promoting access to White Rose research papers

Universities of Leeds, Sheffield and York http:/leprints.whiterose.ac.ukl

This is an author produced version of a paper published in Journal of Algebra.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/10159

Published paper

Katzman, M. (2002) An example of an infinite set of associated primes of a local cohomology module, Journal of Algebra, 252 (1), pp. 161-166 http://dx.doi.org/doi:10.1016/S0021-8693(02)00032-7

AN EXAMPLE OF AN INFINITE SET OF ASSOCIATED PRIMES OF A LOCAL COHOMOLOGY MODULE

MORDECHAI KATZMAN

0 . Introduction

Let (R, m) be a local Noetherian ring, let $I \subset R$ be any ideal and let M be a finitely generated R-module. It has been long conjectured that the local cohomology modules $H_{I}^{i}(M)$ have finitely many associated primes for all i (see Conjecture 5.1 in H and .)

If R is not required to be local these sets of associated primes may be infinite, as shown by Anurag Singh in SS, where he constructed an example of a local cohomology module of a finitely generated module over a finitely generated \mathbb{Z}-algebra with infinitely many associated primes. This local cohomology module has p-torsion for all primes $p \in \mathbb{Z}$.

However, the question of the finiteness of the set of associated primes of local cohomology modules defined over local rings and over k-algebras (where k is a field) has remained open until now. In this paper I settle this question by constructing a local cohomology module of a local finitely generated k-algebra with an infinite set of associated primes, and I do this for any field k.

1. The example

Let k be any field, let $R_{0}=k[x, y, s, t]$ and let $S=R_{0}[u, v]$. Define a grading on S by declaring $\operatorname{deg}(x)=\operatorname{deg}(y)=\operatorname{deg}(s)=\operatorname{deg}(t)=0$ and $\operatorname{deg}(u)=\operatorname{deg}(v)=1$. Let $f=s x^{2} v^{2}-(t+s) x y u v+t y^{2} u^{2}$ and let $R=S / f S$. Notice that f is homogeneous and hence R is graded. Let S_{+}be the ideal of S generated by u and v and let R_{+}be the ideal of R generated by the images of u and v.

Consider the local cohomology module $H_{R_{+}}^{2}(R)$: it is homogeneously isomorphic to $H_{S_{+}}^{2}(S / f S)$ and we can use the exact sequence

$$
H_{S_{+}}^{2}(S)(-2) \xrightarrow{f} H_{S_{+}}^{2}(S) \longrightarrow H_{S_{+}}^{2}(S / f S) \longrightarrow 0
$$

of graded R-modules and homogeneous homomorphisms (induced from the exact sequence

$$
0 \longrightarrow S(-2) \xrightarrow{f} S \longrightarrow S / f S \longrightarrow 0)
$$

[^0]to study $H_{R_{+}}^{2}(R)$. Furthermore, we can realize $H_{S_{+}}^{2}(S)$ as the module $R_{0}\left[u^{-}, v^{-}\right]$of inverse polynomials described in $\mathrm{BS}, 12.4 .1]$: this graded S-module vanishes beyond degree -2 , and, for each $d \geq 2$, its $(-d)$-th component is a free R_{0}-module of rank $d-1$ with base $\left(u^{-\alpha} v^{-\beta}\right)_{\alpha, \beta>0, \alpha+\beta=-d}$. We will study the graded components of $H_{S_{+}}^{2}(S / f S)$ by considering the cokernels of the R_{0}-homomorphisms
$$
f_{-d}: R_{0}\left[u^{-}, v^{-}\right]_{-d-2} \longrightarrow R_{0}\left[u^{-}, v^{-}\right]_{-d} \quad(d \geq 2)
$$
given by multiplication by f. In order to represent these R_{0}-homomorphisms between free $R_{0^{-}}$ modules by matrices, we specify an ordering for each of the above-mentioned bases by declaring that
$$
u^{\alpha_{1}} v^{\beta_{1}}<u^{\alpha_{2}} v^{\beta_{2}}
$$
(where $\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}<0$ and $\alpha_{1}+\beta_{1}=\alpha_{2}+\beta_{2}$) precisely when $\alpha_{1}>\alpha_{2}$. If we use this ordering for both the source and target of each f_{d}, we can see that each $f_{d}(d \geq 2)$ is given by multiplication on the left by the tridiagonal $d-1$ by $d+1$ matrix
\[

A_{d-1}:=\left($$
\begin{array}{cccccc}
s x^{2} & -x y(t+s) & t y^{2} & 0 & \ldots & 0 \\
0 & s x^{2} & -x y(t+s) & t y^{2} & 0 \ldots & 0 \\
0 & 0 & s x^{2} & -x y(t+s) & t y^{2} \ldots & 0 \\
& & & \ddots & & \\
0 & \ldots & & s x^{2} & -x y(t+s) & t y^{2}
\end{array}
$$\right)
\]

We also define

$$
\bar{A}_{d-1}:=\left(\begin{array}{cccccc}
s & -(t+s) & t & 0 & \ldots & 0 \\
0 & s & -(t+s) & t & 0 \ldots & 0 \\
0 & 0 & s & -(t+s) & t \ldots & 0 \\
& & & \ddots & & \\
0 & \ldots & s & -(t+s) & t
\end{array}\right)
$$

obtained by substituting $x=y=1$ in A_{d-1}.
Let also $\tau_{i}=(-1)^{i}\left(t^{i}+s t^{i-1}+\cdots+s^{i-1} t+s^{i}\right)$.

1.1. Lemma.

(i) Let B_{i} be the submatrix of \bar{A}_{i} obtained by deleting its first and last columns. Then $\operatorname{det} B_{i}=$ τ_{i} for all $i \geq 1$.
(ii) Let \mathcal{S} be an infinite set of positive integers. Suppose that either k has characteristic zero or that k has prime characteristic p and \mathcal{S} contains infinitely many integers of the form $p^{m}-2$. The $\left(k[s, t]\right.$-)irreducible factors of $\left\{\tau_{i}\right\}_{i \in \mathcal{S}}$ form an infinite set.

Proof. We prove the first statement by induction on i. Since

$$
\operatorname{det} B_{1}=\operatorname{det}(-t-s)=-t-s \text { and } \operatorname{det} B_{2}=\operatorname{det}\left(\begin{array}{cc}
-t-s & t \\
s & -t-s
\end{array}\right)=t^{2}+s t+s^{2}
$$

the lemma holds for $i=1$ and $i=2$. Assume now that $i \geq 3$. Expanding the determinant of B_{i} by its first row and applying the induction hypothesis we obtain

$$
\begin{aligned}
\operatorname{det} B_{i} & =(-t-s) \operatorname{det} B_{i-1}-s t \operatorname{det} B_{i-2} \\
& =(-1)^{i-1}(-t-s)\left(t^{i-1}+\cdots+s^{i-2} t+s^{i-1}\right)-(-1)^{i-2} s t\left(t^{i-2}+\cdots+s^{i-3} t+s^{i-2}\right) \\
& =(-1)^{i}\left[\left(t^{i}+\cdots+s^{i-2} t^{2}+s^{i-1} t\right)+\left(s t^{i-1}+\cdots+s^{i-1} t+s^{i}\right)-\left(s t^{i-1}+\cdots+s^{i-2} t^{2}+s^{i-1} t\right)\right] \\
& =(-1)^{i}\left(t^{i}+s t^{i-1}+\cdots+s^{i-1} t+s^{i}\right)
\end{aligned}
$$

We now prove the second statement. Define $\sigma_{i}=t^{i}+t^{i-1}+\cdots+t+1$ and notice that it is enough to show that the set of irreducible factors of $\left\{\sigma_{i}\right\}_{i \in \mathcal{S}}$ is infinite. Let \mathcal{I} be the set of irreducible factors of $\left\{\sigma_{i}\right\}_{i \in \mathcal{S}}$. If k has characteristic zero consider $\mathbb{Q}[\mathcal{I}] \supseteq \mathbb{Q}$, the splitting field of this set of irreducible factors. If \mathcal{I} is finite, $\mathbb{Q}[\mathcal{I}] \supseteq \mathbb{Q}$ is finite extension which contains all i th roots of unity for all $i \in \mathcal{S}$, which is impossible.

Assume now that k has prime characteristic p. Let \mathbb{F} be the algebraic closure of the prime field of k. For any positive integer m

$$
\frac{d}{d t} t\left(t^{p^{m}-1}-1\right)=-1
$$

so $\sigma_{p^{m}-2}=\left(t^{p^{m}-1}-1\right) /(t-1)$ has $p^{m}-2$ distinct roots in \mathbb{F} and, therefore, the roots of $\left\{\sigma_{s}\right\}_{s \in \mathcal{S}}$ form an infinite set.
1.2. Theorem. For every $d \geq 2$ the R_{0}-module $H_{R_{+}}^{2}(R)_{-d}$ has τ_{d-1}-torsion. Hence $H_{R_{+}}^{2}(R)$ has infinitely many associated primes.

Proof. For the purpose of this proof we introduce a bigrading in R_{0} by declaring $\operatorname{deg}(x)=(1,0)$, $\operatorname{deg}(y)=(1,1)$ and $\operatorname{deg}(t)=\operatorname{deg}(s)=(0,0)$.

We also introduce a bigrading on the free R_{0}-modules R_{0}^{n} by declaring $\operatorname{deg}\left(x^{\alpha} y^{\beta} s^{a} t^{b} \mathbf{e}_{j}\right)=(\alpha+$ $\beta, \beta+j$) for all non-negative integers α, β, a, b and all $1 \leq j \leq n$. Notice that R_{0}^{n} is a bigraded R_{0}-module when R_{0} is equipped with the bigrading mentioned above.

Consider the R_{0}-module Coker A_{d-1}; the columns of A_{d-1} are bihomogeneous of bidegrees

$$
(2,1),(2,2), \ldots,(2, d+1)
$$

We can now consider Coker A_{d-1} as a $k[s, t]$ module generated by the natural images of $x^{\alpha} y^{\beta} \mathbf{e}_{j}$ for all non-negative integers α, β and all $1 \leq j \leq d-1$. The $k[s, t]$-module of relations among
these generators is generated by $k[x, y]$-linear combinations of the columns of A_{d-1}, and since these columns are bigraded, the $k[s, t]$-module of relations will be bihomogeneous and we can write

$$
\text { Coker } A_{d-1}=\bigoplus_{0 \leq D, 1 \leq j}\left(\text { Coker } A_{d-1}\right)_{(D, j)}
$$

Consider the $k[s, t]$-module (Coker $\left.A_{d-1}\right)_{(d, d)}$, the bihomogeneous component of Coker A_{d-1} of bidegree (d, d). It is generated by the images of

$$
x y^{d-1} \mathbf{e}_{1}, x^{2} y^{d-2} \mathbf{e}_{2}, \ldots, x^{d-2} y^{2} \mathbf{e}_{d-2}, x^{d-1} y \mathbf{e}_{d-1}
$$

and the relations among these generators are given by $k[s, t]$-linear combinations of

$$
y^{d-2} \mathbf{c}_{2}, x y^{d-3} \mathbf{c}_{3}, \ldots, x^{d-3} y \mathbf{c}_{d-1}, x^{d-2} \mathbf{c}_{d}
$$

where $\mathbf{c}_{1}, \ldots, \mathbf{c}_{d+1}$ are the columns of A_{d-1}. So we have

$$
\left(\operatorname{Coker} A_{d-1}\right)_{(d, d)}=\operatorname{Coker} B_{d-1}
$$

where B_{d-1} is viewed as a $k[s, t]$-homomorphism $k[s, t]^{d-1} \rightarrow k[s, t]^{d-1}$.
Using Lemma 1.1(i) we deduce that for all $d \geq 2$ the direct summand (Coker $\left.A_{d-1}\right)_{(d, d)}$ of Coker A_{d-1} has τ_{d-1} torsion, and so does Coker A_{d-1} itself.

Lemma 1.1(ii) applied with $\mathcal{S}=\mathbb{N}$ now shows that there exist infinitely many irreducible homogeneous polynomials $\left\{p_{i} \in k[s, t]: i \geq 1\right\}$ each one of them contained in some associated prime of the R_{0}-module $\oplus_{d \geq 2}$ Coker A_{d-1}. Clearly, if $i \neq j$ then any prime ideal $P \subset R_{0}$ which contains both p_{i} and p_{j} must contain both s and t.

Since the localisation of $\left(\operatorname{Coker} A_{d-1}\right)_{(d, d)}$ at s does not vanish, there exist $P_{i}, P_{j} \in \operatorname{Ass}_{R_{0}} \operatorname{Coker} A_{d-1}$ which do not contain s and such that $p_{i} \subset P_{i}, p_{j} \subset P_{j}$, and the previous paragraph shows that $P_{j} \neq P_{j}$.

The second statement now follows from the fact that $H_{R_{+}}^{2}(R)$ is R_{0}-isomorphic to $\oplus_{d \geq 2}$ Coker A_{d-1}.
1.3. Corollary. Let T be the localisation of R at the irrelevant maximal ideal $\mathfrak{m}=\langle s, t, x, y, u, v\rangle$. Then $H_{(u, v) T}^{2}(T)$ has infinitely many associated primes.

Proof. Since $\tau_{i} \in \mathfrak{m}$ for all $i \geq 1, H_{(u, v) T}^{2}(T) \cong\left(H_{(u, v) R}^{2}(R)\right)_{\mathfrak{m}}$ has τ_{i}-torsion for all $i \geq 1$.

2. A connection with associated primes of Frobenius powers

In this section we apply a technique similar to the one used in section 1 to give a proof of a slightly more general statement of Theorem 12 in . The new proof is simpler, open to generalisations and
it gives a connection between associated primes of Frobenius powers of ideals and of local cohomology modules, at least on a purely formal level.

Let k be any field, let $S=k[x, y, s, t]$, let $F=x y(x-y)(s x-t y)=s x^{3} y-(t+s) x^{2} y^{2}+t x y^{3}$ and let $R=S / F S$.
2.1. Theorem. Let \mathcal{S} be an infinite set positive integers and suppose that either k has characteristic zero or that k has characteristic p and that \mathcal{S} contains infinitely many powers of p. The set

$$
\bigcup_{n \in \mathcal{S}} \operatorname{Ass}_{R}\left(\frac{R}{\left\langle x^{n}, y^{n}\right\rangle}\right)
$$

is infinite.

Proof. We introduce a grading in S by setting $\operatorname{deg}(x)=\operatorname{deg}(y)=1$ and $\operatorname{deg}(s)=\operatorname{deg}(t)=0$. Since F is homogeneous, R is also graded.

Fix some $n>0$ and consider the graded R-module $T=R /\left\langle x^{n}, y^{n}\right\rangle$. For each $d>4$ consider T_{d}, the degree d homogeneous component of T, as a $k[s, t]$-module. If $d<n, T_{d}$ is generated by the images of $y^{d}, x y^{d-1}, \ldots, x^{d-1} y, x^{d}$ and the relations among these generators are obtained from $y^{d-4} F, x y^{d-5} F, \ldots, x^{d-5} y F, x^{d-4} F$. Using these generators and relations, in the given order, we write $T_{d}=$ Coker M_{d} where

When $d=n, T_{d}$ is isomorphic to the cokernel of the submatrix of M_{d} obtained by deleting the first and last rows which correspond to the generators y^{n}, x^{n} of T_{n}.

When $d=n+1, T_{d}$ is isomorphic to the cokernel of the submatrix of M_{d} obtained by deleting the first two rows and and last two rows which correspond to the generators $y^{n+1}, x y^{n}, x^{n} y, x^{n+1}$ of T_{n+1}, and the resulting submatrix is B_{n-2} defined in Lemma 1.1; the result now follows from that lemma.

This technique for finding associated primes of non-finitely generated graded modules and of sequences of graded modules has been applied in BKS and KS to yield further new and surprising properties of top local cohomology modules.

Acknowledgment

I would like to thank Rodney Sharp, Anurag Singh and Gennady Lyubeznik for reading a first draft of this paper and for their helpful suggestions.

References

[BKS] M. Brodmann, M. Katzman and R. Y. Sharp. Associated primes of graded components of local cohomology modules, Transactions of the American Mathematical Society, to appear.
[BS] M. P. Brodmann and R. Y. Sharp. Local cohomology: an algebraic introduction with geometric applications, Cambridge University Press, 1998.
[H] C. Huneke. Problems on local cohomology, in Free resolutions in commutative algebra and algebraic geometry (Sundance UT, 1990), 93-108, Research Notes in Mathematics 2. Jones and Bartlett, Boston, MA, 1992.
[K] M. Katzman. Finiteness of $\cup_{e} \operatorname{Ass} F^{e}(M)$ and its connections to tight closure. Illinois Journal of Mathematics 40 (1996) pp. 330-337.
[KS] M. Katzman and R. Y. Sharp. Some properties of top graded local cohomology modules, preprint.
[L] G. Lyubeznik, A partial survey of local cohomology, in Local Cohomology and Its Applications, ed. G. Lyubeznik, Marcel Dekker (2001).
[S] A. K. Singh. p-torsion elements in local cohomology modules, Math. Research Letters 7 (2000) 165-176.

Department of Pure Mathematics, University of Sheffield, Hicks Building, Sheffield S3 7RH, United Kingdom, Fax number: 0044-114-222-3769

E-mail address: M.Katzman@sheffield.ac.uk

[^0]: Date: February 1, 2008.
 1991 Mathematics Subject Classification. Primary 13D45, 13E05, 13A02, 13P99.
 Key words and phrases. Graded commutative Noetherian ring, graded local cohomology module, infinite set of associated primes.

