prove type-preserving
compilation for the Dependency Core Calculus [Abadi et al. 1999] and for an im-
perative language inspired from Volpano and Smith [Volpano and Smith 1997].
Furthermore, they derive soundness of the source type systems from the soundness
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of the type system for the π-calculus. As in the work of Zdancewic and Myers,
linearity is used crucially to ensure that the compilation is type-preserving.

11.3 JVM

Lanet et al. [Bieber et al. 2002] provide an early study of information flow the
JVM. Their method consists in specifying in the SMV model checker an abstract
transition semantics of the JVM that manipulates security levels, and that can
be used to verify that an invariant that captures the absence of illicit flows is
maintained throughout the (abstract) program execution. Their method is directed
towards smart card applications, and thus only covers a sequential fragment of the
JVM. While their method has been used successfully to detect information leaks
in a case study involving multi-application smartcards, it is not sup ported by any
soundness result. In a series of papers initiating with [Bernardeschi and Francesco
2002], Bernardeschi and co-workers also propose to use abstract interpretation and
model-checking techniques to verify secure information.

The fist information flow type system for a low level language was proposed by
Kobayashi and Shirane [Kobayashi, Shirane 2002] for a subset of the JVM similar
to what we called JVMI in this paper. In a predecessor to this work, Barthe, Basu
and Rezk [Barthe et al. 2004] propose a sound information flow type system for a
simple assembly language that closely resembles the JVMI fragment of this paper,
and show type-preserving compilation for the imperative language and type system
of [Volpano and Smith 1997]. Later, Barthe and Rezk [Barthe and Rezk 2005] extend
this work to a language with objects and a simplified treatment of exceptions, and
Barthe, Naumann and Rezk [Barthe et al. 2006] show type-preserving compilation
for a Java-like language with objects and a simplified treatment of exceptions.

Genaim and Spoto [Genaim and Spoto 2005] have shown how to represent in-
formation flow for Java bytecode through boolean functions; the representation
allows checking via binary decision diagrams. Their analysis is fully automatic and
does not require that methods are annotated with security signatures, but it is less
efficient than type checking.

11.4 Java

The relation to [Myers 1999] and [Banerjee and Naumann 2005] has already been
discussed in a previous section, so we focus on other relevant work.

As ours, the type systems of [Myers 1999] and of [Banerjee and Naumann 2005]
rely on the assumption that references are opaque, i.e. the only observations that
an attacker can make about a reference are those about the object to which it
points. However, Hedin and Sands [Hedin and Sands 2006] have recently observed
that the assumption is unvalidated by methods from the Java API, and exhibited
a Jif program that does not use declassification but leaks information through in-
voking API methods. Their attack relies on the assumption that the function that
allocates new objects on the heap is deterministic; however, this assumption is per-
fectly reasonable and satisfied by many implementations of the JVM. In addition
to demonstrating the attack, Hedin and Sands show how a refined information flow
type system can thwart such attacks for a language that allows to cast references
as integers. Intuitively, their type system tracks the security level of references as
well as the security levels of the fields of the object its points to.

Hammer, Krinke and Snelting [Hammer et al. 2006] have developed an informa-
tion flow analysis based on control dependence regions; they use path conditions
to achieve precision in their analysis, and to exhibit security leaks if the program
is insecure. Their approach is automatic and flow-sensitive, but less efficient than
type-based approach.
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11.5 Logical analysis of non-interference for Java

In a different line of work, several authors have investigated the use of program
logics to enforce non-interference of Java programs [Barthe et al. 2004; Beringer
and Hofmann 2007; Darvas et al. 2005; Terauchi and Aiken 2005]. One possible
encoding is based on the idea of self-composition, where the program is composed
with a renaming of itself to ensure properties that involve two executions of a
program. The idea of self-composition has also been put in practice by Dufay and
co-workers [Dufay et al. 2005], who used an extension of the Krakatoa tool [Marché
et al. 2004] with self-composition primitives to verify that data mining programs
from the open source repository weka adhere to privacy policies cast in terms of
information flow. Both [Darvas et al. 2005; Dufay et al. 2005] are application-
oriented and do not attempt to provide a theoretical study of self-composition for
Java. In a recent article, Naumann [Naumann 2006] sets out the details of self-
composition in presence of a dynamically allocated heap; in short, one main issue
tackled by Naumann is the definition of a meaningful notion of “renaming” for the
heap.

Independently, Banerjee and his co-workers [Amtoft et al. 2006] develop a logic
that allows to verify non-interference without resorting to self-composition. The
logic, which is tailored to object-oriented languages, handles the heap using inde-
pendence assertions inspired from separation logic.

11.6 Concurrency

Extending information flow type systems to concurrent languages is notoriously dif-
ficult because the parallel composition of secure sequential programs may itself not
be secure [Smith and Volpano 1998]. The problem is caused by so-called internal
timing leaks that arise when secret information is revealed through the scheduling
of threads. In order to avoid internal timing leaks, many works on information flow
type systems for concurrent languages focus on a stronger notion of non-interference
that considers intermediate execution steps of programs. Thus, information flow
type systems for concurrent languages typically enforce bisimulation-based notions
of non-interference, at the cost of being very conservative, e.g. by rejecting pro-
grams that contain a loop with a high guard, or that perform a low assignment
after a high branching statement, see e.g. [Almeida Matos 2006; Boudol and Castel-
lani 2002]. Another approach consists in wrapping high branching statements in a
protect primitive that forces the execution of the branching statement to be atomic;
however, it is not clear how to implement such a primitive.

Motivated by the desire to provide flexible and practical enforcement mecha-
nisms for concurrent languages, Russo and Sabelfeld [Russo and Sabelfeld 2006]
develop a sound information flow type system that enforces termination-insensitive
non-interference in a concurrent setting. The originality of their approach resides
in constraining the behavior of the scheduler so as to avoid internal timing leaks.
More precisely, Russo and Sabelfeld require that the scheduler does not pick any low
thread for execution as long as a one thread is executing within a high branching
statement. Their work focus on a simple imperative language extended with two
commands that provide directives to the compiler. In a follow-up to the present
work, Barthe, Rezk, Russo and Sabelfeld [Barthe et al. 2007] have adapted their
approach to bytecode languages, and thus provided the first provably secure infor-
mation flow checker for concurrent bytecode. While the proof deals with the JVMI ,
we believe that it is possible to generalize our results to the JVMG .

11.7 Declassification

Information flow type systems have not found substantial applications in practice,
in particular because information flow policies based on non-interference are too
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rigid and do not authorize information release. In contrast, many applications of-
ten release deliberately some amount of sensitive information. Typical examples
of deliberate information release include sending an encrypted message through an
untrusted network, or allowing confidential information to be used in statistics over
large databases. In a recent survey [Sabelfeld and Sands 2005], A. Sabelfeld and
D. Sands identify four dimensions of declassification: what, when, where, and who,
and provide a classification of the declassification policies found in the signatures
along these dimensions. Handling declassification policies that combine several di-
mensions is an important next step towards applicability of information flow type
systems, and of our type system in particular.

12. CONCLUSION

We have introduced a provably sound information flow type system for a frag-
ment of the JVM that includes objects, methods, exceptions, and arrays. To our
best knowledge, no previous work has provided a sound type system for such an
expressive fragment of the sequential JVM. In combination with our work on type-
preserving compilation, our results provide a sound basis for end-to-end security
solutions for Java-based mobile code. An important goal is to extend our results to
multi-threaded Java, which is prominent in mobile code. To this end, we intend to
build upon the proposal of Russo and Sabelfeld [Russo and Sabelfeld 2006], and its
adaptation to bytecode [Barthe et al. 2007]. Besides, we intend to provide support
for declassification, in order to be able to type-check realistic case studies. More
generally, extending our results to type systems that support dynamic policies and
label polymorphism could significantly contribute to the applicability of our type
system.
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A. JVMI UNWINDING LEMMAS

Lemma A.0.1 JVMI locally respect. Let s1, s2 ∈ StateI be two JVMI states
at the same program point i and let two stack types st1, st2 ∈ S⋆ such that s1 ∼st1,st2

s2.
Let s′1, s

′
2 ∈ StateI and st ′1, st

′
2 ∈ S⋆ such that s1 ; s′1, s2 ; s′2, i ⊢ st1 ⇒ st ′1

and i ⊢ st2 ⇒ st ′2 then s′1 ∼st′1,st ′2
s′2.

Let v1, v2 ∈ V such that s1 ; v1, s2 ; v2, i ⊢ st1 ⇒ and i ⊢ st2 ⇒ then kr ≤ kobs

implies v1 ∼ v2.

Lemma A.0.2 JVMI step consistent. Let 〈i, ρ, os〉, s0 ∈ StateI two JVMI

states and two stack types st , st0 ∈ S⋆ such that 〈i, ρ, os〉 ∼st,st0 s0, se(i) 6≤ kobs

and high(os, st).
If there exists a state 〈i′, ρ′, os ′〉 ∈ StateI and a stack type st ′ ∈ S⋆ such that

〈i, ρ, os〉 ; 〈i, ρ′, os ′〉 and i ⊢ st ⇒ st ′ then 〈i′, ρ′, os ′〉 ∼st′,st0 s0.
If there exists a value v ∈ V such that 〈i, ρ, os〉 ; v and i ⊢ st ⇒ then kr 6≤ kobs.

Lemma A.0.3 JVMI high branching. Let s1, s2 ∈ StateI be two JVMI states
at the same program point i and let st1, st2 ∈ S⋆ such that s1 ∼st1,st2 s′1.
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If two states 〈i1, ρ′1, os
′
1〉, 〈i2, ρ

′
2, os

′
2〉 ∈ StateI and two stack types st ′1, st

′
2 ∈ S⋆

such that i1 6= i2, s1 ; 〈i1, ρ′1, os
′
1〉, s2 ; 〈i2, ρ′2, os

′
2〉, i ⊢ st1 ⇒ st ′1, i ⊢ st2 ⇒ st ′2

then high(os ′1, st
′
1), high(os ′2, st

′
2) and for all j ∈ region(i), se(j) 6≤ kobs.

Lemma A.0.4 JVMI high step. Let 〈i, ρ, os〉, 〈i′, ρ′, os ′〉 ∈ StateI be two JVMI

states and let st , st ′ ∈ S⋆ be two stack types such that 〈i, ρ, os〉 ; 〈i, ρ′, os ′〉,
i ⊢ st ⇒ st ′, se(i) 6≤ kobs and high(os, st) then high(os′, st ′).

B. JVMO UNWINDING LEMMAS

Lemma B.0.5 JVMO locally respect. Let β a partial function β ∈ L ⇀ L,
s1, s2 ∈ StateO two JVMO states at the same program point i and two stack types
st1, st2 ∈ S⋆ such that s1 ∼st1,st2,β s2.

If s′1, s
′
2 ∈ StateO and two stack types st ′1, st

′
2 ∈ S⋆ such that s1 ; s′1, s2 ; s′2,

i ⊢ st1 ⇒ st ′1 and i ⊢ st2 ⇒ st ′2 then there exists β′ ∈ L ⇀ L such that s′1 ∼st′1,st′2
s′2

and β ⊆ β′.
If v1, v2 ∈ V and s1 ; v1, s2 ; v2, i ⊢ st1 ⇒ and i ⊢ st2 ⇒ then kr ≤ kobs

implies v1 ∼β v2.

Lemma B.0.6 JVMO step consistent. Let β a partial function β ∈ L ⇀

L, let 〈i, ρ, os, h〉, 〈i0, ρ0, os0, h0〉 ∈ StateO two JVMO states and two stack types
st , st0 ∈ S⋆ such that 〈i, ρ, os , h〉 ∼st,st0,β 〈i0, ρ0, os0, h0〉, se(i) 6≤ kobs and high(os, st).

If a state 〈i′, ρ′, os ′, h′〉 ∈ StateO and a stack type st ′ ∈ S⋆ such that 〈i, ρ, os , h〉 ;

〈i, ρ′, os ′, h′〉 and i ⊢ st ⇒ st ′ then 〈i′, ρ′, os ′, h′〉 ∼st′,st0,β 〈i0, ρ0, os0, h0〉.
If there exists a value v ∈ V such that 〈i, ρ, os , h〉 ; v and i ⊢ st ⇒ then h′ ∼β h0

and kr 6≤ kobs.

Lemma B.0.7 JVMO high branching. Let β be a partial function β ∈ L ⇀ L,
s1, s2 ∈ StateO two JVMO states at the same program point i and two stack types
st1, st2 ∈ S⋆ such that s1 ∼st1,st2,β s′1.

Let 〈i1, ρ′1, os
′
1, h

′
1〉, 〈i2, ρ

′
2, os

′
2, h

′
2〉 ∈ StateO be two states and let st ′1, st

′
2 ∈ S⋆

be two stack types such that i1 6= i2, s1 ; 〈i1, ρ′1, os
′
1, h

′
1〉, s2 ; 〈i2, ρ′2, os

′
2, h

′
2〉.

If i ⊢ st1 ⇒ st ′1, i ⊢ st2 ⇒ st ′2 then high(os ′1, st
′
1), high(os ′2, st

′
2) and for all

j ∈ region(i), se(j) 6≤ kobs.

Lemma B.0.8 JVMO high step. Let 〈i, ρ, os , h〉, 〈i′, ρ′, os ′, h′〉 ∈ StateO two JVMO

states and two stack types st , st ′ ∈ S⋆ such that 〈i, ρ, os , h〉 ; 〈i, ρ′, os ′, h′〉, i ⊢ st ⇒
st ′, se(i) 6≤ kobs and high(os, st) then high(os′, st ′).

C. JVMC TYPE SYSTEM SOUNDNESS

We assume now P is a program with an associated signature table Γ.

Side-effect safety. The first part of the soundness proof consist in proving that
all methods of a typable program are side-effect-safe.

In this paragraph m is suppose to be a method of P , region a cdr function for m,

se a security environment, and ~ka
kh−→ kr a security signature.

We show that all instruction step transforms a heap h into a heap h′ such that
h �kh

h′. In this first lemma neither virtual call or return instructions are consid-
ered.

Lemma C.0.9. Let 〈i, ρ, os , h〉, 〈i, ρ′, os ′, h′〉 ∈ StateC be two states such that

〈i, ρ, os, h〉
(0)
;m 〈i′, ρ′, os ′, h′〉

Let two stack types st , st ′ ∈ S⋆ such that

region, se, ~ka
kh−→ kr, i ⊢ st ⇒ st ′

then h �kh
h′.
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The next lemma treats the case of the return instruction.

Lemma C.0.10. Let a method m and 〈i, ρ, os , h〉 ∈ StateC a state, h′ ∈ Heap a
heap and v ∈ V a value such that

〈i, ρ, os , h〉
(0)
;m v, h′

Let a stack type st ∈ S⋆ such that

region, se, ~ka
kh−→ kr, i ⊢ st ⇒

then h �kh
h′.

For the special case of virtual call we need an inductive hypothesis about the side-
effect safety of all methods in P . We hence introduce the notion of Side-effect-safe
at order n.

Definition C.0.1 Side-effect-safe at order n. A method m is side-effect-safe at
order n with respect to a security level kh if for all state 〈i, ρ, os , h〉 ∈ StateC , all

heap h′ ∈ Heap and value v ∈ V , 〈i, ρ, os , h〉 ⇓
(n)
m v, h′ implies h �kh

h′.

Lemma C.0.11. Let n an integer and suppose all method m′ in P are side-effect-
safe at order n with respect to the heap effect level of all the policies in PoliciesΓ(m′).

Let 〈i, ρ, os , h〉, 〈i, ρ′, os ′, h′〉 ∈ StateC two states such that

〈i, ρ, os, h〉
(n+1)
; m 〈i′, ρ′, os ′, h′〉

Let two stack types st , st ′ ∈ S⋆ such that

region, se, ~ka
kh−→ kr, i ⊢ st ⇒ st ′

then h �kh
h′.

We then can conclude about the side-effect safety of all methods in P , using an
induction on the number of virtual call on semantics derivation and an induction
on the derivation length.

Lemma C.0.12. For all method m in P , let (regionm, junm) be a safe cdr for m.
Suppose all methods m in P are typable with respect to regionm and to all signatures
in PoliciesΓ(m). Then all method m is side-effect-safe with respect to the heap effect
level of all the policies in PoliciesΓ(m).

Non-interference. The soundness proof for non-interference reuses all the basic
lemmas proved for JVMO which are still valid for the instruction of the JVMO

(except invokevirtual). The virtual call requires specific lemmas given below.

Definition C.0.2 non-interference at order n. A method m is non-interferent at
order n with respect to a security signature ~kv−→kr, if for every partial func-
tion β ∈ L ⇀ L and every states 〈1, ρ1, ǫ1, h1〉, 〈1, ρ2, ǫ, h2〉 ∈ StateC , every heaps
h′

1, h
′
2 ∈ Heap, every values v1, v2 ∈ V and every integer n1, n2 ∈ N such that

〈i, ρ1, os1, h1〉 ⇓
(n1)
m v1, h

′
1, 〈i, ρ2, os2, h2〉 ⇓

(n2)
m v2, h

′
2, n1 ≤ n, n2 ≤ n and〈1, ρ1, ǫ, h1〉 ∼β,ǫ,ǫ

〈1, ρ2, ǫ, h2〉 there exists a partial function β′ ∈ L ⇀ L such that β ⊆ β′, h′
1 ∼β′ h′

2

and kr ≤ kobs implies v1 ∼β′ v2.

Lemma C.0.13 JVMC locally respect for virtual calls. Let n an inte-
ger, let P a program and a table of signature Γ such that all its method m′ are
non-interferent at order n, with respect to all the policies in PoliciesΓ(m′) and side-
effect-safe with respect to the heap effect level of all the policies in PoliciesΓ(m′).

Let m be a method in P , β ∈ L ⇀ L a partial function, s1, s2 ∈ StateC two
JVMC states at the same program point i and two stack types st1, st2 ∈ S⋆ such
that s1 ∼st1,st2,β s2.
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If there exist two states s′1, s
′
2 ∈ StateC and two stack types st ′1, st

′
2 ∈ S⋆ such that

s1 ;
(n1+1)
m s′1 with n1 ≤ n, s2 ;

(n2+1)
m s′2 with n2 ≤ n, Γ, region, se, ~ka

kh−→ kr, i ⊢

st1 ⇒ st ′1 and Γ, region, se, ~ka
kh−→ kr, i ⊢ st2 ⇒ st ′2 then there exists β′ ∈ L ⇀ L

such that s′1 ∼st′1,st ′2,β′ s′2 and β ⊆ β′.

Lemma C.0.14 JVMC step consistent for virtual calls. Let P be a pro-
gram and a table of signature Γ such that all its method m′ are side-effect-safe with
respect to the heap effect level of all the policies in PoliciesΓ(m′). Let m a method
in P , β a partial function β ∈ L ⇀ L, 〈i, ρ, os , h〉, s0 ∈ StateC two JVMC states,
and two stack types st , st0 ∈ S⋆ such that 〈i, ρ, os , h〉 ∼st,st0,β s0, se(i) 6≤ kobs and
high(os, st).

If there exists a state 〈i′, ρ′, os ′, h′〉 ∈ StateC and a stack type st ′ ∈ S⋆ such

that 〈i, ρ, os , h〉 ;
(n+1)
m 〈i, ρ′, os ′, h′〉 and Γ, region, se, ~ka

kh−→ kr, i ⊢ st ⇒ st ′ then
〈i′, ρ′, os ′, h′〉 ∼st′,st0,β s0.

Virtual call is not a branching source in JVMC so no high branching lemma is
required for this instruction.

Lemma C.0.15 JVMC high step for virtual calls. Let m a method, let two
JVMC states 〈i, ρ, os , h〉, 〈i′, ρ′, os ′, h′〉 ∈ StateC and two stack types st , st ′ ∈ S⋆

such that 〈i, ρ, os, h〉 ;
(n+1)
m 〈i, ρ′, os ′, h′〉, Γ, region, se, ~ka

kh−→ kr, i ⊢ st ⇒ st ′,
se(i) 6≤ kobs and high(os, st) then high(os′, st ′).

D. JVMG TYPE SYSTEM SOUNDNESS

Side-effect safety. The first part of the soundness proof consist in proving that
all methods of a typable program are side-effect-safe.

In this paragraph m is supposed to be a method of P , region a cdr function for

m, se a security environment and ~kv
kh−→ ~kr a security signature.

We show that all instruction step transform a heap h into a heap h′ such that
h �kh

h′. For the special case of virtual call we need an inductive hypothesis
about the side-effect safety of all methods in P . We hence introduce the notion of
Side-effect-safe at order n.

Definition D.0.3 Side-effect-safe at order n. A method m is side-effect-safe at
order n with respect to a security level kh if for all state 〈i, ρ, os , h〉 ∈ StateG , all

heap h′ ∈ Heap and result t ∈ V + L, 〈i, ρ, os , h〉 ⇓
(n)
m r, h′ implies h �kh

h′.

Lemma D.0.16. Let n an integer and suppose all method m′ in P are side-effect-
safe at all order p, p < n with respect to the heap effect level of all the policies in
PoliciesΓ(m′).

Let 〈i, ρ, os , h〉, 〈i, ρ′, os ′, h′〉 ∈ StateG two states and p ∈ N, p ≤ n such that

〈i, ρ, os , h〉
(p)
;m,τ 〈i′, ρ′, os ′, h′〉

Let two stack types st , st ′ ∈ S⋆ such that

i ⊢τ st ⇒ st ′

then h �kh
h′.

Proof. By a case analysis on the instruction Pm[i]. According to the form
〈i, ρ, os , h〉 ;m 〈i′, ρ′, os ′, h′〉 of the semantic step, only four cases appear:

Case 1:. Pm[i] does not modify the heap. We can simply conclude by reflexivity
of �kh

.

Case 2:. Pm[i] = new C or an instruction throwing a null pointer exception. h′

is of the form h⊕{fresh(h) 7→ default(C)} and we can conclude with Lemma E.2.1.
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Case 3:. Pm[i] = putfield f . h and h′ only differ in field f and the corresponding
typing rule implies kh ≤ ft(f). Hence h and h′ correspond for all field f ′ such that
kh 6≤ ft(f ′): h �kh

h′ holds.

Case 4:. Pm[i] = invokevirtual mID and the called method has terminated nor-
mally or with an exception which is caught in m. p is necessarily of the form p′ + 1
and we have an hypothesis like

〈1, {this 7→ l, ~x 7→ os1}, ǫ, h〉 ⇓
(p′)
m′ (r′, h′)

But p′ < n so m′ is side-effect safe at order p′ and we can hence conclude that
h �kh

h′.

The next lemma treats the case of return instruction.

Lemma D.0.17. Let n be an integer and suppose all method m′ in P is side-
effect-safe at all order p, p < n with respect to the heap effect level of all the policies
in PoliciesΓ(m′).

Let a method m and 〈i, ρ, os, h〉 ∈ StateG a state, h′ ∈ Heap a heap, r ∈ V + L a
result and p ∈ N, p ≤ n such that

〈i, ρ, os , h〉
(p)
;m,τ r, h′

Let a stack type st ∈ S⋆ such that

i ⊢τ st ⇒

then h �kh
h′.

Proof. By a case analysis on the instruction in Pm[i]. The form of the semantic
step constrains Pm[i] to be an instruction ending the execution of m. We hence are
in one of the following cases:

Case 1. Pm[i] = return. h is hence equal to h′ and we conclude by reflexivity of
�kh

.

Case 2. if Pm[i] is an instruction throwing a null pointer exception, h′ is of the
form h⊕{fresh(h) 7→ default(C)} and we can conclude with Lemma E.2.1.

Case 3:. Pm[i] = invokevirtual mID and the called method has terminated abnor-
mally with an exception uncaught in m. p is necessarily of the form p′ + 1 and we
have an hypothesis like

〈1, {this 7→ l, ~x 7→ os1}, ǫ, h〉 ⇓
(p′)
m′ 〈l′〉, h′

But p′ < n so m′ is side-effect safe at order p′ and we can hence conclude that
h �kh

h′.

We then can conclude about the side-effect safety of all methods in P , using an
induction on the number of virtual calls on semantics derivation and an induction
on the derivation length.

Proposition D.0.1 side-effect safety. Let for all method m in P , (regionm, junm)
a safe cdr for m. Suppose all methods m in P are typable with respect to regionm

and to all signatures in PoliciesΓ(m). Then all method m are side-effect-safe with
respect to the heap effect level of all the policies in PoliciesΓ(m).

Proof. We show for all n ∈ N that all method m in P is side-effect-safe at order
n with respect to the heap effect level of all the policies in PoliciesΓ(m). We use a
strong
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induction on n. So we suppose all method m in P is side-effect-safe at order k,
if k < n. We take a method m and prove that it is side-effect-safe at order n with
respect to any heap effect level kh of all the policies in PoliciesΓ(m).

Given a state 〈i0, ρ0, os0, h0〉 and a final state (r, h′) such that 〈i0, ρ0, os0, h0〉 ⇓(n)

(r, h′) we have to prove that h0 �kh
h′.

There is necessarily a derivation

〈i0, ρ0, os0, h0〉
(n0)
; m,τ0 · · · 〈ik, ρk, osk, hk〉

(nk)
; m,τk

(r, h)

with n0 + · · · + nk ≤ n.
P is typable so there exists S ∈ PP → S⋆ and st1, . . . , stk−1 ∈ S⋆ such that

i0 ⊢τ0 S(i0) ⇒ st1 i1 ⊢τ1 S(i1) ⇒ st2 · · · ik ⊢τk S(ik) ⇒

For all i ∈ {0, . . . , k}, ni ≤ n so by Lemmas D.0.16 and D.0.17 we have

h0 �kh
h1 �kh

· · · �kh
hk �kh

h

We conclude by transitivity of �kh
.

Non-interference proof. When a method execution ends in a high context (i.e.
in a region where the security environment is high), the type system enforces the
output level to be high according to the kind of termination of the method (normal
or with an uncaught exception). This notion of high result is captured by the
following formal definition.

Definition D.0.4 High result. Given (r, h) ∈ (V +L)×Heap and an output level
~kr, the predicate highResult ~kr

(r, h) is inductively defined by:

~kr[n] 6≤ kobs v ∈ V

highResult ~kr
(v, h)

~kr[class(h(l))] 6≤ kobs l ∈ dom(h)

highResult ~kr
(〈l〉, h)

We then prove non-interference using the four lemmas sketched in Section 2.
From now, we assume P is a program and Γ a table of signatures such that all its
method m are side-effect-safe with respect to the heap effect level of all the policies
in PoliciesΓ(m).

In this paragraph m is suppose to be a method of P , (region, jun) a cdr function
for m, se a security environment, S ∈ PP → S⋆ a stack type annotation and
~kv

kh−→ ~kr a security signature.

Lemma D.0.18 JVMG high step. Let 〈i, ρ, os , h〉, 〈i′, ρ′, os ′, h′〉 ∈ StateG be two
JVMG states and two stack types st , st ′ ∈ S⋆ such that

〈i, ρ, os, h〉
(n)
;m,τ 〈i, ρ′, os ′, h′〉 i ⊢ st ⇒τ st ′

se(i) 6≤ kobs high(os , st)

then

high(os ′, st ′)

Proof. By case analysis on Pm[i]. Only non final steps are considered here. For
each case we first resume the hypotheses and state the result to prove in table of
Figure 27.

Each case is easily proved using the fact that se(i) 6≤ kobs and the following
generic property:

∀k ∈ L, os ∈ V⋆, st ∈ S⋆, high(os , st) implies high(os , liftk(st))
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Pm[i] Hypotheses Goal

push n high(os, st) high(n :: os, se(i) :: st)
binop op high(n1 :: n2 :: os, k1 :: k2 :: st) high(n1 op n2 :: os,

se(i) :: (k1 ⊔ k2 ⊔ se(i)) :: st)
pop high(v :: os, k :: st) high(os, st)

store x high(v :: os, k :: st) high(os, st)

load x high(os, st) high(ρ(x) :: os,
“

~kv(x) ⊔ se(i)
”

:: st)

goto j high(os, st) high(os, st)
ifeq j high(n :: os, k :: st) high(os , liftk(st))
new C high(os, st) high(l :: os, se(i) :: st)

getfield f high(l :: os, k :: st) high(h(l).f :: os, liftk((ft(f) ⊔ se(i)) :: st))
high(null :: os, k :: st) high(l′ :: ǫ, k ⊔ se(i) :: ǫ)

putfield f high(v :: l :: os, k1 :: k2 :: st) high(os, liftk2
st)

high(v :: null :: os, k1 :: k2 :: st) high(l′ :: ǫ, k2 ⊔ se(i) :: ǫ)

invokevirtual mID high(os1 :: l :: os2, st1 :: k :: st2) high(v :: os2,

liftk⊔ke

“

( ~k′
r [n] ⊔ se(i)) :: st2

”

)

high(os1 :: null :: os2, st1 :: k :: st2) high(l′ :: ǫ, k ⊔ ~k′
r[e] :: ǫ)

throw high(l :: os, k :: st) high(l :: ǫ, k ⊔ se(i) :: ǫ)
high(null :: os, k :: st) high(l′ :: ǫ, k ⊔ se(i) :: ǫ)

Fig. 27. Case analysis for Lemma D.0.18

Lemma D.0.19 JVMG step consistent. Let β a partial function β ∈ L ⇀

L, let 〈i, ρ, os , h〉, 〈i0, ρ0, os0, h0〉 ∈ StateG two JVMG states and two stack types
st , st0 ∈ S⋆ such that

〈i, ρ, os , h〉 ∼st,st0,β 〈i0, ρ0, os0, h0〉 se(i) 6≤ kobs high(os, st)

(1 ) If there exists a state 〈i′, ρ′, os ′, h′〉 ∈ StateG, a tag τ ∈ {∅} + C and a stack
type st ′ ∈ S⋆ such that

〈i, ρ, os , h〉
(n)
;m,τ 〈i′, ρ′, os ′, h′〉 i ⊢τ st ⇒ st ′

then

〈i′, ρ′, os ′, h′〉 ∼st ′,st0,β 〈i0, ρ0, os0, h0〉

(2 ) If there exists a result r ∈ V +L, a heap h′ ∈ Heap and a tag τ ∈ {∅}+ C such
that

〈i, ρ, os, h〉
(n)
;m,τ r, h′ i ⊢τ st ⇒

then

highResult ~kr
(r, h′) and h′ ∼β h0

Proof.

(1) Non-terminal step of the form 〈i, ρ, os , h〉
(n)
;m,τ 〈i′, ρ′, os ′, h′〉. Proofs can be

reduce to examining local variables and heaps because, from high(os , st) and
os ∼st,st0,β os0 we first remark that high(os0, st0). Using the previous lemma
(JVMG high step), we know that high(os ′, st ′). As a consequence, we already
know that os ′ ∼st′,st0,β os0 for any kind of instruction. We now prove the
remaining ρ′ ∼ ~kv,β

ρ0 and h′ ∼β h0 properties.
Local variables: Only the instruction store x modifies the local variable. We
hence have to prove

ρ⊕{x 7→ v} ∼ ~kv,β
ρ0

We remark that ~kv(x) 6≤ kobs thanks to the typing rule which impose k ≤ ~kv(x)
and the hypothesis high(v :: os , k :: st) which gives k 6≤ kobs. Since local
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variables indistinguishability only depends on low variable and the modified
variable x is high, we are done.

Heaps: Instruction which modify heaps are new C, normal execution of putfield f ,
invokevirtual mID and all instructions which throw a null pointer exception. We
now examine this different cases and conclude using an appropriate technical
lemma put in appendix :

— new C. We conclude by lemma E.2.2.

— putfield f . We conclude by lemma E.2.3.

— invokevirtual mID. We conclude by lemma E.2.4.

— Null pointer throwing. We conclude by lemma E.2.2.

(2) We make a case analysis on Pm[i] for step of the form 〈i, ρ, os , h〉
(n)
;m,τ r, h′.

— return. The corresponding typing rule enforce k ≤ ~kr[n] with high(v :: os , k ::

st) so ~kr[n] 6≤ kobs holds. The heap is not modified here so we are done.

— getfield f (uncaught null pointer exception). By the typing rule, we have

k ≤ ~kr[np] and high(null :: os , k :: st) so ~kr[np] 6≤ kobs. The proof concerning
heap is similar to the case where a null pointer exception is caught (see previous
item).

— putfield f (uncaught null pointer exception). By the typing rule, we have

k2 ≤ ~kr[np] and high(v :: null :: os , k1 :: k2 :: st) so ~kr[np] 6≤ kobs. The proof
concerning heap is similar to the case where a null pointer exception is caught
(see previous item).

— invokevirtual mID (uncaught exception e). By the typing rule, we have k ≤
~kr[e] and high(os1 :: v :: os2, st1 :: k :: st2) so ~kr[e] 6≤ kobs. The proof concerning
heap is similar to the case where the exception is caught (see previous item).

— throw. k ≤ ~kr[e] and high(l :: os , k :: st) (or high(null :: os , k :: st)) lead to

the expected condition ~kr[e] 6≤ kobs. If e 6= np, the heap is not modified. If
e = np we conclude about the heap condition as when a null pointer exception
is caught (see previous item).

These two lemmas about high steps are then used (with SOAP properties) to
characterize execution of high fragment of code. The proof is more complex than
the one sketched in Section 2 because of the tag that now decorate regions.

We now give the definition of typable execution that will be used in the next
proofs.

Definition D.0.5 typable execution.

— An execution step 〈i, ρ, os , h〉
(n)
;m,τ 〈i′, ρ′, os ′, h′〉 is typable with respect to

S ∈ PP → S⋆ if there exists st′ such that, i ⊢τ Si ⇒ st′ and st′ ⊑ Si′ .

— An execution step 〈i, ρ, os, h〉
(n)
;m,τ (r, h′) is typable with respect to S ∈

PP → S⋆ if i ⊢τ Si ⇒.

— An execution sequence s0
(n0)
; m,τ0 s1

(n1)
; m,τ0 . . . sk

(nk)
; m,τk

(r, h′) is typable
with respect to S ∈ PP → S⋆ if

— for all i, 0 ≤ i < k, si
(ni)
; m,τi

si+1 is typable with respect to S;

— sn
(nk)
; m,τk

(r, h′) is typable with respect to S.

The first lemma prove that high executions end in a junction point or in a return
point.

ACM Transactions on Computational Logic, Vol. V, No. N, September 2007.



56 · Gilles Barthe, David Pichardie and Tamara Rezk

Lemma D.0.20 Iterated step consistent. Let β a partial function β ∈ L ⇀

L, 〈i0, ρ0, os0, h0〉, 〈i, ρ, os , h〉 ∈ StateG two JVMG states and a stack type st ∈ S⋆

such that

〈i0, ρ0, os0, h0〉 ∼Si0 ,st,β 〈i, ρ, os , h〉 high(os0, Si0)

Let i ∈ PP and τ ∈ {∅} + C such that

i0 ∈ region(i, τ) se is high in region region(i, τ)

Suppose we have a derivation

〈i0, ρ0, os0, h0〉
(n0)
; m,τ0 · · · 〈ik, ρk, osk, hk〉

(nk)
; m,τk

(r, h′)

and suppose this derivation is typable with respect to S. Then one of the following
cases holds:

(1 ) jun(i, τ) is defined and there exists j with 0 < j ≤ k such that

ij = jun(i, τ), 〈ij , ρj , osj , hj〉 ∼Sij
,st,β 〈i, ρ, os , h〉 and high(osj , Sij

)

(2 ) jun(i, τ) is undefined, k ∈ region(i, τ), highResult ~kr
(r, h′) and h′ ∼β h.

Proof. By induction on k.

— k = 0 we can directly apply case 2 of Lemma D.0.19 and SOAP3 to conclude
that jun(i, τ) is undefined. Hence we are in case 2.

— we suppose the statement is true for a given k and we prove it now for k + 1.
First note that se(i0) 6≤ kobs, high(os0, Si0) and i0 ⊢ Si0 ⇒ st ′1 hold for some st ′1
such that st ′1 ⊑ Si1 , so we have

〈i1, ρ1, os1, h1〉 ∼st′1,st,β s and high(os1, st
′
1)

by case 1 of Lemma D.0.19 and by Lemma D.0.18.
By subtyping lemmas E.4.3 and E.4.1 (stated in page 73) we have:

〈i1, ρ1, os1, h1〉 ∼Si1 ,st,β s and high(os1, Si1)

Then, using SOAP2, we have i1 ∈ region(i, τ) or i1 = jun(i, τ).
In the first case, it is sufficient to invoke induction hypothesis on derivation

〈i1, ρ1, os1, h1〉
(n1)
; m,τ1 · · · 〈ik+1, ρk+1, osk+1, hk+1〉

(nk+1)
; m,τk+1

(r, h)

to conclude. We can apply inductive hypothesis because:

— i1 ∈ region(i, τ);
— the derivation is on length k and is typable;
— 〈i1, ρ1, os1, h1〉 ∼Si1 ,st,β s and high(os1, Si1) hold
In the second case we can conclude we are in case 1 by taking j = 1 and because
we know 〈i1, ρ1, os1, h1〉 ∼Si1 ,st,β s and high(os1, Si1) hold.

In order to describe high executions starting from high branching we first prove
a technical lemma where one execution starts in a junction point. Such a lemma
would not have been necessary if we had not distinguished regions according to
tags.

Lemma D.0.21 Iterated step consistent on junction point. Let β a par-
tial function β ∈ L ⇀ L and 〈i0, ρ0, os0, h0〉, 〈i′0, ρ

′
0, os

′
0, h

′
0〉 ∈ StateG two JVMG

states such that

〈i0, ρ0, os0, h0〉 ∼Si0 ,Si′
0
,β 〈i′0, ρ

′
0, os

′
0, h

′
0〉, high(os0, Si0), and high(os ′0, Si′0

)
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Let i ∈ PP and τ, τ ′ ∈ {∅} + C such that

i0 ∈ region(i, τ) se is high in region region(i, τ)
i′0 = jun(i, τ ′) se is high in region region(i, τ ′)

Suppose we have a derivation

〈i0, ρ0, os0, h0〉
(n0)
; m,τ0 · · · 〈ik, ρk, osk, hk〉

(nk)
; m,τk

(r, h)

and suppose this derivation is typable with respect to S. Suppose we have a deriva-
tion

〈i′0, ρ
′
0, os

′
0, h

′
0〉

(n′
0)

; m,τ ′
0
· · · 〈i′k, ρ′k, os ′k, h′

k〉
(n′

k)
; m,τ ′

k
(r′, h′)

and suppose this derivation is typable with respect to S.
Then one of the following case holds:

(1 ) there exists j, j′ with 0 ≤ j ≤ k and 0 ≤ j′ ≤ k′ such that

ij = i′j′ and 〈ij , ρj , osj , hj〉 ∼Sij
,Si′

j
,β 〈i′j′ , ρj′ , osj′ , hj′ 〉

(2 ) (r, h) ∼ ~kr ,β
(r′, h′)

Proof. We first invoke Lemma D.0.20 on the derivation

〈i0, ρ0, os0, h0〉
(n0)
; m,τ0 · · · (r, h)

and the region region(i, τ). We have then two cases:

(1) There exists j, with 0 < j ≤ k such that ij = jun(i, τ) and 〈ij , ρj , osj , hj〉 ∼Sij
,Si′

0
,β

〈i′0, ρ
′
0, os

′
0, h

′
0〉.

If jun(i, τ) = jun(i, τ ′) where are in case 1 with j′ = 0.
If not, we can invoke SOAP4: jun(i, τ) ∈ region(i, τ ′) or jun(i, τ ′) ∈ region(i, τ).
— If ij = jun(i, τ) ∈ region(i, τ ′), we invoke Lemma D.0.20 on the derivation

〈ij, ρj , osj , hj〉
(nj)
; m,τj

· · · (r, h) and the region region(i, τ ′). Either there exists
q, with j < q ≤ k such that iq = jun(i, τ ′) = i′0 and 〈iq, ρq, osq, hq〉 ∼Siq ,Si′0

,β

〈i′0, ρ
′
0, os

′
0, h

′
0〉 and we can conclude we are in case 1 with j = q and j′ = 0.

Or k ∈ region(i, τ ′) and we obtain a contradiction (thanks to SOAP3) because
jun(i, τ ′) is defined and k is a return point.
— If i′0 = jun(i, τ ′) ∈ region(i, τ), we invoke Lemma D.0.20 on the derivation

〈i′0, ρ
′
0, os

′
0, h

′
0〉

(n′
0)

; m,τ ′
0
· · · (r′, h′) and the region region(i, τ). Either there exists

j′, with 0 < j′ ≤ k′ such that i′j′ = jun(i, τ) = ij and 〈i′j′ , ρj′ , osj′ , hj′〉 ∼Si′
j′

,Si0 ,β

〈i0, ρ0, os0, h0〉 and we can conclude we are in case 1. Or k′ ∈ region(i, τ) and
we obtain a contradiction (tanks to SOAP3) because jun(i, τ) = ij is defined
and k′ is a return point.

(2) jun(i, τ) is undefined, k ∈ region(i, τ), highResult ~kr
(r, h) and h ∼β h′

0. k

is a return point in region region(i, τ) so, thanks to SOAP5, we know that
i′0 = jun(i, τ ′) ∈ region(i, τ). We can hence invoke Lemma D.0.20 on the

derivation 〈i′0, ρ
′
0, os

′
0, h

′
0〉

(n′
0)

; m,τ ′
0
· · · (r′, h′) and the region region(i, τ). Ei-

ther there exists j′, with 0 < j′ ≤ k′ such that i′j′ = jun(i, τ) = ij and
〈i′j′ , ρj′ , osj′ , hj′〉 ∼Si′

j′
,Si0 ,β 〈i0, ρ0, os0, h0〉 and we can conclude we are in case

1. Or k′ ∈ region(i, τ), highResult ~kr
(r′, h′), h′ ∼β h0 and we can conclude we

are in case 2.

Thanks to the previous lemma, we establish now that after a high branching,
both executions stay high until reaching a common point or a return point.
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Lemma D.0.22 Iterated step consistent after branching. Let β a par-
tial function β ∈ L ⇀ L and 〈i0, ρ0, os0, h0〉, 〈i′0, ρ

′
0, os

′
0, h

′
0〉 ∈ StateG two JVMG

states such that

〈i0, ρ0, os0, h0〉 ∼Si0 ,Si′0
,β 〈i′0, ρ

′
0, os

′
0, h

′
0〉 high(os0, st0) high(os′0, st

′
0)

Let i ∈ PP and τ, τ ′ ∈ {∅} + C such that

i 7→τ i0 and i 7→τ ′

i′0

Suppose that se is high in region regionm(i, τ) and also in region regionm(i, τ ′).
Suppose we have a derivation

〈i0, ρ0, os0, h0〉
(n0)
; m,τ0 · · · 〈ik, ρk, osk, hk〉

(nk)
; m,τk

(r, h)

and suppose this derivation is typable with respect to S. Suppose we have a deriva-
tion

〈i′0, ρ
′
0, os

′
0, h

′
0〉

(n′
0)

; m,τ ′
0
· · · 〈i′k, ρ′k, os ′k, h′

k〉
(n′

k)
; m,τ ′

k
(r′, h′)

and suppose this derivation is typable with respect to S. Then one of the following
case holds:

(1 ) there exists j, j′ with 0 ≤ j ≤ k and 0 ≤ j′ ≤ k′ such that ij = i′j′ and
〈ij, ρj , osj , hj〉 ∼Sij

,Si′
j′

,β 〈i′j′ , ρj′ , osj′ , hj′〉;

(2 ) (r, h) ∼ ~kr ,β
(r′, h′)

Proof. If i0 = i′0 then case 1 trivially holds.
If i0 6= i′0 then, using SOAP1 two times, we distinguish four cases:

(1) i0 ∈ region(i, τ) and i′0 ∈ region(i, τ ′). We first invoke Lemma D.0.20 on the

derivation 〈i0, ρ0, os0, h0〉
(n0)
; m,τ0 · · · (r, h) and the region region(i, τ). We

hence obtain two cases. In the first case there exists j, with 0 < j ≤ k

such that ij = jun(i, τ) and 〈ij , ρj , osj , hj〉 ∼Sij
,Si′0

,β 〈i′0, ρ
′
0, os

′
0, h

′
0〉 and we

can conclude 1 thanks to Lemma D.0.21. In the second case k ∈ region(i, τ),
highResult ~kr

(r, h) and h ∼β h′
0. In this case, we invoke Lemma D.0.20 on

the derivation 〈i′0, ρ
′
0, os

′
0, h

′
0〉

(n′
0)

; m,τ ′
0
· · · (r′, h′) and the region region(i, τ ′).

We again obtain two cases. If there exists j′, with 0 < j′ ≤ k′ such that
ij′ = jun(i, τ ′) and 〈ij′ , ρj′ , osj′ , hj′〉 ∼Si

j′
,Si0 ,β 〈i0, ρ0, os0, h0〉, we can conclude

we are in case 1 thanks to Lemma D.0.21. In the second case k′ ∈ region(i, τ ′),
highResult ~kr

(r′, h′) and h′ ∼β h0. We hence have























highResult ~kr
(r, h)

highResult ~kr
(r′, h′)

h′ ∼β h0

h ∼β h′
0

h0 ∼β h′
0

which implies (r, h) ∼ ~kr ,β
(r′, h′).

(2) i0 = jun(i, τ) and i′0 ∈ region(i, τ ′). We easily conclude by Lemma D.0.21.

(3) i0 ∈ region(i, τ) and i′0 = jun(i, τ ′). We easily conclude by Lemma D.0.21.

(4) i0 = jun(i, τ) and i′0 = jun(i, τ ′). If jun(i, τ) = jun(i, τ ′) we are in case 1. If not,
SOAP4 applies : i0 = jun(i, τ) ∈ region(i, τ ′) or i′0 = jun(i, τ ′) ∈ region(i, τ). In
both cases Lemma D.0.21 allows to conclude.
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We now must prove similar lemmas about high execution for the special cases
where a branching occurs in a return point. This first lemma is a corollary of
Lemma D.0.19.

Lemma D.0.23 JVMG final step consistent. Let β a partial function β ∈
L ⇀ L, 〈i, ρ, os, h〉 ∈ StateG a JVMG state, h0 ∈ Heap a heap and a stack type
st ∈ S⋆ such that

h ∼β h0 se(i) 6≤ kobs high(os , st)

(1 ) If there exists a state 〈i′, ρ′, os ′, h′〉 ∈ StateG, a tag τ ∈ {∅} + C and a stack
type st ′ ∈ S⋆ such that

〈i, ρ, os , h〉
(n)
;m,τ 〈i, ρ′, os ′, h′〉 i ⊢τ st ⇒ st ′

then

high(os ′, st ′) and h′ ∼β h0

(2 ) If there exists a result r ∈ V +L, a heap h′ ∈ Heap and a tag τ ∈ {∅}+ C such
that

〈i, ρ, os, h〉
(n)
;m,τ r, h′ i ⊢τ st ⇒

then

highResult ~kr
(r, h′) and h′ ∼β h0

Proof. Similar to the proof of Lemma D.0.19.

Lemma D.0.24 Iterated final step consistent after branching. Let β

a partial function β ∈ L ⇀ L, 〈i0, ρ0, os0, h0〉 ∈ StateG a JVMG states and h′
0 ∈

Heap a heap such that

h0 ∼β h′
0 high(os0, Si0)

Let i ∈ PP and τ, τ ′ ∈ {∅} + C such that

i0 ∈ region(i, τ) and i 7→τ ′

Suppose that se is high in region regionm(i, τ). Suppose we have a derivation

〈i0, ρ0, os0, h0〉
(n0)
; m,τ0 · · · 〈ik, ρk, osk, hk〉

(nk)
; m,τk

(r, h)

and suppose this derivation is typable with respect to S. Then

highResult ~kr
(r, h) and h ∼β h′

0

Proof. By induction on k.

— k = 0 we can directly apply case 2 of Lemma D.0.23 to conclude.

— we suppose the statement is true for a given k and we prove it now for k + 1.
First note that se(i0) 6≤ kobs, high(os0, Si0) and i0 ⊢ Si0 ⇒ st1 hold for some st1

such that st1 ⊑ Si1 , so we have

h1 ∼β h′
0 and high(os1, st1)

by case 1 of lemma D.0.23 and by lemma D.0.18. By subtyping lemma E.4.1 we
have also:

high(os1, Si1)

Then, using SOAP2, we have i1 ∈ region(i, τ) or i1 = jun(i, τ).
In the first case, it is sufficient to invoke induction hypothesis on derivation

〈i1, ρ1, os1, h1〉
(n1)
; m,τ1 · · · 〈ik+1, ρk+1, osk+1, hk+1〉

(nk+1)
; m,τk+1

(r, h)

to conclude. Let’s justify we can use it:
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— i1 ∈ region(i, τ);
— the derivation is on length k and is typable;
— h1 ∼β h′

0 and high(os1, S1) hold
In the second case we have a contradiction because SOAP3 implies that jun(i, τ) is
undefined.

This lemma ends the proof about high executions. We now examine parallel
executions of methods, proving first the two remaining lemmas sketched in section 2.
Method calls requires to use a notion of non-interference at order n to state these
lemmas.

Definition D.0.6 non-interference at order n. A method m is non-interferent at
order n with respect to a security signature ~kv−→ ~kr, if for every partial function
β ∈ L ⇀ L and every states 〈1, ρ1, ǫ, h1〉, 〈1, ρ2, ǫ, h2〉 ∈ StateG , every heaps h′

1, h
′
2 ∈

Heap, every results r1, r2 ∈ V + L and every integer n1, n2 ∈ N such that

〈i, ρ1, os1, h1〉 ⇓
(n1)
m r1, h

′
1, 〈i, ρ2, os2, h2〉 ⇓

(n2)
m r2, h

′
2, n1 ≤ n n2 ≤ n

and

〈1, ρ1, ǫ, h1〉 ∼β,ǫ,ǫ 〈1, ρ2, ǫ, h2〉

there exists a partial function β′ ∈ L ⇀ L such that

β ⊆ β′ and (r1, h
′
1) ∼ ~kr,β′ (r2, h

′
2)

Lemma D.0.25 JVMG high branching. Let n an integer such that all method
m′ in P are non-interferent at all order k, k < n, with respect to all the policies in
PoliciesΓ(m′).

Let m a method in P , β ∈ L ⇀ L a partial function, s1, s2 ∈ StateG two JVMG

states at the same program point i and two stack types st1, st2 ∈ S⋆ such that

s1 ∼st1,st2,β s2

(1 ) If there exists two states 〈i1, ρ
′
1, os

′
1, h

′
1〉, 〈i2, ρ

′
2, os

′
2, h

′
2〉 ∈ StateG and two stack

types st ′1, st
′
2 ∈ S⋆ such that

i1 6= i2

s1
(n1)
; m,τ1 〈i1, ρ

′
1, os

′
1, h

′
1〉 n1 ≤ n

s2
(n2)
; m,τ2 〈i2, ρ

′
2, os

′
2, h

′
2〉 n2 ≤ n

i ⊢τ1 st1 ⇒ st ′1 i ⊢τ2 st2 ⇒ st ′2

then

high(os ′1, st
′
1) and se is high in region(i, τ1)

high(os ′2, st
′
2) and se is high in region(i, τ2)

(2 ) If there exists a state 〈i1, ρ′1, os
′
1, h

′
1〉 ∈ StateG, a final result (r2, h

′
2) ∈ (V +

L) × Heap and a stack type st ′1 ∈ S⋆ such that

s1
(n1)
; m,τ1 〈i1, ρ

′
1, os

′
1, h

′
1〉 n1 ≤ n

s2
(n2)
; m,τ2 (r2, h

′
2) n2 ≤ n

i ⊢τ1 st1 ⇒ st ′1 i ⊢τ2 st2 ⇒

then

high(os ′1, st
′
1) and se is high in region(i, τ1)
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Proof. By case analysis on Pm[i]. We only consider branching instructions here.

Case:. Pm[i] = ifeq j. By semantics, τ1 = ∅, τ2 = ∅, s1 = 〈i, ρ1, n1 :: os1, h1〉
and s2 = 〈i, ρ2, n2 :: os2, h2〉. Since i1 6= i2, we have necessarily n1 6= n2. By
typability, st1 = k1 :: st ′′1 , st2 = k2 :: st ′′2 , st ′1 = liftk1st

′′
1 and st ′2 = liftk2st

′′
2 . Since

n1 :: os1 ∼k1::st′′1 ,k2::st ′′2 ,β n2 :: os2, and n1 6= n2 we deduce that k1 6≤ kobs and
k2 6≤ kobs. The first consequence is high(os1, liftk1st

′′
1) and high(os2, liftk2st

′′
2). By

typability, ∀j′ ∈ region(i, ∅), k1 ≤ se(j′) and hence se is high in region region(i, ∅).

Case:. Pm[i] = invokevirtual mID. There are several kinds of branching for
method calls. s1 is necessarily of the form 〈i, ρ1, os1 :: v1 :: os ′1, h1〉 and s2

of the form 〈i, ρ2, os2 :: v2 :: os ′2, h2〉 with v1, v2 ∈ L ∪ {null}. Furthermore,
st1 = st ′1 :: k1 :: st ′′1 and st2 = st ′2 :: k2 :: st ′′2 . We then make a first distinction
according if one of v1 or v2 is equal to null .

Case 1: v1 or v2 is equal to null . There is only a branching if the other value is
not null. We only make the case v1 = null and v2 = l2 ∈ L, the other case is done
by symmetry.
By hypothesis

os1 :: null :: os ′1 ∼st ′1::k1::st ′′1 ,st ′2::k2::st′′2 ,β os2 :: l2 :: os ′2

and length(os1) = length(st1) = length(os2) = length(st2), so necessarily k1 6≤ kobs

and k2 6≤ kobs. We deduce then high(os ′1, (k1 ⊔ ~k′
r[np]) :: ǫ) (if Handlerm(i,np) = t)

and that se is high in region region(i, ∅) thanks to the typability constraint ∀j ∈

region(i, ∅), (k1⊔ ~k′
r[np]) ≤ se(j) (which occurs in both typing rules, if np is caught

or not).

We then examine the transition 〈i, ρ2, os2 :: l2 :: os ′2, h2〉
(n2)
; m · · · . There are three

cases: normal termination of the called method, termination by an exception which
can be caught or uncaught in m. In all cases the corresponding typing rules enforce
that all element of the next stack type (if there is any one) are greater or equal to
k2 and for all point j in region(i, τ2) k2 ≤ se(i). Hence we are done since k2 6≤ kobs.

Case 2: both v1 and v2 are in L (we note them l1 and l2 from now). By hypothesis

os1 :: l1 :: os ′1 ∼st′1::k1::st′′1 ,st ′2::k2::st ′′2 ,β os2 :: l2 :: os ′2

Since length(os1) = length(st1) = length(os2) = length(st2), we have by case analy-
sis on lemme E.1.4:

— either k1 6≤ kobs and k2 6≤ kobs. In this case we make a similar reasoning as
before . There are three cases for the first execution and three others for the second
but in all cases the corresponding typing rules enforce that all element of the next
stack type (if there is any one) are greater or equal to k1 (or k2) and for all point j

in region(i, τ1) (or region(i, τ2)) k1 ≤ se(i) (or k2 ≤ se(i)).

— or k1 = k2 and l1 ∼β l2. Since h1 ∼β h2 we deduce class(h1(l1)) = class(h2(l2))
and as a consequence the same method m′ is called in both execution. ΓmID [k1]

and ΓmID [k2] are then equals to a same signature ~k′
v

k′
h−→ ~k′

r. Again, there are three
cases for each execution but each times we have

{this 7→ l1, ~x 7→ os1} ∼ ~k′
v,β

{this 7→ l2, ~x 7→ os2}

thanks to Lemma E.1.5 and typability hypotheses

k1 ≤ ~k′
v[0] ∀i ∈ [0, length(st1) − 1], st1[i] ≤ ~k′

v[i + 1]

k2 ≤ ~k′
v[0] ∀i ∈ [0, length(st2) − 1], st2[i] ≤ ~k′

v[i + 1]

Now, since m′ is non-interferent at order max(n′
1, n

′
2) < n (with n′ + 1 = n1 and
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n′
2 + 1 = n2) and

〈1, {this 7→ l1, ~x 7→ os1}, ǫ, h1〉 ⇓
(n′

1)
m′ r1, h

′
1

and

〈1, {this 7→ l2, ~x 7→ os2}, ǫ, h2〉 ⇓
(n′

2)
m′ r2, h

′
2

we deduce that

(r1, h
′
1) ∼β′, ~k′

r
(r2, h

′
2) (3)

for some β′ such that β ⊆ β′. The nature of r1 and r2 depends on the kind of
transition that occurs:
— τ1 = ∅ and τ2 = e ∈ C : e is caught or uncaught in m but in both cases,
(3) gives ~k′

r[e] 6≤ kobs. By typability, ∀j ∈ region(i, ∅), k1 ⊔ ke ≤ se(j) with ke =
⊔

{

~k′
r[e0] | e0 ∈ excAnalysis(mID)

}

and ∀j ∈ region(i, e), k2⊔ ~k′
r[e] ≤ se(j). Hence

se is high in region(i, ∅) and in region(i, e) since ~k′
r[e] 6≤ kobs and by the same way

ke 6≤ kobs.
— τ1 = e1 ∈ C and τ2 = e2 ∈ C : branching only occurs if e1 6= e2. But since
(〈l′1〉, h

′
1) ∼

β′, ~k′
r

(〈l′2〉, h
′
2) with ej = class(h′

j(l
′
j)), j ∈ {1, 2}, we have necessarily

~kr[e1] 6≤ kobs and ~kr[e2] 6≤ kobs.

By typability, ∀j ∈ region(i, e1), k1 ⊔ ~k′
r[e1] ≤ se(j) and ∀j ∈ region(i, e2), k2 ⊔

~k′
r[e2] ≤ se(j) so se is high in region region(i, e1) and region(i, e2).

Let j ∈ {1, 2}, If ej is uncaught there is nothing to prove. If ej is caught we must

establish that high(l′j :: ǫ, (kj ⊔ ~k′
r[ej ]) :: ε). This is easy since ~kr[ej ] 6≤ kobs.

— in the others cases, either there is no branching or the case is symmetric to a
previous one.

Case:. Pm[i] = getfield f . Branching only occurs if s1 is of the form 〈i, ρ1,null ::
os1, h1〉 and s2 of the form 〈i, ρ2, l2 :: os2, h2〉 (or in the symmetric case). Hence
τ1 = np and τ2 = ∅ and by typability, st1 = k1 :: st ′′1 and st2 = k2 :: st ′′2 .

Since null :: os1 ∼k1::st′′1 ,k2::st ′′2 ,β l2 :: os2, we have necessarily k1 6≤ kobs and k2 6≤
kobs. By typability, ∀j ∈ region(i,np), k1 ≤ se(j) and ∀j ∈ region(i, ∅), k2 ≤ se(j).
Hence se is high in region region(i,np) and region(i, ∅).

Concerning operand stacks, we have by typability st ′2 = liftk2((ft(f)⊔se(i)) :: st ′′2 )
and since k2 6≤ kobs we deduce that high(os ′2, liftk2((ft(f) ⊔ se(i)) :: st ′′2 )).

In the first transition there is something to prove only if np is caught. We must
then establish that high(l′1 :: ǫ, (k1 ⊔ se(i)) :: ǫ). Since k1 6≤ kobs we are done.

Case:. Pm[i] = putfield f . Branching only occurs if s1 is of the form 〈i, ρ1, v1 ::
null :: os1, h1〉 and s2 of the form 〈i, ρ2, v2 :: l2 :: os2, h2〉 (or in the symmetric
case). Hence τ1 = np and τ2 = ∅ and by typability, st1 = k1 :: k′

1 :: st ′′1 and
st2 = k2 :: k′

2 :: st ′′2 .
Since v1 :: null :: os1 ∼k1::k′

1::st
′′
1 ,k2::k′

2::st
′′
2 ,β v2 :: l2 :: os2, we have necessarily

k′
1 6≤ kobs and k′

2 6≤ kobs. By typability, ∀j ∈ region(i,np), k′
1 ≤ se(j) and ∀j ∈

region(i, ∅), k′
2 ≤ se(j). Hence se is high in region region(i,np) and region(i, ∅).

Concerning operand stacks, we have by typability st ′2 = liftk′
2
(st ′′2) and since

k′
2 6≤ kobs we deduce that high(os2, liftk′

2
(:: st ′′2 )).

In the first transition there is something to prove only if np is caught. We must
then establish that high(l′1 :: ǫ, (′k1 ⊔ se(i)) :: ǫ). Since k′

1 6≤ kobs we are done.

Case:. Pm[i] = throw. s1 is of the form 〈i, ρ1, v1 :: os1, h1〉 and s2 of the form
〈i, ρ2, v2 :: os2, h2〉 with v1 and v2 in L ∪ {np}. By typability, st1 = k1 :: st ′′1 and
st2 = k2 :: st ′′2 .

We then make a first distinction according if one of v1 or v2 is equal to null . In
both cases we show that k1 6≤ kobs and k2 6≤ kobs.
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Case 1: v1 or v2 is equal to null . There is only a branching if the other value is
not null. We only make the case v1 = null and v2 = l2 ∈ L, the other case is done
by symmetry.
By hypothesis,

null :: os1 ∼k1::st ′′1 ,k2::st′′2 ,β l2 :: os2

Hence we have necessarily k1 6≤ kobs and k2 6≤ kobs.
Case 2: both v1 and v2 are in L (we note them l1 and l2 from now). There is a

branching only if h1(l1) and h2(l2) are of distinct classes. This has for consequence
that k1 6≤ kobs and k2 6≤ kobs, since by hypothesis

l1 :: os1 ∼k1::st′′1 ,k2::st′′2 ,β l2 :: os2

Now, by typability we have ∀j ∈ region(i, τ1), k1 ≤ se(j) and ∀j ∈ region(i, τ2), k2 ≤
se(j). Hence se is high in region region(i, τ1) and region(i, τ2).

Concerning operand stacks, for i ∈ {1, 2} we have something to prove only if τi

is caught. We must then establish that high(li :: ǫ, (ki ⊔ se(i)) :: ǫ). Since ki 6≤ kobs

we are done.

Lemma D.0.26 JVMG locally respect. Let n an integer such that all method
m′ in P are non-interferent at all order k, k < n, with respect to all the policies in
PoliciesΓ(m′).

Let m a method in P , β ∈ L ⇀ L a partial function, s1, s2 ∈ StateG two JVMG

states at the same program point i and two stack types st1, st2 ∈ S⋆ such that
s1 ∼st1,st2,β s2.

(1 ) If there exists two states s′1, s
′
2 ∈ StateG and two stack types st ′1, st

′
2 ∈ S⋆ such

that

s1
(n1)
; m,τ1 s′1, n1 ≤ n

s2
(n2)
; m,τ2 s′2, n2 ≤ n

i ⊢τ1 st1 ⇒ st ′1 i ⊢τ2 st2 ⇒ st ′2

then there exists β′ ∈ L ⇀ L such that

s′1 ∼st ′1,st′2,β s′2 and β ⊆ β′

(2 ) If there exists a state 〈i′1, ρ
′
1, os

′
1, h

′
1〉 ∈ StateG, a final result (r2, h

′
2) ∈ (V +

L) × Heap and a stack types st ′1,∈ S⋆ such that

s1
(n1)
; m,τ1 〈i′1, ρ

′
1, os

′
1, h

′
1〉 n1 ≤ n

s2
(n2)
; m,τ2 (r2, h

′
2) n2 ≤ n

i ⊢τ1 st1 ⇒ st ′1 i ⊢τ2 st2 ⇒

then there exists β′ ∈ L ⇀ L such that

h′
1 ∼β′ h′

2, highResult ~kr
(r2, h

′
2) and β ⊆ β′

(3 ) If there exists two final results (r1, h
′
1), (r2, h

′
2) ∈ (V + L) × Heap such that

s1
(n1)
; m,τ1 (r1, h

′
1) n1 ≤ n

s2
(n2)
; m,τ2 (r2, h

′
2) n2 ≤ n

i ⊢ st1 ⇒ i ⊢ st2 ⇒

then there exists β′ ∈ L ⇀ L such that

(r1, h
′
1) ∼ ~kr,β′ (r2, h

′
2) and β ⊆ β′
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Proof. By a case analysis on the instruction that is executed.

Case:. Pm[i] = push n

By semantics, s1 = 〈i, ρ1, os1, h1〉, and s2 = 〈i, ρ2, os2, h2〉, and s′1 = 〈i+1, ρ1, n ::
os1, h1〉, and s′2 = 〈i + 1, ρ2, n :: os2, h2〉. By typability, st ′1 = se(i) :: st1 and
st ′2 = se(i) :: st2.

We take β′ = β. Local variable and heaps are not modified so indistinguisha-
bility properties on them still hold. For operand stacks, by hypothesis we have
os1 ∼st1,st2,β os2. Hence and since n ∼β n holds, we have n :: os1 ∼se(i)::st1,se(i)::st2,β

n :: os2, thanks to Lemma E.1.2.

Case:. Pm[i] = binop op

By semantics, s1 = 〈i, ρ1, n1 :: n2 :: os1, h1〉, and s2 = 〈i, ρ2, n
′
1 :: n′

2 :: os2, h2〉
and s′1 = 〈i + 1, ρ1, n :: os1, h1〉, and s′2 = 〈i + 1, ρ2, n

′ :: os2, h2〉. By typability,
st1 = k1 :: k2 :: st , st ′1 = k1 ⊔ k2 ⊔ se(i) :: st, st2 = k′

1 :: k′
2 :: st′ and st ′2 =

k′
1 ⊔ k′

2 ⊔ se(i) :: st ′.

We take β′ = β. Local variable and heaps are not modified so indistinguishability
properties on them still hold. For operand stacks, we make two cases:

— k1 ⊔ k2 ≤ kobs. In this case, since k1 ≤ kobs and k2 ≤ kobs, Lemma E.1.4 and
hypothesis n1 :: n2 :: os1 ∼β,k1::k2::st,k′

1::k
′
2::st

′ n′
1 :: n′

2 :: os2 give k1 = k′
1, k2 = k′

2,
n1 = n′

1, n2 = n′
2 and os1 ∼st,st′ os2. Hence n = n′ and k1⊔k2⊔se(i) = k′

1⊔k′
2⊔se(i)

so n :: os1 ∼k′
1⊔k′

2⊔se(i)::st ′,k′
1⊔k′

2⊔se(i)::st ′,β n′ :: os2 by Lemma E.1.2.

— k1 ⊔ k2 6≤ kobs. Hence k1 6≤ kobs or k2 6≤ kobs and thanks to Lemma E.1.4,
k′
1 6≤ kobs or k′

2 6≤ kobs. In both cases k′
1 ⊔ k′

2 6≤ kobs. We hence conclude that
k1 ⊔ k2 ⊔ se(i) 6≤ kobs and k′

1 ⊔ k′
2 ⊔ se(i) 6≤ kobs. Since os1 ∼st,st′ os2, we finally

obtain n :: os1 ∼k′
1⊔k′

2⊔se(i)::st ′,k′
1⊔k′

2⊔se(i)::st ′,β n′ :: os2.

Case:. Pm[i] = load x

By semantics, s1 = 〈i, ρ1, os1, h1〉, and s2 = 〈i, ρ2, os2, h2〉, and s′1 = 〈i +
1, ρ1, ρ1(x) :: os1, h1〉, and s′2 = 〈i + 1, ρ2, ρ2(x) :: os2, h2〉. By typability, st ′1 =
~kvm(x) ⊔ se(i) :: st1 and st ′2 = ~kvm(x) ⊔ se(i) :: st2.

We take β′ = β. Local variables and heaps are not modified so indistinguishability
properties on them still hold.

For operand stacks, by hypothesis we have os1 ∼st1,st2,β os2 and also by hypoth-

esis of variable indistinguishability we have ρ1(x) ∼β ρ2(x) if ~kv(x) ≤ kobs. We
hence conclude by Lemma E.1.1.

Case:. Pm[i] = store x

By semantics, s1 = 〈i, ρ1, v :: os1, h1〉, and s2 = 〈i, ρ2, v
′ :: os2, h2〉, and s′1 =

〈i + 1, ρ1 ⊕{x 7→ v}, os1, h1〉, and s′2 = 〈i + 1, ρ2 ⊕{x 7→ v′}, os2, h2〉. By typability,
st1 = k1 :: st ′1 and st2 = k2 :: st ′2.

We take β′ = β. Heaps are not modified so indistinguishability properties on
them still hold.

For local variables we have to check for every variable y that ρ1 ⊕{x 7→ v}(y) ∼β

ρ2 ⊕{x 7→ v′}(y) whenever ~kv(y) ≤ kobs. This is valid by hypothesis for every

variable except x. For x we must prove that v ∼β v′ whenever ~kv(x) ≤ kobs. We
then make a case analysis using Lemma E.1.4 on hypothesis v :: os1 ∼k1::st′1,k2::st′2,β

v′ :: os2.

— In first case k1 = k2, k1 ≤ kobs and v ∼β v′. This last hypothesis allows us to
conclude our proof of ρ1 ∼β ρ2.

— In second case k1 ≤ kobs and k2 ≤ kobs. By typability, we have k1 ≤ ~kv(x)

and k2 ≤ ~kv(x). Hence ~kv(x) 6≤ kobs and we can conclude our proof of ρ1 ∼β ρ2.

For operand stacks, os1 ∼st′1,st ′2,β os2 easily come from Lemma E.1.4.

Case:. Pm[i] = ifeq j
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By semantics, s1 = 〈i, ρ1, n :: os1, h1〉, s2 = 〈i, ρ2, n
′ :: os2, h2〉, s′1 = 〈i′1, ρ1, os1, h1〉

(where i′1 can be i + 1 or j) and s′2 = 〈i′2, ρ2, os2, h2〉 (where i′2 can be i + 1 or j).
By typability, st1 = k :: st , st2 = k′ :: st ′, st ′1 = liftk(st) and st ′2 = liftk′(st ′).

We take β′ = β. Local variables and heaps are not modified so indistinguishability
properties on them still hold.

Operand stack indistinguishability os1 ∼st,st ′,β os2 finally holds because of hy-
pothesis n :: os1 ∼k::st,k′::st′,β n′ :: os2 and Lemma E.1.4.

Case:. Pm[i] = goto j

This case is trivial. We take β′ = β. Neither local variables, operand stacks or
heaps are modified so indistinguishability properties on them still hold.

Case:. Pm[i] = return

By semantics, s1 = 〈i, ρ1, v :: os1, h1〉, and s2 = 〈i, ρ2, v
′ :: os2, h2〉, and (r1, h

′
1) =

(v, h1), and (r2, h
′
2) = (v′, h2). By typability, st1 is of the form k :: st and st2 is of

the form k′ :: st ′.

We have to prove (v, h1) ∼
β, ~kr

(v′, h2), that is, h1 ∼β h2 and ~kr[n] ≤ kobs ⇒

v ∼β v′.

Heap indistinguishability holds by hypothesis. We then make a case analysis on
hypothesis v :: os1 ∼k::st,k′::st′,β v′ :: os2 using Lemma E.1.4.

— In first case k = k′, k ≤ kobs and v ∼β v′. This last hypothesis allows us to

prove ~kr[n] ≤ kobs ⇒ v ∼β v′.

— In second case k ≤ kobs and k′ ≤ kobs. Hence ~kr[n] 6≤ kobs since by typability,

k ≤ ~kr[n] and k′ ≤ ~kr[n]. So ~kr[n] ≤ kobs ⇒ v ∼β v′ is trivially true.

Case:. Pm[i] = new C

By semantics, s1 = 〈i, ρ1, os1, h1〉, s2 = 〈i, ρ2, os2, h2〉, s′1 = 〈i + 1, ρ1, l ::
os1, h1 ⊕{l 7→ defaultC}〉, and s′2 = 〈i + 1, ρ2, l

′ :: os2, h2 ⊕{l′ 7→ defaultC}〉, where
l = fresh(h1), and l′ = fresh(h2). By typability, st ′1 = se(i) :: st1 and st ′2 = se(i) ::
st2.

We first choose β′ according to a case analysis on se(i). If se(i) ≤ kobs, we choose
β′ = β ⊕{l 7→ l′}. If se(i) 6≤ kobs, we choose β′ = β. In both case β ⊆ β′ thanks to
Lemma E.2.5.

Local variables are not modified so indistinguishability properties on them still
hold for β′, thanks to Lemma E.3.2.

For operand stack indistinguishability, os1 ∼β,st1,st2 os2 and since β ⊆ β′,
os1 ∼β′,st1,st2 os2 also holds, thanks to Lemma E.3.3. If se(i) 6≤ kobs, we obtain by
definition of operand stack indistinguishability, l :: os1 ∼β′,se(i)::st1,se(i)::st2 l′ :: os2.
If se(i) ≤ kobs, we only have to prove l ∼β′ l′ to conclude. This follow easily from
definition of β′ since β′(l) = l′.

Heap indistinguishability comes from Lemma E.2.5 when se(i) ≤ kobs and from
Lemma E.2.6 when se(i) 6≤ kobs.

Case:. Pm[i] = putfield f

By semantics, s1 = 〈i1, ρ1, v :: l :: os1, h1〉 and s2 = 〈i2, ρ2, v
′ :: l′ :: os2, h2〉, but

there are several options to consider for the successors of s1 and s2:

— There are no exceptions (τ1 = ∅ and τ2 = ∅) and

s′1 = 〈i1 + 1, ρ1, os1, h1 ⊕{l 7→ h1(l)⊕{f 7→ v}}〉

s′2 = 〈i1 + 1, ρ2, os2, h2 ⊕{l′ 7→ h2(l
′)⊕{f 7→ v′}}〉

By typability, st1 = k1 :: k′
1 :: st , st2 = k2 :: k′

2 :: st ′, st ′1 = liftk′
1
st and st ′2 =

liftk′
2
st ′.

We take β′ = β.
By hypothesis and semantics (variables do not change) we have indistinguishability
of variables ρ1 ∼β ρ2.
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We know by hypothesis that v :: l :: os1 ∼β,st1,st2 v′ :: l′ :: os2 and hence, by
Lemma E.1.4, os1 ∼β,st′1,st ′2

os2. We then make a case analysis using Lemma E.1.4.

— either k′
1 = k′

2, k′
1 ≤ kobs and l ∼β l′. In this case we conclude operand stack

indistinguishability os1 ∼β,liftk′
1
st,liftk′

2
st′ os2 by Lemma E.1.3

— or k′
1 6≤ kobs and k′

2 6≤ kobs. We can hence claim that high(os1, liftk′
1
st) and

high(os2, liftk′
2
st ′), and finally conclude about operand stack indistinguishability.

To check indistinguishability of heaps we remark that h1 is only updated in location
l and field f , and similarly h2 is only updated in location l′ and field f . Hence, if
ft(f) 6≤ kobs heap indistinguishability still holds. If ft(f) ≤ kobs we have k1 ≤ kobs

and k2 ≤ kobs since by typability, the constraint k1 ≤ ft(f) and k2 ≤ ft(f) hold.
Hence the Lemma E.1.4 gives us v ∼β v′ and l ∼β l′. This allows us to conclude
about heap indistinguishability.

— One execution is normal (τ2 = ∅) and there is a null pointer exception in
the other execution (τ1 = np) , there is a handler t in m, and s′1 = 〈t, ρ1, l

′′ ::
ǫ, h1 ⊕{l′′ 7→ defaultnp}〉 and s′2 = 〈i1 +1, ρ2, os2, h2 ⊕{o 7→ h2(l

′)⊕{f 7→ v′}}〉. By
typability, st1 = k1 :: k′

1 :: st , st2 = k2 :: k′
2 :: st ′, st ′2 = liftk′

2
st ′ and st ′1 =

k′
1 ⊔ se(i) :: ǫ.

By hypothesis and semantics (variables do not change) we have indistinguishability
of variables ρ1 ∼β ρ2.
Because of v :: null :: os1 ∼k1::k′

1::st,k2::k′
2::st

′,β v′ :: l′ :: os2 and Lemma E.1.4 we
have necessarily k′

1 6≤ kobs and k′
2 6≤ kobs. We can hence claim that high(l′′ ::

ǫ, k′
1 ⊔ se(i) :: ǫ) and high(os2, liftk′

2
st ′2), and finally conclude about operand stack

indistinguishability l′′ :: ǫ ∼β,k′
1⊔se(i)::ǫ,liftk′

2
st ′ os2.

To check indistinguishability of

h1 ⊕{l′′ 7→ defaultnp} ∼β h2 ⊕{l′ 7→ h2(l
′)⊕{f 7→ v′}}

we first invoke Lemma E.2.6 (l′′ is a fresh location for h1) to establish

h1 ⊕{l′′ 7→ defaultnp} ∼β h2

By typability, k′
1 ≤ ft(f) so ft(f) 6≤ kobs. This allows to conclude about heap

indistinguishability.
— One execution is normal (τ2 = ∅) and there is a null pointer exception (τ1 =

np), but no handler for it in m, and s′1 = 〈〈l′′〉, h1 ⊕{l′′ 7→ defaultnp}〉; and s′2
is equal to 〈i1 + 1, ρ2, os2, h2 ⊕{o 7→ h2(l

′)⊕{f 7→ v′}}〉. By typability, st1 = k1 ::
k′
1 :: st , st2 = k2 :: k′

2 :: st ′, st ′2 = liftk′
2
st ′.

We take β′ = β.
Heap indistinguishability holds for the same reason as in the previous case.
Because of v :: null :: os1 ∼k1::k′

1::st,k2::k′
2::st

′,β v′ :: l′ :: os2 and Lemma E.1.4 we
have necessarily k′

1 6≤ kobs and k′
2 6≤ kobs. By typability, we have the constraint

k′
1 ≤ ~kr[np]. Hence ~kr[np] 6≤ kobs and highResult ~kr

(〈l′′〉, h1 ⊕{l′′ 7→ defaultnp})
hold.

— There are two null pointer exceptions due to putfield and there is no han-
dler for them in m, s′1 is equal to 〈〈l1〉, h1 ⊕{l1 7→ defaultnp}〉; and s′2 is equal to
〈〈l2〉, h2 ⊕{l2 7→ defaultnp}〉. By typability, st1 = k1 :: k′

1 :: st and st2 = k2 :: k′
2 ::

st ′.
We take β =′ β ⊕{l1 7→ l2}. By semantics, l1 and l2 are fresh locations. Hence
Lemma E.2.5 gives us β ⊆ β′ and heap indistinguishability h1 ⊕{l1 7→ defaultnp} ∼β′

h2 ⊕{l2 7→ defaultnp}.

We then make case analysis on ~kr[np].

— if ~kr[np] 6≤ kobs, we have easily (〈l1〉, h
′
1) ∼ ~kr ,β′ (〈l2〉, h

′
2).

— if ~kr[np] ≤ kobs, we have (〈l1〉, h
′
1) ∼ ~kr,β′ (〈l2〉, h

′
2) thanks to l1 ∼β′ l2 (since

β′(l1) = l2).
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— There are two null pointer exceptions and there is a handler for null pointer ex-
ception and program point i, namely t, s′1 is equal to 〈t, ρ1, l1 :: ǫ, h1 ⊕{l1 7→ defaultnp}〉
and s′2 = 〈t, ρ2, l2 :: ǫ, h2 ⊕{l2 7→ defaultnp}〉, st1 = k1 :: k′

1 :: st , st2 = k2 :: k′
2 :: st ′,

st ′1 = k′
1 ⊔ se(i) :: ǫ, and st ′2 = k′

2 ⊔ se(i) :: ǫ.
We take β =′ β ⊕{l1 7→ l2}. By semantics, l1 and l2 are fresh locations. Hence
Lemma E.2.5 gives us β ⊆ β′ and heap indistinguishability h1 ⊕{l1 7→ defaultnp} ∼β′

h2 ⊕{l2 7→ defaultnp}.
Local variables are not modified, so by Lemma E.3.2, local variable indistinguisha-
bility hold.
We finally have to prove operand stack indistinguishability l1 :: ǫ ∼k′

1⊔se(i)::ǫ,k′
2⊔se(i)::ǫ,β′

l2 :: ǫ. We make a case analysis on hypothesis v :: null :: os1 ∼β,st1,st2 v′ :: null ::
os2 with the help of Lemma E.1.4:

— either k′
1 = k′

2 and k′
1 ≤ kobs. In this case, since l1 ∼β′ l2 and k′

1 ⊔ se(i) =
k′
2 ⊔ se(i) we are done.

— or k′
1 6≤ kobs and k′

2 6≤ kobs and operand stack indistinguishability trivially holds.

Case:. Pm[i] = getfield f

By semantics, s1 = 〈i1, ρ1, l :: os1, h1〉 and s2 = 〈i2, ρ2, l
′ :: os2, h2〉 and there are

several options to consider successors of s1 and s2,

— There are no exceptions and s′1 = 〈i1 + 1, ρ1, v :: os1, h1〉 and s′2 = 〈i1 +
1, ρ2, v

′ :: os2, h2〉. By typability, st1 = k1 :: st , st2 = k2 :: st ′, st ′1 = liftk1((ft(f) ⊔
se(i)) :: st) and st ′2 = liftk2((ft(f) ⊔ se(i)) :: st ′).
We take β′ = β. Local variables and heaps are not modified so indistinguishability
still hold for them.
By hypothesis, v :: os1 ∼k1::st,k2::st′,β v′ :: os2 so os1 ∼st,st ′,β os2 holds too. We
then make a case analysis using Lemma E.1.4.
— either k1 = k2 and k1 ≤ kobs. In this case we conclude operand stack indistin-
guishability os1 ∼liftk1

st,liftk2
st′,β os2 by Lemma E.1.3,

— or k1 6≤ kobs and k2 6≤ kobs. We can hence claim that high(os1, liftk1st) and
high(os2, liftk2st

′), and finally conclude about operand stack indistinguishability.

— One execution is normal and there is a null pointer exception in the other
execution, there is a handler t in m, and s′1 = 〈t, ρ1, l

′′ :: ǫ, h1 ⊕{l′′ 7→ defaultnp}〉
and s′2 is equal to 〈i1+1, ρ2, v

′ :: os2, h2〉. By typability, st1 = k1 :: st , st2 = k2 :: st ′,
st ′1 = k1 ⊔ se(i) :: ǫ and st ′2 = liftk2((ft(f) ⊔ se(i)) :: st ′).
We take β′ = β. Local variables are not modified so indistinguishability still hold
for them.
By hypothesis null :: os1 ∼k1::st,k2::st′,β l′ :: os2, we have necessarily k1 6≤ kobs and
k2 6≤ kobs. It follows that high(l′′ :: ǫ, k1 ⊔ se(i) :: ǫ) and high(v′ :: os2, liftk2((ft(f)⊔
se(i)) :: st ′)).
Heap indistinguishability hold by Lemma E.2.6.

— One execution is normal and there is a null pointer exception, but no handler
for it in m, s′1 = 〈〈l′′〉, h1 ⊕{l′′ 7→ defaultnp}〉 and s′2 = 〈i1 + 1, ρ2, v :: os2, h2〉. By
typability, st1 = k1 :: st , st2 = k2 :: st ′, and st ′2 = liftk2((ft(f) ⊔ se(i)) :: st ′).
Heap indistinguishability holds by Lemma E.2.6.
By hypothesis null :: os1 ∼k1::st,k2::st′,β l′ :: os2, we have necessarily k1 6≤ kobs and

k2 6≤ kobs. By typability, k1 ≤ ~kr[np]. Hence we deduce that ~kr[np] 6≤ kobs and
highResult ~kr

(〈l′′〉, h1 ⊕{l′′ 7→ defaultnp}) holds.
— Two null pointer exceptions and no handler for them in i,

s′1 = 〈〈l1〉, h1 ⊕{l1 7→ defaultnp}〉 and s′2 = 〈〈l2〉, h2 ⊕{l2 7→ defaultnp}〉

By typability, st1 = k1 :: st and st2 = k2 :: st ′.
We take β =′ β ⊕{l1 7→ l2}. By semantics, l1 and l2 are fresh locations. Hence
Lemma E.2.5 gives us β ⊆ β′ and heap indistinguishability h1 ⊕{l1 7→ defaultnp} ∼β′

h2 ⊕{l2 7→ defaultnp}.
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We then make case analysis on ~kr[np].

— if ~kr[np] 6≤ kobs, we have easily (〈l1〉, h′
1) ∼ ~kr ,β′ (〈l2〉, h′

2).

— if ~kr[np] ≤ kobs, we have (〈l1〉, h′
1) ∼ ~kr,β′ (〈l2〉, h′

2) thanks to l1 ∼β′ l2 (since

β′(l1) = l2).
— Two exceptions with handler: s′1 = 〈t, ρ1, l1 :: ǫ, h1 ⊕{l1 7→ defaultnp}〉 and

s′2 = 〈t, ρ2, l2 :: ǫ, h2 ⊕{l2 7→ defaultnp}〉. By typability, st1 = k1 :: st , st2 = k2 :: st ′,
st ′1 = k1 :: ǫ and st ′2 = k2 :: ǫ.
We take β =′ β ⊕{l1 7→ l2}. By semantics, l1 and l2 are fresh locations. Hence
Lemma E.2.5 gives us β ⊆ β′ and heap indistinguishability h1 ⊕{l1 7→ defaultnp} ∼β′

h2 ⊕{l2 7→ defaultnp}.
Local variables are not modified, so by Lemma E.3.2, local variable indistinguisha-
bility hold.
We finally have to prove operand stack indistinguishability l1 :: ǫ ∼k1::ǫ,k2::ǫ,β′ l2 :: ǫ.
We make a case analysis on hypothesis null :: os1 ∼β,st1,st2 null :: os2 with the help
of Lemma E.1.4:
— either k1 = k2 and k1 ≤ kobs. In this case, since l1 ∼β′ l2 and k1 = k2 so we are
done.
— or k1 6≤ kobs and k2 6≤ kobs and operand stack indistinguishability trivially holds.

Case:. Pm[i] = throw
By semantics, s1 = 〈i, ρ1, v1 :: os1, h1〉 and s2 = 〈i, ρ2, v2 :: os2, h2〉 with v1 and

v2 in L ∪ {null}. By typability, st1 = k1 :: st ′′1 and st2 = k2 :: st ′′2 . There is a
successor state in the current method execution if and only if the thrown exception
is caught. In this case st ′j (j ∈ {1, 2}) is of the form st ′j = kj ⊔ se(i) :: ǫ.

By hypothesis, v1 :: os1 ∼k1::st′′1 ,k2::st′′2 ,β v2 :: os2. We then make a case analysis
using Lemma E.1.4:

— If k1 = k2, k1 ≤ kobs and v1 ∼β v2, there are two cases to consider.
— v1 = v2 = null : this case is exactly the same as for getfied instruction when
both operand stacks of s1 and s2 have a null pointer on top of there stacks.
— v1 = l1, v2 = l2 and l1 ∼β l2: since h1 ∼β h2 we deduce that h1(l1) and h2(l2)
have the same class. Hence we are either in case 1 of the lemma statement (when
the exception is caught) or in case 3 (when the exception is uncaught). In both
cases we choose β′ = β.
— if the exception is caught : by semantics, s′1 = 〈t, ρ1, l :: ǫ, h1〉 and s′2 = 〈t, ρ2, l ::
ǫ, h2〉. Heaps and local variables are not modified so there is only something to
prove for operand stacks, that is: l1 :: ǫ ∼k1⊔se(i)::ǫ,k2⊔se(i)::ǫ,β l2 :: ǫ. This is true
since k1 ⊔ se(i) = k2 ⊔ se(i)and v1 ∼β v2.
— if the exception is uncaught, we must establish (〈l1〉, h1) ∼ ~kr,β

(〈l2〉, h2). The
current hypotheses contains h1 ∼β h2 and l1 ∼β l2 so output indistinguishability
holds easily.

— If k1 6≤ kobs and k2 6≤ kobs. We choose β′ = β. In each execution thrown
exception is either caught or uncaught. We now examine the different cases (sym-
metric cases are skipped).
— Both exceptions are caught: each s′j (j ∈ {1, 2}) is then of the form s′j =
〈tj , ρj , l

′
j :: ǫ, h′

j〉 with h′
j = hj (if vj 6= null) or h′

j = hj ⊕{l′j 7→ defaultnp} (if
vj 6= null and l′j = fresh(hj)).
Local variables are not modified so indistinguishability still hold for them.
Each st ′j is of the form kj ⊔ se(i) :: ǫ and kj 6≤ kobs so operand stack indistinguisha-
bility holds since we have high(l′1 :: ǫ, k1 ⊔ se(i) :: ǫ) for each j.
Concerning heaps, h′

1 ∼β h′
2 holds even if one of the h′

j is of the form hj ⊕{l′j 7→ defaultnp}
thanks to Lemma E.2.2.
— exception is caught in the first execution but not in the second: s′1 is then of the
form s′1 = 〈t, ρ1, l

′
1 :: ǫ, h′

1〉 and s′2 of the form (〈l′2〉, h
′
2) with h′

j = hj (if vj 6= null)
or h′

j = hj ⊕{l′j 7→ defaultnp} (if vj 6= null and l′j = fresh(hj)), j ∈ {1, 2}.
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h′
1 ∼β h′

2 holds even if one of the h′
j is of the form hj ⊕{l′j 7→ defaultnp} by

Lemma E.2.2.
We finally have to establish highResult ~kr

(l′2, h
′
2). By hypothesis, τ2 = class(h′

2(l
′
2)),

k2 ≤ ~kr[τ2] and k2 6≤ kobs so we are done.
— exception is uncaught in both executions: each s′j (j ∈ {1, 2}) is then of the form
(〈l′j〉, h

′
j) with h′

j = hj (if vj 6= null) or h′
j = hj ⊕{l′j 7→ defaultnp} (if vj 6= null

and l′j = fresh(hj)).
We must prove that (〈l′1〉, h

′
1) ∼β′, ~k′

r
(〈l′2〉, h

′
2). It is sufficient to prove

h′
1 ∼β h′

2
~kr[class(h

′
1(l

′
1))] 6≤ kobs

~kr[class(h
′
2(l

′
2))] 6≤ kobs

h′
1 ∼β h′

2 holds even if one of the h′
j is of the form hj ⊕{l′j 7→ defaultnp} thanks to

Lemma E.2.2. ~kr[class(h
′
j(l

′
j))] holds for each j since, by semantics τj = class(h′

j(l
′
j))

and by typability, kj ≤ ~kr[τj ] and kj 6≤ kobs.

Case:. Pm[i] = invokevirtual mID. By semantics, each sj is of the form 〈i, ρj , osj ::
vj :: os ′j , hj〉 with vj ∈ L ∪ {null}. By typability, each st j is of the form st ′′j :: kj ::
st ′′′j with length(osj) = length(st j).

By hypothesis,

os1 :: v1 :: os ′1 ∼st ′′1 ::k1::st′′′1 ,st ′′2 ::k2::st′′′2 ,β os2 :: v2 :: os ′2

We then make a case analysis using Lemma E.1.4:
— If k1 = k2, k1 ≤ kobs and v1 ∼β v2, there are two cases to consider.

— v1 = v2 = null : a null pointer exception is thrown. We must then examine if
this exception is caught or not.
— If the exception is caught, s′1 = 〈t, ρ1, l1 :: ǫ, h1 ⊕{l1 7→ defaultnp}〉 and s′2 =

〈t, ρ2, l2 :: ǫ, h2 ⊕{l2 7→ defaultnp}〉. By typability, st ′1 = st ′2 = (k1 ⊔ ~k′
r[np]) :: ε.

We take β =′ β ⊕{l1 7→ l2}. By semantics, l1 and l2 are fresh locations. Hence
Lemma E.2.5 give us β ⊆ β′ and heap indistinguishability h1 ⊕{l1 7→ defaultnp} ∼β′

h2 ⊕{l2 7→ defaultnp}.
Local variables are not modified, so by Lemma E.3.2, local variable indistinguisha-
bility holds.
Finally, we prove operand stack indistinguishability l1 :: ǫ ∼

k1⊔ ~k′
r[np]::ǫ,k2⊔ ~k′

r [np]::ǫ,β′

l2 :: ǫ since l1 ∼β′ l2 and k1 = k2.
— If the exception is uncaught, s′1 = (〈l1〉, h1) and s′2 = (〈l2〉, h2).
We take β′ = β ⊕{l1 7→ l2}. By semantics, l1 and l2 are fresh locations. Hence
Lemma E.2.5 give us β ⊆ β′ and heap indistinguishability h1 ⊕{l1 7→ defaultnp} ∼β′

h2 ⊕{l2 7→ defaultnp}.
We conclude on output indistinguishability (〈l1〉, h1) ∼ ~kr,β′ (〈l2〉, h2) using previous
heap indistinguishability and the fact l1 ∼β′ l2.
— v1 = l1, v2 = l2 and l1 ∼β l2: since h1 ∼β h2 we deduce that h1(l1) and
h2(l2) have the same class. We deduce that the same method m′ is called in both
executions. As in the proof of the previous lemma we then invoke non-interference
at some order k, k < n to establish that outputs of each executions of m′ are
indistinguishable for some β′ such that β ⊆ β′:

(r1, h
′
1) ∼β′, ~k′

r
(r2, h

′
2) (4)

There are then two cases to consider for each executions of the called method (nor-
mal termination of the called method or termination by an exception). We examine
now these different cases, skipping symmetric cases. Heaps indistinguishable is not
mentioned since it follows from (4).
— If both executions terminate normally r1 = v1 ∈ V and r2 = v2 ∈ V . (4) gives
~k′
r[n] ≤ kobs ⇒ v1 ∼β′ v2. Indistinguishability of local variables is obtained using

Lemma E.3.2. Operand stack indistinguishability v1 :: os ′1 ∼( ~k′
r[n]⊔se(i))::st1,( ~k′

r[n]⊔se(i))::st2,β′
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v2 :: os ′2 is finally obtained thanks to ~k′
r[n] ≤ kobs ⇒ v1 ∼β′ v2 and os ′1 ∼st1,st2,β′

os ′2 (obtained using Lemma E.3.3).
— If both executions terminate with an exception e1 and e2, r1 = l′1 ∈ L and
r2 = l′2 ∈ L. (4) gives us two more cases:

In first case ~k′
r[e1] 6≤ kobs and ~k′

r[e2] 6≤ kobs. If both exceptions are caught in
m, l′1 :: ǫ ∼(k1⊔ ~k′

r [e1])::ε,(k2⊔ ~k′
r [e2])::ε,β′ l′2 :: ǫ holds since stacks are high. If e1 is

caught and e2 is uncaught, highResult ~kr
(l′2, h

′
2) holds thanks to typability constraint

k2 ⊔ se(i) ⊔ ~k′
r[e2] ≤ ~kr[e2]. If both exceptions are uncaught in m, (〈l′1〉, h

′
1) ∼ ~kr,β′

(〈l′2〉, h
′
2) holds thanks to typability constraints k1 ⊔ se(i) ⊔ ~k′

r[e1] ≤ ~kr[e1] and

k2 ⊔ se(i) ⊔ ~k′
r[e2] ≤ ~kr[e2].

In second case e1 = e2 and l′1 ∼β′ l′2. If e1 is caught, l′1 :: ǫ ∼(k1⊔ ~k′
r[e1])::ε,(k2⊔ ~k′

r [e2])::ε,β′

l′2 :: ǫ holds since (k1 ⊔ ~k′
r[e1]) = (k2 ⊔ ~k′

r[e2]) and l′1 ∼β′ l′2. If e1 is uncaught,
(〈l′1〉, h

′
1) ∼ ~kr ,β′ (〈l′2〉, h

′
2) holds since l′1 ∼β′ l′2.

— k1 6≤ kobs and k2 6≤ kobs. We choose β′ = β. Each h′
j is either of the form

hj ⊕{l′j 7→ defaultnp} (if the virtual call is done on a null pointer) or is equal to the
final heap obtained after execution of the called method m′

j . Since methods are
supposed side-effect safe we know that hj � h′

j . In every cases h′
1 ∼β′ h′

2 holds
thanks to Lemma E.2.2 or Lemma E.2.4 (side effect levels are high by typability).
We then make a case analysis according to the nature (final or not) of each execution.
Heaps indistinguishability is no more mentioned since already proved.
— if both executions go on, by typability all elements in st ′1 (respectively st ′2) are
greater than k1 (respectively k2) and hence are high. Operand stack indistinguisha-
bility follows easily. Local variables indistinguishability is immediate since local
variables are not modified.
— if one execution goes on but the other terminates with an uncaught exception e

we must prove that ~kr[e] 6≤ kobs. This is done using typability constraint k⊔ se(i)⊔
~k′
r[e] ≤

~kr[e] with k equals to k1 or k2.
— If both executions terminate with some uncaught exception e1 and e2, output
indistinguishability holds using typability constraint k1 ⊔ se(i)⊔ ~k′

r [e1] ≤ ~kr[e1] and

k2 ⊔ se(i) ⊔ ~k′
r[e2] ≤ ~kr[e2].

Lemma D.0.27 Non-interference induction step. Let n an integer such
that all method in P are non-interferent at all order k, k < n.

Let β a partial function β ∈ L ⇀ L and 〈i0, ρ0, os0, h0〉, 〈i′0, ρ
′
0, os

′
0, h

′
0〉 ∈ StateG

two JVMG statessuch that 〈i0, ρ0, os0, h0〉 ∼Si0 ,Si′
0
,β 〈i′0, ρ

′
0, os

′
0, h

′
0〉, and i0 = i′0.

Suppose we have a derivation

〈i0, ρ0, os0, h0〉
(n0)
; m,τ0 · · · 〈ik, ρk, osk, hk〉

(nk)
; m,τk

(r, h)

with n0 + · · · + nk ≤ n and suppose this derivation is typable with respect to S.
Suppose we have a derivation

〈i′0, ρ
′
0, os

′
0, h

′
0〉

(n′
0)

; m,τ ′
0
· · · 〈i′k, ρ′k, os ′k, h′

k〉
(n′

k)
; m,τ ′

k
(r′, h′)

with n′
0 + · · ·+n′

k ≤ n and suppose this derivation is typable with respect to S. Then
there exists β′ ∈ L ⇀ L such that

(r, h) ∼ ~kr ,β′ (r′, h′) and β ⊆ β′

Proof. By induction on max(k, k′). Suppose the statement is true for derivation
of length strictly lower than max(k, k′) and prove it for the current lengths.

There are four cases:

(1) k = k′ = 0 : the case 3 of Lemma D.0.26 allows us a direct conclusion.
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(2) k > 0 and k′ = 0 : we are in the case 2 of Lemma D.0.26 so there exists
β′ ∈ L ⇀ L such that

h1 ∼β′ h′, highResult ~kr
(r′, h′) and β ⊆ β′

Thanks to case 2 of lemma D.0.25 and sub-typing lemma E.4.1 we have

high(os1, Si1) and se is high in region(i0, τ1)

where τ1 verifies i0 7→τ1 i1. SOAP2 gives i1 ∈ region(i0, τ1) or i1 = jun(i0, τ1)
but jun(i0, τ1) is undefined thanks to SOAP3. We can hence apply Lemma D.0.24
to conclude that

highResult ~kr
(r′, h′) and h′ ∼β h′

1

Using the other hypotheses

h1 ∼β′ h′
1, h1 ∼β′ h′, highResult ~kr

(r′, h′)

we can easily conclude.

(3) k = 0 and k′ > 0 : symmetric version of the previous case.

(4) k > 0 and k′ > 0 : We make two cases:
Case 1:. i1 = i′1. The induction hypothesis directly applies.
Case 2:. i1 6= i′1. Let call st1, st

′
1 the stack types such that

io ⊢τ0 Si0 ⇒ st1, st1 ⊑ Si1 , i′o ⊢τ ′
0 Si′0

⇒ st ′1, st ′1 ⊑ Si′1

The case 1 of lemma D.0.25 can be invoked to deduce (with the help of lemma E.4.1)

high(os1, st1) and se is high in region(i0, τ)

high(os ′1, st
′
1) and se is high in region(i0, τ

′)

where τ, τ ′ verify i0 7→τ i1 and i′0 7→τ ′

i′1.
Thanks to lemma E.4.1 we have

high(os1, Si1) and high(os ′1, S
′
i1

)

We are furthermore in case 1 of Lemma D.0.26 so there exists β′, β ⊆ β′ such
that

〈i1, ρ1, os1, h1〉 ∼st1,st′1,β′ 〈i′1, ρ
′
1, os

′
1, h

′
1〉

Using Lemma E.4.3 two times we have

〈i1, ρ1, os1, h1〉 ∼Si1 ,Si′
1
,β′ 〈i′1, ρ

′
1, os

′
1, h

′
1〉

This allows us to invoke Lemma D.0.22 which gives us two cases:
(a) There exists j, j′ with 1 ≤ j ≤ k and 1 ≤ j′ ≤ k′ such that ij = i′j′

and 〈ij , ρj, osj, hj〉 ∼Sij
,Si′

j′
,β 〈i′j′ , ρj′ , osj′ , hj′〉. We can use the induction

hypothesis on 〈ij , ρj , osj , hj〉
(nj)
; m,τj

(r, h) and 〈ij′ , ρj′ , osj′ , hj′〉
(nj′ )
; m,τ ′

j

(r′, h′) to conclude.
(b) (r, h) ∼ ~kr ,β′ (r′, h′) and we can directly conclude.

Proof of Theorem 7.5.1. We show by induction on an integer n that all
method in P are non-interferent at order n. We use an induction scheme of the
form

(∀n, (∀k, k < n ⇒ P(k)) ⇒ P(n)) =⇒ ∀n, P(n)

The proof is then a direct application of Lemma D.0.27.
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E. AUXILIARIES LEMMAS

All free variables are implicitly universally quantified. Naming convention allows to
infer kind of each variables.

E.1 Operand stack

Lemma E.1.1. If os ∼st,st ′,β os ′ and k ≤ kobs ⇒ v ∼β v′ then v :: os ∼k::st,k::st ′,β

v′ :: os′

Lemma E.1.2. os ∼st,st ′,β os ′ and v ∼β v′ implies v :: os ∼k::st,k::st ′,β v′ :: os′

Lemma E.1.3. os ∼st,st ′,β os ′ then liftkos ∼st,st ′,β liftkos
′.

Lemma E.1.4. v :: os ∼k::st,k′::st′,β v′ :: os′

implies os ∼st,st′,β os ′ and v ∼β v′ and one of the following cases:

— either k = k′, k ≤ kobs and v ∼β v′,

— or k 6≤ kobs and k′ 6≤ kobs.

Lemma E.1.5. If length(st1) = length(st2) and

os1 :: l1 :: os ′1 ∼st1::k1::st ′1,st2::k2::st ′2,β os2 :: l2 :: os ′2

If k1 ≤ ~k′
v[0] and k2 ≤ ~k′

v[0], if

∀i ∈ [0, length(st1) − 1], st1[i] ≤ ~k′
v[i + 1]

and

∀i ∈ [0, length(st2) − 1], st1[i] ≤ ~k′
v[i + 1]

then

{this 7→ l1, ~x 7→ os1} ∼ ~k′
v,β

{this 7→ l2, ~x 7→ os2}

E.2 Heap

Lemma E.2.1. Let k ∈ S a security level, for all heap h ∈ Heap and object
o ∈ O,

h �k h⊕{fresh(h) 7→ o}

Lemma E.2.2. h ∼β h0 and l = fresh(h) implies h⊕{l 7→ o} ∼β h0

Lemma E.2.3. h ∼β h0 and ft(f) 6≤ kobs implies h⊕{l 7→ h(l)⊕{f 7→ v}} ∼β

h0

Lemma E.2.4. h ∼β h0, k 6≤ kobs and h �k h′ implies h′ ∼β h0

Lemma E.2.5. If h1 ∼β h2, l1 = fresh(h1) and l2 = fresh(h2), then β′ =
β ⊕{l1 7→ l2} verifies:

— β ⊆ β′,

— h1 ⊕{l1 7→ defaultC} ∼β′ h2 ⊕{l2 7→ defaultC}

Proof. By hypothesis, β is a bijection between dom(β) and rng(β), dom(β) ⊆
dom(h1), rng(β) ⊆ dom(h2) and for every l ∈ dom(β), h1(l) ∼β h2(β(l)).

We remark first that l1 6∈ dom(β), since l1 6∈ dom(h1) and dom(β) ⊆ dom(h1).
Similarly, we have l2 6∈ rng(β), since l2 6∈ dom(h2) and rng(β) ⊆ dom(h2).

From l1 6∈ dom(β), we deduce that β ⊆ β′.
Since β is a bijection between dom(β) and rng(β), since l1 6∈ dom(β) and l2 6∈

rng(β), we deduce β′ is a bijection between dom(β′) and rng(β′).
We finally prove that for all l ∈ dom(β′), h1 ⊕{l1 7→ defaultC}(l) ∼β′ h2 ⊕{l2 7→ defaultC}(β′(l)).

If l 6= l the result trivially holds by hypothesis. If l = l we just have to prove that
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defaultC ∼β′ defaultC . This is true since for all fields f ∈ dom(defaultC), defaultC .f

is equal to 0 or null (elements on which ∼β′ is reflexive).

Lemma E.2.6. If h1 ∼β h2, if l1 = fresh(h1) and l2 = fresh(h2) then the follow-
ing properties hold

— h1 ⊕{l1 7→ defaultC} ∼β h2

— h1 ∼β h2 ⊕{l2 7→ defaultC}

— h1 ⊕{l1 7→ defaultC} ∼β h2 ⊕{l2 7→ defaultC}

E.3 Extension of β

Lemma E.3.1. If v1 ∼β v2 and β ⊆ β′ then v1 ∼β′ v2.

Lemma E.3.2. If ρ1 ∼β ρ2 and β ⊆ β′ then ρ1 ∼β′ ρ2.

Lemma E.3.3. If os1 ∼st1,st2,β os2 and β ⊆ β′ then os1 ∼st1,st2,β′ os2.

E.4 Indistinguishability monotony

Lemma E.4.1 high stack type sub-typing. Let st1, st2 ∈ S⋆ be two stack
types such that st1 ⊑ st2, if os ∈ V⋆ is an operand stack such that high(os , st1) then
high(os , st2).

Lemma E.4.2 indistinguishability double monotony. Let st , st1, st2 ∈ S⋆

be three stack types such that st1 ⊑ st and st2 ⊑ st, if os1, os2 ∈ V⋆ are two operand
stacks such that os1 ∼st1,st2 os2 then os1 ∼st,st os2.

Lemma E.4.3 indistinguishability single monotony. Let st0, st1, st2 ∈ S⋆

be three stack types such that st1 ⊑ st2, if os , os0 ∈ V⋆ are two operand stacks such
that os ∼st1,st0 os0 and high(os , st1) then os ∼st2,st0 os0.
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