
HAL Id: inria-00238563
https://hal.inria.fr/inria-00238563

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Timed Quorum System for Large-Scale and Dynamic
Environments

Vincent Gramoli, Michel Raynal

To cite this version:
Vincent Gramoli, Michel Raynal. Timed Quorum System for Large-Scale and Dynamic Environ-
ments. 11th International Conference On Principles Of Distributed Systems, Dec 2007, Pointe à
Pitre, Guadeloupe. pp.429–442. �inria-00238563�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50301714?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00238563
https://hal.archives-ouvertes.fr

in
ri

a-
00

23
85

63
, v

er
si

on
 1

 -
 4

 F
eb

 2
00

8

Timed Quorum Systems for

Large-Scale and Dynamic Environments⋆

Vincent Gramoli1,2 Michel Raynal2

1 INRIA Futurs,
Parc Club Orsay Université, 91893 Orsay, France

vgramoli@irisa.fr
2 Université de Rennes 1 and INRIA Research Centre Rennes,

Campus de Beaulieu, 35042 Rennes, France
raynal@irisa.fr

Abstract. This paper presents Timed Quorum System (TQS), a new quo-
rum system especially suited for large-scale and dynamic systems. TQS re-
quires that two quorums intersect with high probability if they are used in
the same small period of time. It proposed an algorithm that implements
TQS and that verifies probabilistic atomicity: a consistency criterion that re-
quires each operation to respect atomicity with high probability. This TQS
implementation has quorum of size O(

√
nD) and expected access time of

O(log
√

nD) message delays, where n measures the size of the system and
D is a required parameter to handle dynamism.

Keywords: Time, Quorums, Churn, Scalability, Probabilistic atomicity.

1 Introduction

The need of resources is a main motivation behind distributed systems. Take
peer-to-peer (p2p) systems as an example. A p2p system is a distributed
system that has no centralized control. The p2p systems have gained in
popularity with the massive utilization of file-sharing applications over the
Internet, since 2000. These systems propose a tremendous amount of file re-
sources. More generally, there is an increasing amount of various computing
devices surrounding us: IDC predicts that there will be 17 billions of tra-
ditional network devices by 2012. In such context, it is common knowledge
that scalability has become one of the most important challenges of today’s
distributed systems.

The scale-shift of distributed systems modifies the way computational en-
tities communicate. Energy dependence, disconnection, malfunctioning, and
other environmental factors affect the availability of various computational
entities independently. This translates into unregular periods of activity dur-
ing which an entity can receive messages or compute tasks. As a result of
this independent and periodic behaviors, these systems are inherently highly
dynamic.

⋆ Contact author: Vincent Gramoli, ASAP Research Group, INRIA Futurs, 3-4 rue
Jacques Monod, 91893 Orsay, France; fax: +33 1 74 85 42 42.

Quorum system is a largely adopted solution for communication in message-
passing system. Despite the interest for emulating shared-memory in dy-
namic systems [1,2,3,4], there is no scalable solution due to the cost of their
failure handling mechanism or their operation complexity. This paper pro-
poses a new quorum system, Timed Quorum System (TQS), whose quorums
have a bounded lifetime and that intersect with high probability during their
lifetime. We propose an implementation of TQS that emulates a probabilistic
atomic memory, provided that each node is able to approximate the system
size. We show that the resulting quorum size is O(

√
nD). Factor n is the

number of nodes and factor D is required to handle the dynamism of nodes
in the system and can be bounded if operations are sufficiently frequent.
That is, quorum size becomes O(

√
n), which is optimal, as proved in [5], for

static settings. Moreover, the expected time for an operation to contact a
quorum is O(log

√
nD) message delays.

Related Work. Dynamic quorum system is an active research topic. Some
dynamic quorums rely on failure detectors where if a failure is detected,
then the quorum is adapted. This adaption leads to a redefinition of the
quorums [1,6] or to the replacement of the failed nodes in the quorums [7,8,9].
For example, in [8], a communication structure is continuously maintained
to ensure that quorum intersects at all time (with high probability).

Other solutions relies on periodic reconfigurations [2,4] where the quo-
rum systems are subsequently replaced. These solutions are different from
the previous ones since the newly installed quorums do not need to inter-
sect with the previous ones. In [3] a quorum abstraction states requires two
properties: (i) intersection and (ii) progress, in which the notion of time is
introduced. First, a quorum of a certain type intersects the quorum of an-
other type contacted subsequently. Second, each node of a quorum remains
active between the time the quorum starts being probed and the time the
quorum stopped being probed.

As far as we know TQS is the first quorum system that expresses guar-
antees that are both timely and probabilistic. Time and probability relax
the traditional intersection requirement of quorums. We present a scalable
emulation of a probabilistic atomic memory where each operation is atomic
with high probability and where expected operation message complexity is
O(

√
nD) and expected operation time complexity is O(log

√
nD). If opera-

tions are sufficiently frequent then D becomes a constant leading to quorum
of size O(

√
n).

2 System Model and Problem Definition

2.1 Model

The computation model is very simple. The system consists of n nodes. It is
dynamic in the following sense. Every time unit, cn nodes leave the system

and cn nodes enter the system, where c is an upper bound on the percentage
of nodes that enter/leave the system per time unit and is called the churn;
this can be seen as new nodes “replacing” leaving nodes. A node leaves the
system either voluntarily or because it crashes. A node that leaves the system
does not reenter it later. (Practically, this means that, when a node reenters
the system, it is considered as a new node; all its previous knowledge of the
system state is lost.) For the sake of simplicity, it is assumed that for any
subset S of nodes, the portion of replaced nodes is c|S|. As explained below,
the model can be made more complex. The universe U denotes all the nodes
of the system, plus the ones that have already leave the system and the ones
that have not joined the system yet.

2.2 Problem

Most of the dynamic models assume that dynamic events are dependent
from each other: only a limited number of nodes leave and join the system
during a bounded period of time. For instance in [4], it is assumed that nodes
departures are dependent: quorum replication ensures that all nodes of at
least any two quorums remain active between two reconfigurations occur.
However, in a real dynamic system, nodes act independently. Due to this
independence, even with a precise knowledge of the past dynamic events,
one can not predict the future behavior of a node. That is, putting this
observation into the quorums context, it translates into the impossibility of
predicting deterministically whether quorums intersect.

In contrast, TQS requires that quorums intersect with high probability.
This allows to use a more realistic model in which there is a certain proba-
bility that nodes leave/join the system at the same time. That is, the goal
here is to measure the probability that quorum intersect while time elapses.
Observe that, realistically, the probability that k nodes leave the system
increases at the time elapses. As a result, the probability that a quorum
Q(t) probed at time t and that a quorum Q(t′) probed at time t′ intersect
decreases as the period |t′ − t| increases. In the following we propose an
implementation of TQS where probability of intersection remains high.

More precisely, each quorum of our TQS implementation is defined for
a given time t. Each quorum Q(t) has a lifetime ∆ that represents a pe-
riod during which the quorum is reachable. Differently to availability defined
in [6], reachability does not depend on the number of nodes that are failed in
a quorum system because this number is unpredictable in dynamic systems.
Instead, a Q(t) quorum is reachable if at least one node of quorum Q(t)
is reached with high probability: if two quorums are reachable at the same
time, they intersect with high probability. More generally, let two quorums
Q(t) and Q(t′) of a TQS be reachable during ∆ time (their lifetime is ∆); if
|t − t′| ≤ ∆ then Q(t) and Q(t′) intersect with high probability.

Probabilistic Atomic Object. Initially, any object has a default value v0 that
is replicated at a set of nodes and V denotes the set of all possible values
present in the system. An object is accessed by read or write operations
initiated by some nodes i at time t ∈ T that returns or modify the object
value v. (T is the set of all possible time instants.) If a node initiates an
operation, then it is referred to as a client. All nodes of the system, including
nodes of the quorum system, can initiate a read or a write operation, i.e., all
nodes are potential clients and the multi-reader/multi-writer model is used.
In the following we only consider a single object accessed by operations that
must satisfy probabilistic atomicity.

A probabilistic atomic object aims at emulating a memory that offers
high quality of service despite large scale and dynamism. For the sake of
tolerating scale-shift and dynamism, we aim at relaxing some properties.
However, our goal is to provide each client with a distributed shared memory
emulation that offers satisfying quality of service. Quality of service must be
formally stated by a consistency criterion that defines the guarantees the
application can expect from the memory emulation. We aim at providing
quality of service in terms of accuracy of read and write operations. In other
words, our goal is to provide the clients with a memory that guarantees
that each read or write operation will be successfully executed with high
probability. We define the probabilistic atomic object as an atomic object
where operation accuracy is ensured with high probability.

Let us first recall properties 2 and 4 of atomicity from Theorem 13.16
of [10] which require that any sequence of invocations responses of read and
write operations applied to x satisfies a partial ordering ≺ such that:

– (π1, π2)-ordering : if the response event of operation π1 precedes the in-
vocation event of operation π2, then it is not possible to have π2 ≺ π1;

– (π1, π2)-return: the value returned by a read operation π2 is the value
written by the last preceding write operation π1 regarding to ≺ (in case
no such write operation π1 exists, this value returned is the default value).

The definition of probabilistic atomicity is similar to the definition of atom-
icity: only Properties 2 and 4 are slightly modified, as indicated below.

Definition 1 (Probabilistic Atomic Object). Let x be a read/write prob-
abilistic atomic object. Let H be a complete sequence of invocations responses
of read and write operations applied to object x. The sequence H satisfies
probabilistic atomicity if and only if there is a partial ordering ≺ on the
successful operations such that the following properties hold:

1. For any operation π2, there are only finitely many operations π1, such
that π1 ≺ π2.

2. Let π1 be a successful operation. Any operation π2 satisfies (π1, π2)-
ordering with high probability. (If π2 does not satisfy it, then π2 is con-
sidered as unsuccessful.)

3. if π1 is a write operation and π2 is any operation, then either π2 ≺ π1 or
π1 ≺ π2;

4. Let π1 be a successful operation. Any operation π2 satisfies (π1, π2)-return
with high probability. (If π2 does not satisfy it, then π2 is considered as
unsuccessful.)

Observe that the partial ordering is defined on successful operations.
That is, either an operation π fails and this operation is considered as un-
ordered or the operation succeeds and is ordered with respect to other suc-
cessful operations.

Even though an operation succeeds with high probability, in an infinite
execution it is very likely that at least one operation fails. However, our goal
is to provide the operation requester (client) with high guarantee of success
for each of its operation request.

Additional Notations and Definitions. This paragraph defines several terms
that are used in the algorithm description. First, recall that a shared object
is accessed through read operations, which return the current value of the
object, and write operations, which modify the current value of the object.
To clarify the notion of currency when concurrency happens, it is important
to explain what are the up-to-date values that could be considered as current.
We refer to the last value as the value associated with the largest tag among
all values whose propagation is complete. We refer to the up-to-date values
at time t as all values v that satisfies one of the following properties: (i) value
v is the last value or (ii) value v is a value whose propagation is ongoing and
whose associated tag is at least equal or larger to the tag associated with
the last value.

3 Timed Quorum System

This section defines Timed Quorum Systems (TQS). Before being created of
after its lifetime elapses, a quorum is not guaranteed to intersect with any
other quorums, however, during its lifetime a quorum is considered as avail-
able: two quorums that are available at the same time intersect with high
probability. In dynamic systems nodes may leave at any time, but this proba-
bility is bounded, thus it is possible to determine the intersection probability
of two quorums.

Definition of Timed Quorum System (TQS). Next, we formally define TQS
that are especially suited for dynamic systems. Recall that the universe U
contains the set of all possible nodes, including the one that have not join
the system yet. First, we restate the definition of a set system as a set of
subsets of a universe of nodes.

Definition 2 (Set System). A set system S over a universe U is a set of
subsets of U .

Then, we define the timed access strategy as an access strategy over a
set system that may vary over time. This definition is motivated by the fact
that an access strategy defined over a set S can evolve. To compare with the
existing probabilistic dynamic quorums, in [8] the authors defined a dynamic
quorum system using an evolving strategy that might replace some nodes of
a quorum while its access strategy remains identical despite this evolution.
Unlike the dynamic quorum approach, we need a more general framework to
consider quorums that are different not only because of their structure but
also because of how likely they can be accessed. The timely access strategy
adds a time parameter to the seminal definition access strategy given by
Malkhi et al. [5], A timely access strategy is allowed to evolve over time.

Definition 3 (Timed Access Strategy). A timed access strategy ω(t)
for a set system S at time t ∈ T is a probability distribution on the elements
of S at time t. That is, ω : S × T → [0, 1] satisfies at any time t ∈ T :
∑

s∈S ω(s, t) = 1.

Informally, at two distinct instants t1 ∈ T and t2 ∈ T , an access strategy
might be different for any reason. For instance, consider that some node i is
active at time t1 while the same node i is failed at time t2, hence it is likely
that if i ∈ s, then ω(s, t1) 6= 0 while ω(s, t2) = 0. This is due to the fact that
a node is reachable only when it is active.

Definition 4 (∆-Timed Quorum System). Let Q be a set system, let
ω(t) be a timed access strategy for Q at time t, and let 0 < ǫ < 1 be given.

The tuple 〈Q, ω(t)〉 is a ∆-timed quorum system if for any quorums
Q(t1) ∈ Q accessed with strategy ω(t1) and Q(t2) ∈ Q accessed with strategy
ω(t2), we have:

∆ ≥ |t1 − t2| ⇒ Pr[Q(t1) ∩ Q(t2) 6= ∅] ≥ 1 − ǫ.

4 Timed Quorum System Implementation for Probabilistic

Atomic Memory

In the following, we present a completely structureless memory. The quo-
rum systems this memory uses does not rely on any structure which makes
it flexible. In contrast with using a logical structured overlay (e.g., [11])
for communication among quorum system nodes, we use an unstructured
communication overlay [12]. The lack of structure presents several benefits.
First, there is no need to readapt the structure at each dynamic event. Sec-
ond, there is no need for detecting failure. Our solution proposes a periodic
replication. To ensure the persistence of an object value despite unbounded
leaves, the value must be replicated an unbounded number of times. The
solution we propose requires periodic operations and an approximation of
the system size. Although we do not focus on the problem of approximating
the system size n, we suggest the use of existing protocols approximating
closely the system size in dynamic systems [13].

Replicating during client operations. Benefiting from the natural primitive
of the distributed shared memory, values are replicated using operations.
Any operation has at its heart a quorum-probe that replicates value. On
the one hand, it is natural to think of a write operation as an operation
that replicates a value. On the other hand, in [14] a Theorem shows that
”read must write”, meaning that a read operation must replicates the value
it returns. This raises the question: if operations replicate, why does a mem-
ory need additional replication mechanism? In large-scale systems, it is also
reasonable to assume that shared objects are frequently accessed because of
the large number of participants.

Quorum Probe. The algorithm is divided in three distinct parts that repre-
sent the state of the algorithm (Lines 1–11), the actions initiated by a client
(Lines 12–39), and the actions taken upon reception of messages by a node
(Lines 40–58), respectively. Each node i has its own copy of the object called
its value val i and an associated tag tag i. Field tag is a couple of a counter
and a node identifier and represents, at any time, the version number of its
corresponding value val . We assume that, initially, there are q nodes that
own the default value of the object, the other nodes have their values val set
to ⊥ and all their tags are set to 〈0, 0〉.

Each read and write operation is executed by client i in two subse-
quent phases, each disseminating a message to q = O(

√
nD) nodes, where

D = 1/(1−c)∆ is required to handle churn c during period ∆.3 The two sub-
sequent phases are called the consultation phase and the propagation phase.
The consultation phase aims at consulting the up-to-date value of the object
that is present in the system. (This value is identifiable since it associates
the largest tag present in the system.) More precisely, client i disseminates
a consultation message to q nodes so that each receiver j responds with a
message containing value val j and tag tagj so that client i can update val i
and tag i. In fact, i updates val i and tag i if and only if the tag i has either a
smaller counter than tagj or it has an equal counter but a smaller identifiers
i < j (node identifiers are always distinct); in this case we say tag i < tag j for
short (cf. Lines 47 and 49). Ideally, at the end of the consultation phase client
i has set its value val i to the up-to-date value. Read and write operations
differ from the value and tag that are propagated by the client i. Specifi-
cally, in case of a read, client i propagates the value and tag pair freshly
consulted, while in the case of write, client i propagates the new value to
write with a strictly larger tag than the largest tag that i has consulted so
far. The propagation phase propagates the corresponding value and tag by
dissemination among nodes.

Next, we focus on the dissemination procedure that is at the heart of the
consultation and propagation phases. There are two parameters, ℓ, k, that
define the way all consultation or propagation messages are disseminated.

3 In [5], it has been showed that q = O(
√

n) is sufficient in static systems.

Algorithm 1 Disseminating Memory at node i
1: State of node i:
2: q = β

√

n

(1−c)
∆

2

, the quorum size

3: ℓ, k ∈ N the disseminating parameters taken such that kl+1
−1

k−1
≥ q

4: val ∈ V , the value of the object, initially ⊥
5: tag , a couple of fields:
6: counter ∈ N, initially 0
7: id ∈ I , an identifier initially i

8: marked , an array of boolean initially false at all indices
9: sent-to-nbrs1 , sent-to-nbrs2 two sets of node identifiers, initially ∅

10: rcvd-from-qnodes , an infinite array of identifier sets, initially ∅ at all indices
11: sn ∈ N, the sequence number of the current phase, initially 0

12: Readi:
13: 〈val , tag〉 ← Consult()
14: Propagate(〈val , tag〉)

15: Write(v)i:
16: 〈∗, tag〉 ←Consult()
17: tag .counter ← tag .counter + 1
18: tag .id ← i

19: val ← v

20: Propagate(〈val , tag〉)

21: Consulti:
22: ttl ← ℓ

23: sn ← sn + 1
24: while (|sent-to-nbrs1 | < k) do
25: send〈CONS, val , tag , ttl , i, sn〉 to (k − |sent-from-nbrs1 |) neighbors 6= j

26: sent-to-nbrs1 ← sent-to-nbrs1 ∪ {j}
27: end while
28: sent-to-nbrs1 ← ∅
29: wait until |rcvd-from-qnodes [sn]| ≥ q

30: return (〈val , tag〉)

Parameter ℓ indicates the depth of the dissemination, it is used to set a
time-to-live field ttl that is decremented at each intermediary node that
participates in the dissemination; if ttl = 0, then dissemination is complete.
Parameter k represents the number of neighbors that are contacted by each
intermediary participating node. Together, parameters ℓ and k define the
number of nodes that are contacted during a dissemination. This number
is kℓ+1−1

k−1 (Line 3) and represents the number of nodes in a balanced tree
of depth ℓ and degree k + 1: each node having at most k children. (This
value is provable by recurrence on the depth ℓ of the tree.) Observe that ℓ
and k are chosen such that the number of nodes that are contacted during
a dissemination be larger than q as written Line 3.

There are three kind of messages denoted by message type : CONS, PROP,
RESP indicating if the message is a consultation message, a propagation
message, or a response to any of the two other messages. When a new phase
starts at client i, a time-to-live field ttl is set to ℓ and a sequence number
sn is incremented. This number is used in message exchanges to indicate
whether a message corresponds to the right phase. Then the phase proceeds

31: Propagate(〈 val,t 〉)i:
32: ttl ← ℓ

33: sn ← sn + 1
34: while (|sent-to-nbrs1 | < k) do
35: send〈PROP, val , tag , ttl , i, sn〉 to (k − |sent-to-nbrs1 |) neighbors 6= j

36: sent-to-nbrs1 ← sent-to-nbrs1 ∪ {j}
37: end while
38: sent-to-nbrs1 ← ∅
39: wait until |rcvd-from-qnodes [sn]| ≥ q

40: Participatei (Activated upon reception of a message):
41: recv〈type , v , t , ttl , client-id , sn〉 from j

42: if (marked [sn]) then
43: send〈type , v , t , ttl , client-id , sn〉 to a neighbor 6= j

44: else
45: marked [sn]← true

46: if ((type = CONS)) then 〈v, t〉 ← 〈val , tag〉
47: if ((type = PROP)) then 〈val , tag〉 ← 〈v, t〉
48: if (type = RESP) then
49: if (tag < t) then 〈val , tag〉 ← 〈v, t〉
50: rcvd-from-qnodes [sn]← rcvd-from-qnodes [sn] ∪ {j}
51: ttl ← ttl − 1
52: if (ttl > 0) then
53: while (|sent-to-nbrs2 | < k) do
54: send〈type, v , t , ttl , client-id , sn〉 to (k − |sent-to-nbrs2 |) neighbors 6= j

55: sent-to-nbrs2 ← sent-to-nbrs2 ∪ {j}
56: end while
57: sent-to-nbrs2 ← ∅
58: send 〈RESP, val , tag , ttl ,⊥, sn〉 to client-id

in sending continuously messages to k neighbors waiting for their answer
(Lines 24–27 and Lines 34–37). When the k neighbors answer, client i knows
that the dissemination is ongoing. Then client i receives all messages until a
large enough number q of nodes have responded in this phase, i.e., with the
right sequence number (Lines 29, 39). If so, then the phase is complete.

Observe that during the dissemination, messages are simply marked (if
not so), responded (to client i), and reforwarded to other neighbors (until
ttl is null). Messages are marked by the node i that participates into a
dissemination for preventing node i from participating multiple times in the
same dissemination (Line: 42). As a result, if node i is asked several times to
participate, it first participates (Lines 45–58) and then it asks another node
to participate (Lines 42–44). More precisely, if marked [sn] is true, then node
i re-forwards messages of sequence number sn without decrementing the
ttl . Observe that phase termination and dissemination termination depends
on the number of participants rather than the number of responses: it is
important that enough participants participate in each dissemination for
the phase to eventually end.

Contacting Participants Randomly. In order to contact the participants ran-
domly, we implemented a membership protocol [12]. This protocol is based
on Cyclon [15], thus, it is lightweight and fault-tolerant. Each node has a set
of m neighbors called its view Ni, it periodically updates its view and recom-
putes its set of neighbors. Our underlying membership algorithm provides
each node with a set of m ≥ k + 1 neighbors, so that phases of Algorithm 1
disseminate through a tree of degree k + 1. This algorithm shuffles the view
at each cycle of its execution so that it provides randomness in the choice
of neighbors. Moreover, it has been shown by simulation that the commu-
nication graph obtained with Cyclon is similar to a random graph where
neighbors are picked uniformly among nodes [16]. Finally, for a different
purpose we already have simulated this variant of Cyclon in [17]: the results
obtained was really similar to the one obtained with artificial uniformity.

For the sake of uniformity, the membership procedure is similar to the
Cyclon algorithm: each node i maintains a view Ni containing one entry
per neighbor. The entry of a neighbor j corresponds to a tuple containing
the neighbor identifier and its age. Node i copies its view, selects the oldest
neighbor j of its view, removes the entry ej of j from the copy of its view, and
finally sends the resulting copy to j. When j receives the view, j sends its
own view back to i discarding possible pointers to i, and i and j update their
view with the one they receive by firstly keeping the entries they received.
The age of neighbor j entry denotes the time that elapsed since the last
message from j has been received; this is used to remove failed neighbor
from the list. This variant of Cyclon exchanges all entries of the view at
each step and uses two additional parameters.

5 Correctness and Performance Results

This Section gives the result of our algorithm. We assume that, initially, at
least q nodes own the default value of the object. Assume also that at least
one propagation phase from a successful operation starts every ∆ time units
and let the time of any phase be bounded by δ time units. Next, we assume
that our underlying communication protocol provides each node with a view
that represents a set of neighbors uniformly drawn at random among the
set of all active nodes. Recall that Cyclon shuffles node views and provides
communication graph similar to a random graph [16].

The first Theorem shows that the proposed solution implements a TQS.
The second Theorem shows that our solution satisfies probabilistic atomicity.
By lack of space, the proofs are given in the Appendix.

Theorem 1. Algorithm 1 implements a ∆-Timed Quorum System, where
∆ is the maximum time between two subsequent propagation starts.

Theorem 2. Algorithm 1 implements a probabilistic atomic object.

Next Lemmas show the performance of our solution: the first Lemma
gives the message complexity of our solution while the second Lemma gives
the time complexity of our solution. Observe first that operations complete
provided that sent messages are reliably delivered. Building onto this as-
sumption, an operation complete after contacting O(

√
nD) nodes. The fol-

lowing Lemma shows this result.

Lemma 1. If messages are not lost, an operation complete after having con-
tacted O(

√
nD) nodes.

Proof. This is straightforward from the fact that termination of the dissem-
ination process is conditioned to the number of distinct nodes contacted:
q = O(

√
nD), with D = (1 − c)−∆ (cf. Line 2). Since there are two dissem-

inating phases in each operation, an operation is executed after contacting
O(

√
nD) nodes. 2

Next Lemma indicates that an operation terminates in O(log
√

nD) mes-
sage delays, in expectation.

Lemma 2. If messages are not lost, the expected time of an operation is
O(log

√
nD) message delays.

Proof. The proof relies on the fact that q′ nodes are contacted uniformly
at random with replacement. In expectation, the number q′ that must be
contacted to obtain q distinct nodes is q′ = q = O(

√
nD). Since nodes are

contacted in parallel along a tree of depth ℓ and degree k + 1, the time
required to contact all the nodes on the tree is ℓ = O(logk q). That is, it is
done in ℓ = O(logk

√
nD) message delays. 2

6 Conclusion

This paper addressed the problem of emulating a distributed shared mem-
ory that tolerates scalability and dynamism while being efficient. TQS en-
sures probabilistic intersection of quorums in a timely fashion. Interestingly,
we showed that some TQS implementation verifies a consistency criterion
weaker but similar to atomicity: probabilistic atomicity. Hence, any oper-
ation provided by some TQS satisfies the ordering required for atomicity
with high probability. The given implementation of TQS verifies probabilistic
atomicity, provides lightweight (O(

√
nD) messages) and fast (O(log

√
nD)

message delays) operations, and does not require reconfiguration mechanism
since periodic replication is piggybacked into operations.

Since we started tackling the problem that node can fail independently,
we are now able to implement probabilistic memory into more realistic mod-
els. Previous solutions required that a very few amount of nodes could fail at
the same time. More realistically, a model should allow node to act indepen-
dently while requiring that failures occurring at the same time are unlikely.

An interesting question is: what probabilistic consistency can TQS achieve
in such a realistic model?

Acknowledgments. We are grateful to Anne-Marie Kermarrec and Achour
Mostéfaoui for fruitful discussions about gossip-based algorithms and dy-
namic systems.

References

1. Herlihy, M.: Dynamic quorum adjustment for partitioned data. ACM Trans. Database
Syst. 12(2) (1987) 170–194

2. Lynch, N., Shvartsman, A.: RAMBO: A reconfigurable atomic memory service for
dynamic networks. In: Proc. of 16th International Symposium on Distributed Com-
puting. (2002) 173–190

3. Friedman, R., Raynal, M., Travers, C.: Two abstractions for implementing atomic ob-
jects in dynamic systems. In: 9th International Conference on Principles of Distributed
Systems (OPODIS). (2005)

4. Chockler, G., Gilbert, S., Gramoli, V., Musial, P., Shvartsman, A.: Reconfigurable
distributed storage for dynamic networks. In: Proceedings of 9th International Con-
ference on Principles of Distributed Systems. (2005) 214–219

5. Malkhi, D., Reiter, M., Wool, A., Wright, R.: Probabilistic quorum systems. The
Information and Computation Journal 170(2) (2001) 184–206

6. Naor, M., Wool, A.: The load, capacity, and availability of quorum systems. SIAM
Journal on Computing 27(2) (1998) 423–447

7. Nadav, U., Naor, M.: The dynamic and-or quorum system. In Fraigniaud, P., ed.:
Distributed algorithms. Volume 3724 of Lecture Notes In Computer Science. (2005)
472–486

8. Abraham, I., Malkhi, D.: Probabilistic quorum systems for dynamic systems. Dis-
tributed Computing 18(2) (2005) 113–124

9. Gramoli, V., Anceaume, E., Virgillito, A.: Square: Scalable quorum-based atomic
memory with local reconfiguration. In: Proceedings of the 22nd ACM Symposium on
Applied Computing (SAC’07), ACM Press (2007) 574–579

10. Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers (1996)
11. Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scalable peer-to-

peer lookup service for internet applications. In: ACM SIGCOMM 2001, San Diego,
CA (2001)

12. Ganesh, A.J., Kermarrec, A.M., Massoulié, L.: Peer-to-peer membership management
for gossip-based protocols. IEEE Trans. Comput. 52(2) (2003) 139–149

13. Le Merrer, E., Kermarrec, A.M., Massoulié, L.: Peer to peer size estimation in large
and dynamic networks: A comparative study. In: 15th International Symposium on
High performance Distributed Computing (HPDC), Paris, France (2006)

14. Attiya, H., Welch, J.: Distributed Computing. Fundamentals, Simulations, and Ad-
vanced Topics. McGraw-Hill (1998)

15. Voulgaris, S., Gavidia, D., van Steen, M.: Cyclon: Inexpensive membership manage-
ment for unstructured p2p overlays. Journal of Network and Systems Management
13(2) (2005) 197–217

16. Iwanicki, K.: Gossip-based dissemination of time. Master’s thesis, Warsaw University
- Vrije Universiteit Amsterdam (2005)

17. Fernández, A., Gramoli, V., Jiménez, E., Kermarrec, A.M., Raynal, M.: Distributed
slicing in dynamic systems. In: Proceedings of the 27th International Conference on
Distributed Computing Systems (ICDCS’07), IEEE Computer Society Press (2007)

18. Gramoli, V., Kermarrec, A.M., Mostefaoui, A., Raynal, M., Sericola, B.: Core persis-
tence in peer-to-peer systems: Relating size to lifetime. In: Proceedings of the On-The-
Move International Workshop on Reliability in Decentralized Distributed Systems.
Volume 4278 of LNCS., Springer (2006) 1470–1479

A Correctness Proof

Here, we show that Algorithm 1 implements a timed quorum system and
that it emulates the probabilistic atomic object abstraction defined in Defi-
nition 1. The key points of this proof is to show that quorums are sufficiently
re-activated by new operations to face dynamism and that subsequent quo-
rums intersect with very high probability to achieve probabilistic atomicity.

Assumptions and notations. First, we only consider executions starting with
at least q nodes that own the default value of the object. In these executions,
at least one propagation phase from a successful operation starts every ∆
time units and let the time of any phase be bounded by δ time units. We
assume that during a propagation that propagates a value v to q nodes
and that executes between time t and t + δ, there is at least one instant t′

where the q nodes own value v simultaneously. This instant, t′, can occur
arbitrarily between time t and t + δ. Even if this assumption may not seem
realistic since propagation occurs in parallel of churn (i.e., at the time the
propagation contacts the qth node the first contacted node may have left the
system), our motivations for this assumption comes from the sake of clarity
of the proof and we claim that the absence of this assumption leads to the
same results.

Second, we assume that our underlying communication protocol provides
each node with a view that represents a set of neighbors uniformly drawn
at random among the set of all active nodes. This assumption is reasonable
since, as already mentioned, the underlying algorithm is based on Cyclon
that shuffles node views and provides communication graph similar to a
random graph [16].

Next, we show that Algorithm 1 implements a probabilistic object. Ob-
serve that the liveness part of this proof relies simply on the activity of
neighbors, and the fact that messages are eventually received. More pre-
cisely, by examination of the code of Algorithm 1, messages are gossiped
among neighbors while neighbors are uniformly chosen. It is clear that op-
eration termination depends on eventual message delivery. As a result, only
the safety part of the proof follows. In the following, val(φ) (resp. tag(φ))
denote, the value (resp. tag) consulted/propagated by phase φ.

Correctness proof. First, we restate a Lemma appeared in [18] that computes
the ratio of nodes that leave the system as time elapses, given a churn of c.
The result is the ratio of nodes that leave and join, and helps computing the
probability that up-to-date values remain reachable despite dynamism.

Lemma 3. The ratio of initial nodes that have been replaced after τ time
units is at most C = 1 − (1 − c)τ .

For the proof of the above Lemma 3, please refer to [18]. The following
Lemma gives a lower bound on the number of nodes that own the up-to-date

value at any time in the system. (Recall that an up-to-date value is either
the value with the largest tag and whose propagation is complete, or any
value with a larger tag, but whose propagation is ongoing.)

Lemma 4. At any time t in the system, the number of nodes that own an
up-to-date value is at least q(1− c)∆, where ∆ is the maximum time between
two subsequent propagation starts, q is the quorum size, and c is the churn
of the system.

Proof. With no loss of generality, let ρ1, ..., ρk be all the ongoing propaga-
tions at time t and let ρ0 be the latest successful propagation that is already
finished at time t. By definition, all v(ρi) for any i ≥ 0 are the up-to-date
values in the system. Propagations ρ1, ..., ρk must all have started after time
t − δ. By the periodicity assumption of propagation phase, propagation ρ0

can not start earlier than time t−∆ + δ. Due to propagation ρ0, there must
be q nodes with value v(ρ0) between times t − ∆ + δ and t − ∆ + 2δ.

Since the number of replaced nodes increases as time elapses, assume a
worst case scenario in which q nodes own value v(ρ0) at time t1 = t−∆+δ, we
show that at least q(1− c)∆ nodes with value v(ρ0) remain in the system at
time t2 = t+δ. By Lemma 3, we know that during period t2−t1 = ∆ exactly
⌊q(1 − (1 − c)∆)⌋ nodes with value v(ρ0) are replaced. Since propagations
ρ1, ..., ρk are ongoing, there may be some successful propagations among
those ones that overwrite some node values. Observe that if this overwriting
happens only to nodes that already own value v(ρi), then the number of
nodes with value v(ρi) remains at least q(1 − c)∆ at time t + δ; if this
overwriting happens to nodes that do not own value v(ρi) then this number
increases. That is, q(1 − c)∆ is a lower bound of the number of nodes with
value v(ρi) at time t + δ, which leads to the result. 2

The following Fact gives this well-known bound on the exponential func-
tion, provable using the Euler’s method.

Fact 3 (1 + x
n
)n ≤ ex for n > |x|.

Next Lemma lower bounds the probability that any consultation consults
an up-to-date value v. Recall that sometime it might happen that a value v′

is unsuccessfully propagated. This may happen when a write operation fails
in consulting the largest tag just before propagating value v′. Observe that
in any case, a successful consultation returns only successfully propagated
values.

Lemma 5. If the number of nodes that own an up-to-date value is at least
q(1 − c)∆ during the whole period of execution of consultation φ, then con-
sultation φ succeeds with high probability (≥ 1 − e−β2

, with β a constant).

Proof. The consultation of Algorithm 1 draws uniformly at random q nodes,
without replacement. To lower bound the probability P that any consultation

consults an up-to-date value v, we compute the probability that this value is
obtained after q drawings with replacement. It is clear that the probability of
obtaining a specific node after q drawings is larger without replacement than
with replacement. The probability for a node x uniformly chosen at random

not to own the value v is Pr[x /∈ Q] = 1− q(1−c)∆

n
that is, the probability not

to consult value v after q drawings, with replacement, is Pr[x1 /∈ Q, ..., xq /∈
Q] =

(

1 − q(1−c)∆

n

)q

. By Fact 3, Pr[x1 /∈ Q, ..., xq /∈ Q] ≤ e−
q2

n
(1−c)∆

. By

replacing the q by the quorum size given at Line 2 of Algorithm 1 in the

contrapositive P ≥ 1 − e−
q2

n
(1−c)∆

we obtain the result P ≥ 1 − e−β2
. 2

This corollary simply concludes the two previous Lemmas stating that
any consultation executed in the system succeeds by returning an up-to-date
value.

Corollary 1. Any consultation φ succeeds with high probability (≥ 1−e−β2
,

with β a constant).

Proof. The result is straightforward from Lemma 4 and Lemma 5. 2

Last but not least, the two theorems conclude the proof by showing that
Algorithm 1 implements a ∆-TQS and verifies probabilistic atomicity.

Theorem 1. Algorithm 1 implements a ∆-Timed Quorum System, where
∆ is the maximum time between two subsequent propagation starts.

Proof. First observe that the set of quorums is the set of subsets of q active
nodes over the system at time t. The timed access strategy at time t over the
set of all quorums is the uniform access strategy over all quorums since each
node is chosen with a uniform access strategy among the active nodes at time
t. By Corollary 1, it is clear that the intersection between two quorums is
ensured with high probability as long as one quorum starts being contacted
∆ timed before the other ends being contacted. 2

Theorem 2. Algorithm 1 implements a probabilistic atomic object.

Proof. The proof shows that it exists an ordering ≺ defined by the tags
verifying Definition 1. This ordering is such that πi ≺ πj is equivalent to
either tag(πi) = tag(πj) and πi is a write and πj is a read, or tag(πi) <
tag(πj). Each property of Definition 1 is proved separately.

1. Property 1 is deduced straightforwardly from the other Properties.

2. The proof is done in two parts. First, we show that Property 2 holds if
consultation phase of operation π2 obtains an up-to-date value. Second,
we show that this consultation phase obtains an up-to-date value with
high probability.

(a) On the one hand, we denote by φi and by ρi the respective consul-
tation phase and propagation phase of any operation πi. We show
by contradiction that Property 1 holds if φ2 consults an up-to-date
value. By absurd, assume that it is false. That is, assume that φ2 con-
sults an up-to-date value, the response of π1 precedes the invocation
of π2, and π2 ≺ π1. Since φ2 consults an up-to-date value, we have
tag(φ2) ≥ tag(π1). Now there are two cases to consider: either π2 is a
read or a write. First, if π2 is a write then tag(π2) > tag(φ2) ≥ tag(π1)
by examination of the code of Algorithm 1 (cf. Lines 20). By definition
of ≺, if tag(π2) > tag(π1) and π2 is a write, then it can not happen
that π2 ≺ π1. Second, if π2 is a read then tag(π2) = tag(φ2) ≥ tag(π1)
by examination of the code of Algorithm 1 (cf. Lines 14). By defini-
tion of ≺, if tag(π2) ≥ tag(π1) and π2 is a read, then it can not
happen that π2 ≺ π1. As a result, this contradicts the assumption,
showing that Property 1 holds if φ2 obtains an up-to-date value.

(b) On the other hand, Corollary 1 shows that any consultation obtains
the most up-to-date value with high probability. Since Property 2
holds if a consultation of π2 consults an up-to-date value, and since
any consultation consults an up-to-date value with high probability,
the result follows.

3. Property 3 follows simply from the way tags are chosen. Let π1 and π2

be any two operations. On the one hand, if π1 and π2 are initiated at
node i, then they have distinct tag counters. On the other hand, if π1

and π2 are initiated at two distinct nodes, then they have distinct tag
identifiers i and j. As a result, two operations have different tags and
either tag(ρ1) > tag(ρ2) or tag(ρ1) < tag(ρ2) holds.

4. Property 4 fails only if the read operation is unsuccessful. The probability
Pπ for an operation π to be unsuccessful is lower than the probability
Pφ that its consultation φ is unsuccessful. Since we know by Corollary 1

that this later probability Pφ is very low (Pφ = e−β2
), the probability Pπ

that an operation is unsuccessful is very low too (Pπ < e−β2
). It follows

that Property 4 holds with high probability (≥ 1 − e−β2
).

2

