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ON THE ARITHMETIC OF TIGHT CLOSURE

HOLGER BRENNER AND MORDECHAI KATZMAN

0. Introduction

This paper deals with a question regarding tight closure in characteristic zero
which we now review. Let R be a commutative ring of prime characteristic p and
let I ⊆ R be an ideal. Recall that for e ≥ 0, the e-th Frobenius power of I, denoted
I [pe], is the ideal of R generated by all pe-th powers of elements in I. We say
that f ∈ I∗, the tight closure of I, if there exists a c not in any minimal prime
of R with the property that cfpe

∈ I [pe] for all large e ≥ 0. This notion, due to
M. Hochster and C. Huneke, is now an important tool in commutative algebra and
algebraic geometry, particularly since it gives a systematic framework for reduction
to positive characteristic. We refer the reader to [17] for the basic properties of
tight closure in characteristic p.

How does the containment f ∈ I∗ depend on the prime characteristic? To make
sense of this question suppose that RZ is a finitely generated ring extension of Z

and that I ⊆ RZ is an ideal, f ∈ RZ. Then we may consider for every prime
number p the specialization RZ/(p) = RZ ⊗Z Z/(p) of characteristic p together with
the extended ideal Ip ⊆ RZ/(p), and one may ask whether fp ∈ I∗p holds or not. We
refer to this question about the dependence on the prime numbers as the “arithmetic
of tight closure”.

Many properties in commutative algebra exhibit an arithmetically nice behav-
iour: for example, RQ is smooth (normal, Cohen-Macaulay, Gorenstein) if and only
if RZ/(p) is smooth (normal, Cohen-Macaulay, Gorenstein) for almost all prime
numbers (i.e., for all except for at most finitely many). In a similar way we have
for an ideal I ⊆ RZ that IQ = IRQ is a parameter ideal or a primary ideal if and
only if this is true for almost all specializations Ip. Furthermore, f ∈ I if and
only if fp ∈ Ip holds for almost all prime characteristics: see [16, Chapter 2.1] and
appendix 1 in [18] for these kinds of results.

When R is a finitely generated Q-algebra, Hochster and Huneke define the tight
closure of an ideal I ⊆ R, in the same spirit as the examples above, with the help
of a Z-algebra RZ where R = RZ ⊗Z Q, as the set of all f ∈ R for which fp ∈ (Ip)

∗

holds for almost all p. This definition is independent of the chosen model RZ.
The reader should consult [16] for properties of tight closure in characteristic zero.
This definition works well, because the most important features from tight closure
theory in positive characteristic, like F -regularity of regular rings, colon capturing,
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660 HOLGER BRENNER AND MORDECHAI KATZMAN

Briançon-Skoda theorems, and persistence, behave well arithmetically, so that these
properties pass over to the characteristic zero situation with full force.

M. Hochster and C. Huneke (see appendix 1 in [18] or Question 11 in the appen-
dix of [16] or Question 13 in [15]) and the second author (see §4 in [20]) raise the
following natural question: if R is a finitely generated Z-algebra of characteristic
zero and I ⊆ R is an ideal which is tightly closed, i.e. I∗ = I in RQ, must one have
(Ip)

∗ = Ip for almost all primes p? Or, using the terminology of [20], must tightly
closed ideals be fiberwise tightly closed?

As often in tight closure theory, the situation for parameter ideals is better un-
derstood than the general case, but even for parameter ideals a complete answer
is not known. There are however results due to N. Hara and K. Smith (see [10],
[11], [19, Theorem 6.1], [27], [28, Theorem 2.10, Open Problem 2.24]) which imply
that for a normal standard-graded Cohen-Macaulay domain with an isolated sin-
gularity and for a normal Gorenstein algebra of finite type over a field the answer
is affirmative.

The main theorem in this paper (Theorem 4.1) provides, however, a negative
answer to this question by showing that for the homogeneous primary ideal I =
(x4, y4, z4) in Z[x, y, z]/(x7 + y7 − z7) one has x3y3 ∈ (Ip)

∗ for p ≡ 3 mod 7 but
x3y3 /∈ (Ip)

∗ for p ≡ 2 mod 7.
Our example has also interesting implications for the dependence of the coho-

mological dimension on the characteristics of ground fields. The ideal a = (x, y, z)
inside the forcing algebra A = K[x, y, z, u, v, w]/(x7+y7−z7, ux4+vy4+wz4+x3y3)
is such that the open subset D(a) ⊂ SpecA is affine for infinitely many but not for
almost all prime reductions. This means that its cohomological dimension fluctu-
ates arithmetically between 0 and 1; see 4.7 for this relation via solid closure and
4.8 for an interpretation in terms of projective varieties.

Moreover, our example has also consequences for the study of Hilbert-Kunz
multiplicities which we discuss in 4.9 and for the non-standard tight closure of
H. Schoutens (see 4.10).

1. Reduction to Frobenius powers

In this section we show where to look for candidates (R, I, f) with the prop-
erty that fp ∈ I∗p holds for infinitely many but not for almost all prime numbers
p. This approach rests on the geometric interpretation of tight closure in terms
of bundles, which we now recall briefly. Let R denote a geometrically normal
two-dimensional standard-graded domain over a field K. A set of homogeneous
generators f1, . . . , fn ∈ R of degrees d1, . . . , dn of an R+-primary ideal gives rise
to the short exact sequence of locally free sheaves on the smooth projective curve
C = Proj R,

0 −→ Syz(f1, . . . , fn)(m) −→

n
⊕

i=1

OC(m − di)
f1,...,fn
−→ OC(m) −→ 0 .

A homogeneous element f ∈ R of degree m defines via the connecting homomor-
phism a cohomology class δ(f) ∈ H1(C, Syz(f1, . . . , fn)(m)) in this syzygy sheaf.
It was shown in [1], [4] how this cohomology class is related to the question as
to whether f belongs to the tight closure (in positive characteristic) of the ideal
(f1, . . . , fn) or not. The cohomology class c ∈ H1(C,S) = Ext1(OC ,S) corresponds
to an extension 0 → S → S ′ → OC → 0 and to a geometric torsor P(S ′∨)− P(S∨).
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Now f ∈ (f1, . . . , fn)∗ if and only if the torsor defined by δ(f) is not an affine
scheme.

If the syzygy bundle is strongly semistable in positive characteristic p, then this
approach gives a numerical criterion for (f1, . . . , fn)∗, where the degree bound which
separates inclusion from exclusion is given by (d1 + . . .+dn)/(n−1). So, if we want
to find an example where f ∈ (f1, . . . , fn)∗ holds for infinitely many prime numbers
but not for almost all, we have to look first for an example where for infinitely many
prime numbers the syzygy bundle is not strongly semistable (this is also the reason
why such an example cannot exist in the cone over an elliptic curve). That S is not
strongly semistable means that some Frobenius pull-back of it, say T = F e∗(S),
is not semistable, and that means that there exists a subbundle F ⊂ T such that
deg(F)/ rk(F) > deg(T )/ rk(T ).

Examples of such syzygy bundles with the property that they are semistable
in characteristic zero but not strongly semistable for infinitely many prime num-
bers were first given in [5], where it was shown that a question of Miyaoka and
Shepherd-Barron ([21], [25]) has a negative answer. The following lemma gives
another example of that kind.

Lemma 1.1. Let d ∈ N and let p denote a prime number; write p = dℓ + r,
0 < r < d. Suppose that d/4 ≤ r < d/3. Let K denote a field of characteristic p
and let C = Proj K[x, y, z]/(xd + yd − zd) be the Fermat curve of degree d. Then

the first Frobenius pull-back of Syz(x4, y4, z4) on C is not semistable.

Proof. We have 4p = 4dℓ + 4r = d(4ℓ + 1) + (4r − d); set t = 4r − d. We consider
first in K[x, y] the syzygies for

x4p = xd(4ℓ+1)+t, y4p = yd(4ℓ+1)+t, (xd + yd)4ℓ+1 .

We multiply the last term by the 2ℓ + 1 monomials

xtyt(xd2ℓy0), xtyt(xd(2ℓ−1)yd), . . . , xtyt(x0yd2ℓ) .

The resulting polynomials are expressible modulo the first two terms as a K-linear
combination of the monomials xtytxdiydj , where i + j = 6ℓ + 1 and i, j ≤ 4ℓ.
Therefore i = 2ℓ+1, . . . , 4ℓ and there are only 2ℓ of these. Hence there exists a global
non-trivial syzygy (h1, h2, h3) of these polynomials of total degree d(6ℓ + 1) + 2t.
Therefore (zth1, z

th2, h3) is a global non-trivial syzygy for x4p, y4p, z4p, since

0 = zth1x
4p + zth2y

4p + zth3(x
d + yd)4ℓ+1 = zth1x

4p + zth2y
4p + h3z

4p .

The total degree of this syzygy is d(6ℓ + 1) + 3t. The degree of the bundle

Syz(x4p, y4p, z4p)(d(6ℓ + 1) + 3t)

is however (up to the factor deg(O(1)))

2(d(6ℓ + 1) + 3t) − 3(d(4ℓ + 1) + t) = −d + 3t = 12r − 4d ,

which is negative due to the assumption that r < d/3. But a bundle of negative
degree and with a non-trivial section is not semistable. �

The following proposition reduces under suitable conditions the computation of
tight closure to the computation of a certain small Frobenius power.

Proposition 1.2. Let K denote a field of positive characteristic p and let R denote

a two-dimensional geometrically normal standard-graded domain over K. Suppose

that p ≥ 2g + 1, where g denotes the genus of the smooth projective curve C =
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Proj R. Let f1, f2, f3 denote homogeneous elements in R which generate an R+-

primary ideal. Let m ∈ Z be such that the e-th pull-back of the syzygy bundle

Syz(f1, f2, f3)(m) can be incorporated in a short exact sequence on C,

0 −→ L −→ F e∗(Syz(f1, f2, f3)(m)) = Syz(fq
1 , fq

2 , fq
3 )(qm) −→ M −→ 0 ,

where q = pe and L is an invertible sheaf of positive degree and M is an invertible

sheaf of negative degree. Let f denote a homogeneous element of degree m. Then

f ∈ (f1, f2, f3)
∗ if and only if fpq ∈ (fpq

1 , fpq
2 , fpq

3 ).

Proof. The implication from right to left is clear. For the other direction we may
assume that K is algebraically closed. We will argue on the smooth projective plane
curve C = Proj R and use the geometric interpretation of tight closure. We apply
the Frobenius pull-back to the given short exact sequence and obtain a new exact
sequence

0 −→ Lp −→ Syz(fpq
1 , fpq

2 , fpq
3 )(pqm) −→ Mp −→ 0 .

The cohomology sequence is

−→ H1(C,Lp) −→ H1(C, Syz(fpq
1 , fpq

2 , fpq
3 )(pqm)) −→ H1(C,Mp) −→ 0.

The genus of the curve C is g and the canonical sheaf ωC has degree 2g− 2. Hence
for p > 2g − 2 we have that deg(L−p ⊗ ωC) < 0 and therefore H1(C,Lp) = 0 by
Serre duality. This gives an isomorphism

H1(C, Syz(fpq
1 , fpq

2 , fpq
3 )(pqm)) ∼= H1(C,Mp) .

Suppose now that fpq 
∈ (fpq
1 , fpq

2 , fpq
3 ). This means that the corresponding coho-

mology class c = δ(fpq) ∈ H1(C, Syz(fpq
1 , fpq

2 , fpq
3 )(pqm)) is not zero; let c′ 
= 0

denote the corresponding class in H1(C,Mp). To show that f does not belong
to the tight closure of (f1, f2, f3) we show that the geometric torsor correspond-
ing to c is an affine scheme [1, Proposition 3.9], and for that it is sufficient to
show that the geometric torsor corresponding to c′ is an affine scheme. The class
c′ ∈ H1(C,Mp) ∼= Ext1(OC ,Mp) defines a non-trivial extension

0 −→ Mp −→ T −→ OC −→ 0

with dual sequence

0 −→ OC −→ T ∨ −→ M−p −→ 0 .

Here M−p is ample, since its degree is positive, and therefore by [7, Proposition
2.2] every quotient bundle of T ∨ has positive degree. Since deg T ∨ = degM−p ≥
p > 2 · g, it follows by [7, Lemma 2.2] that T ∨ is an ample vector bundle (one can
also argue using [12, Corollary 7.7]). But then C ∼= P(M−p) ⊂ P(T ∨) is an ample
divisor and its complement is affine. �

Remark 1.3. The situation described in Proposition 1.2 occurs in particular for

2m = deg(f1) + deg(f2) + deg(f3)

under the condition that the syzygy bundle is not strongly semistable. For then
some Frobenius pull-back T = Syz(fq

1 , fq
2 , fq

3 )(qm) is not semistable, but its degree
is

q(2m − deg(f1) − deg(f2) − deg(f3)) deg(OC(1)) = 0 .

Then there exists the maximal destabilizing invertible subsheaf L ⊂ T of positive
degree, and the quotient sheaf is also invertible of negative degree.
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Corollary 1.4. Let K denote a field of positive characteristic p ≡ 2 mod 7, p 
=
2, 23, and let R = K[x, y, z]/(x7 + y7 − z7). Then x3y3 ∈ (x4, y4, z4)∗ if and only if

x3p2

y3p2

∈ (x4p2

, y4p2

, z4p2

).

Proof. In the notation of Lemma 1.1 we have p = dℓ + 2; hence r = 2 and
clearly 7/4 ≤ 2 < 7/3. Hence the first Frobenius pull-back of Syz(x4, y4, z4) is
not semistable. Therefore via Remark 1.3 we are in the situation of Proposition
1.2 with e = 1; hence pq = p2. Since g = 15, the condition on the prime number is
p ≥ 31, so only p = 2 and 23 are excluded. �

Remark 1.5. The method of Proposition 1.2 works in principle also for small prime
numbers p. We only need to find a power pu ≥ 2g + 1. If the e-th Frobenius
pull-back is not semistable, then we can conclude that f ∈ (f1, f2, f3)

∗ if and only

if fpupe

∈ (fpupe

1 , fpupe

2 , fpupe

3 ). So in Corollary 1.4 we take u = 2 for p = 23 and
u = 5 for p = 2 to make things work also in these cases.

2. The case p ≡ 2 mod 7

In this section we want to show that x3y3 
∈ (x4, y4, z4)∗ in K[x, y, z]/(x7+y7−z7)
if K has characteristic p ≡ 2 mod 7. We will need the following lemmata on matrices.

Lemma 2.1. The r × s matrix A with entries
((

a

b + i − j

))

1≤i≤r,1≤j≤s

can be brought to the form
((

a + j − 1

b + i − 1

))

1≤i≤r,1≤j≤s

by performing elementary column operations.

Proof. We proceed by induction on s. If s = 1 there is nothing to show, so assume
s > 1. Add the penultimate column of A to the last column; in the result, add the
(s− 2)-th column to the (s− 1)-th, and continue in this way until the first column
has been added to the second column. In this way one obtains the matrix

⎛

⎜

⎜

⎜

⎝

(

a
b

) (

a+1
b

) (

a+1
b−1

)

. . .
(

a+1
b+2−s

)

(

a
b+1

) (

a+1
b+1

) (

a+1
b

)

. . .
(

a+1
b+3−s

)

...
...

...
(

a
b+r−1

) (

a+1
b+r−1

) (

a+1
b+r−2

)

. . .
(

a+1
b+r−s+1

)

⎞

⎟

⎟

⎟

⎠

.

Now apply the induction hypothesis to the submatrix of this matrix consisting of
all its columns except the first. �

Using Lemma 2.1 one can obtain the following result due to V. van Zeipel ([30];
the calculation is described in [22, Chapter XX].)

Lemma 2.2.

det

((

a

b + i − j

))

1≤i≤r

1≤j≤r

=

r−1
∏

t=0

(

a+r−1−t
b

)

(

b+t
b

) .

We will use these lemmata in the proof of the following result.



664 HOLGER BRENNER AND MORDECHAI KATZMAN

Lemma 2.3. Let K denote a field of positive characteristic p = 7ℓ + 2. Then we

have x3py3p 
∈ (x4p, y4p, (x7 + y7)4ℓ+1) in the polynomial ring K[x, y].

Proof. The case p = 2 is checked immediately, so suppose that ℓ > 0. Since
3p = 21ℓ + 6 and 4p = 28ℓ + 8, we rewrite what we want to show as

(1) x21ℓ+6y21ℓ+6 /∈ (x28ℓ+8, y28ℓ+8, (x7 + y7)4ℓ+1) .

We endow K[x, y] with a Z/7Z ⊕ Z/7Z ⊕ Z grading by assigning x degree (1, 0, 1)
and y degree (0, 1, 1). With this grading the left-hand side of (1) is homogeneous of
degree (6, 6, 42ℓ + 12) while (x7 + y7)4ℓ+1 is homogeneous of degree (0, 0, 28ℓ + 7),
so the degree difference is (6, 6, 14ℓ + 5). Condition (1) fails to hold if and only if
there exist a0, . . . , a2ℓ−1 ∈ K such that

x21ℓ+6y21ℓ+6 ≡
(

2ℓ−1
∑

i=0

aix
7i+6y7(2ℓ−1−i)+6

)(

4ℓ+1
∑

j=0

(

4ℓ + 1

j

)

x7jy7(4ℓ+1−j)
)

mod (x28ℓ+8, y28ℓ+8)

and we assume that this is the case. Notice that the terms occurring on the right-
hand side of this equation have the form x7i+6y7(6ℓ−i)+6 for 0 ≤ i ≤ 6ℓ. Since

{

7i + 6 < 28ℓ + 8
7(6ℓ − i) + 6 < 28ℓ + 8

⇔ 2ℓ ≤ i ≤ 4ℓ ,

we obtain mod(x28ℓ+8, y28ℓ+8)

x21ℓ+6y21ℓ+6 ≡ x6y6
4ℓ

∑

i=2ℓ

⎛

⎝

2ℓ−1
∑

j=0

aj

(

4ℓ + 1

i − j

)

⎞

⎠ x7iy7(6ℓ−i)

≡ x6y6
2ℓ+1
∑

i=1

⎛

⎝

2ℓ
∑

j=1

aj−1

(

4ℓ + 1

2ℓ + i − j

)

⎞

⎠ x7(2ℓ+i−1)y7(4ℓ−i+1)

and since no term in the last expression is divisible by x28ℓ+8 or by y28ℓ+8, we
deduce that

x21ℓ+6y21ℓ+6 = x6y6
2ℓ+1
∑

i=1

⎛

⎝

2ℓ
∑

j=1

aj−1

(

4ℓ + 1

2ℓ + i − j

)

⎞

⎠ x7(2ℓ+i−1)y7(4ℓ−i+1) .

We may cancel x6y6 from both sides of the equation and we write X = x7, Y = y7

to obtain

X3ℓY 3ℓ =

2ℓ+1
∑

i=1

⎛

⎝

2ℓ
∑

j=1

aj−1

(

4ℓ + 1

2ℓ + i − j

)

⎞

⎠ X2ℓ+i−1Y 4ℓ−i+1 .

If we compare the coefficients of X2ℓ+i−1Y 4ℓ+1−i for 1 ≤ i ≤ 2ℓ + 1 we obtain the
conditions

2ℓ
∑

j=1

aj−1

(

4ℓ + 1

2ℓ + i − j

)

= δi,ℓ+1 for all 1 ≤ i ≤ 2ℓ + 1
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where δi,ℓ+1 is Kronecker’s delta. If we define M1 to be the (2ℓ + 1, 2ℓ) matrix
whose entries are

(

4ℓ + 1

2ℓ + i − j

)

1≤i≤2ℓ+1,1≤j≤2ℓ

and if eℓ+1 is the (ℓ + 1)-th elementary column vector of size 2ℓ + 1, then we are
now assuming that eℓ+1 is in the span of the columns of M1. We have to show that
this is not possible. Since M1 has more rows than columns, its rows are linearly
dependent, i.e., there exists a ρ = (ρ1, . . . , ρ2ℓ+1) 
= 0 such that ρM1 = 0. It is
now enough to show that we can choose this ρ with ρℓ+1 
= 0, since for such ρ we
have ρeℓ+1 = ρℓ+1 
= 0 and so eℓ+1 could not be in the span of the columns of
M1. Assume by way of contradiction that we can find a non-zero ρ as above with
ρℓ+1 = 0. This implies that the rows of M1 numbered 1, . . . , ℓ, ℓ + 2, . . . , 2ℓ + 1 are
linearly dependent. Use Lemma 2.1 and apply elementary column operations to
M1 to obtain the matrix

M2 =

((

4ℓ + j

2ℓ + i − 1

))

1≤i≤2ℓ+1,

1≤j≤2ℓ

=

⎛

⎜

⎜

⎜

⎝

(

4ℓ+1
2ℓ

) (

4ℓ+2
2ℓ

)

. . .
(

6ℓ
2ℓ

)

(

4ℓ+1
2ℓ+1

) (

4ℓ+2
2ℓ+1

)

. . .
(

6ℓ
2ℓ+1

)

...
...

...
(

4ℓ+1
4ℓ

) (

4ℓ+2
4ℓ

)

. . .
(

6ℓ
4ℓ

)

⎞

⎟

⎟

⎟

⎠

.

Use the fact that

(

a + 1

b + 1

)

=
a + 1

b + 1

(

a

b

)

and multiply rows 1, 2, . . . , 2ℓ+1 by 2ℓ, 2ℓ+

1, . . . , 4ℓ and divide columns 1, 2, . . . , 2ℓ by 4ℓ + 1, 4ℓ + 2, . . . , 6ℓ to obtain

M2 = Λ
( 1

2ℓ
, . . . ,

1

4ℓ

)

⎛

⎜

⎜

⎜

⎝

(

4ℓ
2ℓ−1

) (

4ℓ+1
2ℓ−1

)

. . .
(

6ℓ−1
2ℓ−1

)

(

4ℓ
2ℓ

) (

4ℓ+1
2ℓ

)

. . .
(

6ℓ−1
2ℓ

)

...
...

...
(

4ℓ
4ℓ−1

) (

4ℓ+1
4ℓ−1

)

. . .
(

6ℓ−1
4ℓ−1

)

⎞

⎟

⎟

⎟

⎠

Υ
(

4ℓ + 1, . . . , 6ℓ
)

where Λ
(

a1, . . . , a2ℓ+1

)

is the (2ℓ + 1)× (2ℓ + 1) diagonal matrix with a1, . . . , a2ℓ+1

along its diagonal and Υ
(

b1, . . . , b2ℓ

)

is the 2ℓ× 2ℓ diagonal matrix with b1, . . . , b2ℓ

along its diagonal. We can repeat this process 2ℓ times to obtain

(2) M2 = Λ

⎛

⎜

⎜

⎜

⎝

(

2ℓ+1
0

) (

2ℓ+2
0

)

. . .
(

4ℓ
0

)

(

2ℓ+1
1

) (

2ℓ+2
1

)

. . .
(

4ℓ
1

)

...
...

...
(

2ℓ+1
2ℓ

) (

2ℓ+2
2ℓ

)

. . .
(

4ℓ
2ℓ

)

⎞

⎟

⎟

⎟

⎠

Υ

where

Λ =

(

2ℓ−1
∏

t=0

Λ
( 1

2ℓ − t
,

1

2ℓ + 1 − t
, . . . ,

1

4ℓ − t

)

)

,

Υ =

(

2ℓ−1
∏

t=0

Υ
(

4ℓ + 1 − t, 4ℓ + 2 − t, . . . , 6ℓ − t
)

)

.

We notice that none of the entries in the diagonal matrices above is 0 or 1/0
modulo p and so, if we denote with M3 the middle matrix in Equation 2, and, if
we write ρ′ = ρΛ, then ρM2 = 0 ⇔ ρ′M3 = 0, ρ = 0 ⇔ ρ′ = 0 and ρℓ+1 = 0 ⇔
ρ′ℓ+1 = 0. It is now, therefore, sufficient to show that the rows of M3 numbered
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1, . . . , ℓ, ℓ+2, . . . , 2ℓ+1 are not linearly dependent. Use Lemma 2.1 to perform the
inverse elementary column operations on M3 to bring it to the form

M4 =

((

2ℓ + 1

i − j

))

1≤i≤2ℓ+1,

1≤j≤2ℓ

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

2ℓ+1
0

)

0 0 . . . 0
(

2ℓ+1
1

) (

2ℓ+1
0

)

0 . . . 0
. . .

(

2ℓ+1
2ℓ−1

) (

2ℓ+1
2ℓ−2

) (

2ℓ+1
2ℓ−3

)

. . .
(

2ℓ+1
0

)

(

2ℓ+1
2ℓ

) (

2ℓ+1
2ℓ−1

) (

2ℓ+1
2ℓ−2

)

. . .
(

2ℓ+1
1

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

and we now need to show that the rows of M4 numbered 1, . . . , ℓ, ℓ + 2, . . . , 2ℓ + 1
are not linearly dependent. If we delete the (ℓ + 1)-th row from M4 and perform
elementary row operations consisting of adding multiples of rows 1, 2, . . . , ℓ to lower
rows, we can bring the resulting matrix to the form Iℓ ⊕ M5 where Iℓ is an ℓ × ℓ
identity matrix and M5 consists of the lower-rightmost block of size ℓ × ℓ in M4,
i.e.,

M5 =

⎛

⎜

⎜

⎜

⎝

(

2ℓ+1
1

) (

2ℓ+1
0

)

. . . 0
. . .

(

2ℓ+1
ℓ−1

) (

2ℓ+1
2ℓ−2

)

. . .
(

2ℓ+1
0

)

(

2ℓ+1
ℓ

) (

2ℓ+1
ℓ−1

)

. . .
(

2ℓ+1
1

)

⎞

⎟

⎟

⎟

⎠

.

The value of the determinant of M5 can be computed using Lemma 2.2:

det M5 =
ℓ−1
∏

t=0

(

2ℓ+1+ℓ−1−t
1

)

(

1+t
1

) =
ℓ−1
∏

t=0

3ℓ − t

1 + t
,

which is a unit modulo p. Hence the rows of M5 are linearly independent, and we
conclude that eℓ+1 is not in the span of the columns of M2. �

Proposition 2.4. If p ≡ 2 mod 7, then x3y3 /∈ (x4, y4, z4)∗ in R = K[x, y, z]/(x7 +
y7 − z7), char K = p.

Proof. For p = 2, 23 this was checked with the help of a computer and Remark 1.5,
so suppose that p 
= 2, 23. Corollary 1.4 then guarantees that x3y3 /∈ (x4, y4, z4)∗

if and only if x3p2

y3p2

/∈ (x4p2

, y4p2

, z4p2

). Write p = 7ℓ + 2 and p2 = 7k + 4 where

k = 7ℓ2 + 4ℓ = pℓ + 2ℓ. Now 4p2 = 7(4k + 2) + 2 = 28k + 16 and so z4p2

equals
(x7 + y7)4k+2z2, so it is enough to show that

x3p2

y3p2

/∈ (x4p2

, y4p2

, (x7 + y7)4k+2) .

If this were not the case, then we would have already, since K[x, y] ⊂ R is a free
extension,

x3p2

y3p2

∈ (x4p2

, y4p2

, (x7 + y7)4k+2)K[x, y] ,

so we have to show that this is not true. By Lemma 2.3 we know that

x3py3p /∈ (x4p, y4p, (x7 + y7)4ℓ+1)

in K[x, y]. Since K[x, y] is a regular ring, it is F -pure. Therefore we take a Frobenius
power to conclude that

x3p2

y3p2

/∈ (x4p2

, y4p2

, (x7 + y7)p(4ℓ+1)) .

But we have

p(4ℓ+1) = 4ℓ(7ℓ+2)+7ℓ+2 = 4(7ℓ2+2ℓ)+(7ℓ+2) = 4(k−2ℓ)+(7ℓ+2) = 4k−ℓ+2 ,
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which is strictly smaller than 4k + 2. Therefore replacing the ideal generator

(x7 + y7)p(4ℓ+1) by (x7 + y7)4k+2 makes the ideal smaller; hence x3p2

y3p2

/∈ (x4p2

,

y4p2

, (x7 + y7)4k+2) holds. �

3. The case p ≡ 3 mod 7

Proposition 3.1. If p ≡ 3 mod 7, then x3y3 ∈ (x4, y4, z4)F ⊆ (x4, y4, z4)∗ in

K[x, y, z]/(x7 + y7 − z7) for char K = p.

Proof. We show indeed that x3py3p ∈ (x4p, y4p, z4p). Write p = 7ℓ + 3; notice that
z2z4p equals (x7 + y7)4ℓ+2, so it is enough to show that

x7(3ℓ+1)+2y7(3ℓ+1)+2 = x3py3p ∈ (x4p, y4p, (x7 + y7)4ℓ+2)

= (x28ℓ+12, y28ℓ+12, (x7 + y7)4ℓ+2) .

We will show that x7(3ℓ+1)y7(3ℓ+1) ∈ (x28ℓ+12, y28ℓ+12, (x7+y7)4ℓ+2) holds in K[x, y].
Consider the (2ℓ + 1) × (2ℓ + 1) matrix

A =

((

4ℓ + 2

2ℓ + 1 + i − j

))

1≤i≤2ℓ+1

1≤j≤2ℓ+1

.

Lemma 2.2 shows that

detA =

2ℓ
∏

t=0

(

6ℓ+2−t
2ℓ+1

)

(

2ℓ+1+t
2ℓ+1

)

and since 2ℓ + 1 ≤ 6ℓ + 2 − t, 2ℓ + 1 + t < p for 0 ≤ t ≤ 2ℓ, none of the binomial
coefficients in the determinant vanishes modulo p and so detA is a unit modulo p.
Now A, as a matrix with entries in K, is invertible and we can find a0, . . . , a2ℓ ∈ K

such that

A

⎛

⎜

⎝

a0

...
a2ℓ

⎞

⎟

⎠
= eℓ+1 ,

where eℓ+1 is the (ℓ+1)th elementary vector of size 2ℓ+1. Consider the polynomial

f =

(

2ℓ
∑

i=0

aix
7iy7(2ℓ−i)

)

(x7 + y7)4ℓ+2

=

(

2ℓ
∑

i=0

aix
7iy7(2ℓ−i)

)

⎛

⎝

4ℓ+2
∑

j=0

(

4ℓ + 2

j

)

x7jy7(4ℓ+2−j)

⎞

⎠ ∈ K[x, y]

and notice that the terms occurring in f have the form x7iy7(6ℓ+2−i) for 0 ≤ i ≤
(6ℓ + 2). Working modulo x28ℓ+12, y28ℓ+12, since

{

7i < 28ℓ + 12
7(6ℓ + 2 − i) < 28ℓ + 12

⇔ 2ℓ + 1 ≤ i ≤ 4ℓ + 1,
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we have

f ≡

4ℓ+1
∑

i=2ℓ+1

⎛

⎝

2ℓ
∑

j=0

aj

(

4ℓ + 2

i − j

)

⎞

⎠ x7iy7(6ℓ+2−i)

=

2ℓ+1
∑

i=1

⎛

⎝

2ℓ+1
∑

j=1

aj−1

(

4ℓ + 2

2ℓ + 1 + i − j

)

⎞

⎠ x7(i+2ℓ)y7(4ℓ+2−i) mod (x28ℓ+12, y28ℓ+12)

and our choice of a0, . . . , a2ℓ gives

2ℓ+1
∑

i=1

⎛

⎝

2ℓ+1
∑

j=1

aj−1

(

4ℓ + 2

2ℓ + 1 + i − j

)

⎞

⎠ x7(i+2ℓ)y7(4ℓ+2−i) =x7(2ℓ+ℓ+1)y7(4ℓ+2−ℓ−1)

=x7(3ℓ+1)y7(3ℓ+1)

and so x7(3ℓ+1)y7(3ℓ+1) ∈ (x28ℓ+12, y28ℓ+12, (x7 + y7)4ℓ+2). �

4. Conclusions and remarks

Putting together the results of the previous sections we obtain the following
theorem.

Theorem 4.1. Let K denote a field of positive characteristic p and let R =
K[x, y, z]/(x7 + y7 − z7). Then x3y3 ∈ (x4, y4, z4)∗ for infinitely many prime num-

bers p and x3y3 
∈ (x4, y4, z4)∗ for infinitely many prime numbers p.

Proof. This follows directly from Propositions 2.4 and 3.1, taking into account
Dirichlet’s theorem on primes in an arithmetic progression; see for example [24,
Chapitre VI, §4]. �

We can now settle the question mentioned in the introduction that was posed
by M. Hochster, C. Huneke and the second author.

Corollary 4.2. There exists an ideal J ⊆ Q[x, y, z]/(x7 + y7 − z7) which is tightly

closed but whose descents Jp ⊆ Z/pZ[x, y, z]/(x7 + y7 − z7) to characteristic p are

not tightly closed for infinitely many primes p.

Proof. Let J be the tight closure in characteristic zero of the ideal (x4, y4, z4) in
Q[x, y, z]/(x7 + y7 − z7); obviously J∗ = J . Since there are infinitely many primes
p satisfying p ≡ 2 mod 7, Proposition 2.4 shows that x3y3 /∈ J . For the infinitely
many primes p satisfying p ≡ 3 mod 7 we have however x3y3 ∈ (Jp)

∗ and so for
these primes (Jp)

∗ 
= Jp. �

Surprisingly, we can also deduce from our considerations in positive characteristic
that the syzygy bundle Syz(x4, y4, z4) is semistable in characteristic zero (we do
not know of a single prime number where it is strongly semistable).

Corollary 4.3. The syzygy bundle Syz(x4, y4, z4) is semistable on

C = Proj Q[x, y, z]/(x7 + y7 − z7).

Proof. Suppose there exists a destabilizing sequence 0 → L → Syz(x4, y4, z4)(6) →
M → 0, L of positive and M of negative degree. Such a sequence may be extended
to a sequence on the relative curve over an open subset of Spec Z. Let c = δ(x3y3) ∈
H1(C, Syz(x4, y4, z4)(6)) denote the cohomology class corresponding to x3y3 and
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let c′ denote the image of c in H1(C,M). If c′ 
= 0, then its torsor would be affine
and x3y3 would not belong to the solid closure of (x4, y4, z4) in characteristic zero.
But then it would not belong to the tight closure for almost all prime numbers
(since affineness is an open property), which contradicts Proposition 3.1. Hence
c′ = 0 and c stems from a class c′′ ∈ H1(C,L). Modulo p, c′′p is annihilated by
a Frobenius power, since L has positive degree. But that would mean that also
cp would be annihilated by a Frobenius power and hence x3y3 ∈ (x4, y4, z4)∗ for
almost all prime numbers, which contradicts Proposition 2.4. �

Remark 4.4. What does J = (x4, y4, z4)∗ in characteristic zero look like? Since
Syz(x4, y4, z4) is semistable in characteristic zero by Corollary 4.3, we know that
Syz(x4, y4, z4)(m) is an ample sheaf for m ≥ 7 and that its dual is ample for m ≤ 5.
Since ampleness is an open property, it follows for almost all prime numbers p that
R≥7 ⊆ (x4, y4, z4)∗ (even in the Frobenius closure) and that R≤5 ∩ (x4, y4, z4)∗ ⊆
(x4, y4, z4). For degree 6 we know that x3y3, x3z3, y3z3 
∈ J by Proposition 2.4. We
do not know whether x2y2z2 and xy2z3 etc. belong to J or not.

Remark 4.5. What can we say in our example about tight closure and Frobenius
closure for the other remainders of p modulo 7? There is numerical evidence showing
that for p ≡ 3, 5, 6 mod 7 the element x3y3 belongs to the Frobenius closure of
(x4, y4, z4), but not for p ≡ 1, 2, 4 mod 7. Moreover it seems as if x3y3 ∈ (x4, y4, z4)∗

for exactly p ≡ 1, 3, 5, 6 mod 7.
We began this work by looking at the example xyz ∈ (x2, y2, z2)∗ in K[x, y, z]/

(x5+y5−z5). Here we have strong computer evidence that xyz ∈ (x2, y2, z2)F holds
exactly for the remainders p ≡ 2, 4 mod 5, and we have proved this for p ≡ 2 mod 5.
Moreover, for p ≡ 3 mod 5 we have proved as in Lemma 1.1 and Corollary 1.4

that the computation of tight closure reduces to the question of whether (xyz)p2


∈

(x2p2

, y2p2

, z2p2

), but we were unable to settle this. The difficulty lies in the fact
that in reducing the statement to a problem over K[x, y] (and then to a matrix
problem over K), we have to replace z twice, and have to deal with two different
kinds of binomial coefficients. For p ≡ 1 mod 5 it is likely that xyz ∈ (x2, y2, z2)∗

holds without being in the Frobenius closure.

Remark 4.6. It has been known since the early days of tight closure that the
Frobenius closure IF of an ideal I fluctuates arithmetically. The easiest exam-
ple is that y2 ∈ (x, y)F holds in K[x, y, z]/(x3 + y3 + z3) for prime characteristic
char K = p ≡ 2 mod 3, but not for p ≡ 1 mod 3; see [19, Example 2.2]. It is therefore
not surprising that our argument reduces the tight closure question to a question
about Frobenius closure.

Remark 4.7. Our example shows also that tight closure in characteristic zero and
in dimension two is not the same as solid closure. Recall that an element f in
a local (or graded) excellent domain (R, m) of dimension d belongs to the solid
closure of an m-primary ideal (f1, . . . , fn) if and only if Hd

m
(R[u1, . . . , un]/(u1f1 +

. . . + unfn + f)) 
= 0 (see [14] and [1]). In positive characteristic, tight closure
and solid closure are the same, and solid closure contains always tight closure. The
containment of x3y3 inside the solid closure of (x4, y4, z4) in K[x, y, z]/(x7+y7−z7)
follows from Proposition 3.1 or from the fact that the syzygy bundle is semistable
in characteristic zero.

The example provides also an example of a ring RZ = Z[x, y, z]/(x7 + y7 − z7)
and an RZ-algebra A = RZ[u, v, w]/(ux4 + vy4 + wz4 + x3y3) such that H2

mRK
(AK)
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is zero for infinitely many prime fields K = Z/(p) and non-zero for infinitely many
prime fields. The ring A together with the ideal a = (x, y, z)A ⊂ A gives an example
where the cohomological dimension of the open subset D(a) varies between 0 and
1 with the characteristic. Classical examples for the dependence on the prime
characteristic of the cohomological dimension were given in [13, Example 3] (see
also [26, Corollary 2.2]), but as far as we know our example is the first where it
varies between 0 and 1, corresponding to D(a) being affine or not.

Remark 4.8. Let Y ⊂ X denote a divisor on a smooth projective variety over
Spec Z and let Yp ⊂ Xp denote the specialisations for a prime number p. How
do properties of Yp vary with p ? Our example gives a smooth irreducible divisor
Y on a smooth projective three-dimensional variety X such that the complement
Xp − Yp is an affine variety for infinitely many but not for almost all p. Indeed, let
C = Proj Z[x, y, z]/(x7 + y7 − z7) → Spec Z be the relative curve and let

0 −→ S = Syz(x4, y4, z4)(6) −→ S ′ = Syz(x4, y4, z4, x3y3)(6) −→ OC −→ 0

denote the extension on C defined by x3y3. Then Y = P(S∨) ⊂ P((S ′)∨) = X is a
projective subbundle of codimension one inside a projective bundle over C of fiber
dimension two. Our result says that Xp −Yp = P((S ′

p)
∨)−P(S∨

p ) is affine for p ≡ 2
mod 7 and not affine for p ≡ 3 mod 7. We do not know whether such an example
exists if X is a surface.

Remark 4.9. Our example is also relevant to the study of Hilbert-Kunz multi-
plicities. The Hilbert-Kunz multiplicity is an invariant of an ideal I (primary to
a maximal ideal) in a ring R of positive characteristic p, defined by eHK(I) =
lime∈N length(R/I [pe])/pe dim(R) ∈ R; see [18, Chapter 6]. It is related to tight
closure by the fact that f ∈ I∗ holds if and only if eHK(I) = eHK((I, f)). Set
I = (x4, y4, z4) and I ′ = (x4, y4, z4, x3y3) in Z[x, y, z]/(x7 + y7 − z7). Our results
give eHK(Ip) = eHK(I ′p) for p ≡ 3 mod 7 and eHK(Ip) 
= eHK(I ′p) for p ≡ 2 mod 7.
In particular, the Hilbert-Kunz multiplicity is not eventually constant as p → ∞.
The first examples with this last behaviour were given by C. Han and P. Monsky
in [9].

On the other hand, V. Trivedi has shown in [29] that in the two-dimensional
graded situation the limit limp�→∞ eHK(Ip) exists. Moreover, one can show that
this limit is the Hilbert-Kunz multiplicity in characteristic zero as defined in [2]. In
our example we have limp�→∞ eHK(Ip) = limp�→∞ eHK(I ′p), because they coincide
for infinitely many prime numbers. The equality of these two limits corresponds
to the fact that x3y3 belongs to the solid closure of I in characteristic zero. This
limit is in our example 84 (see [3, Introduction] for the formulas to compute the
Hilbert-Kunz multiplicity). Apart from that we only know for p ≡ 2 mod 7 that
eHK(Ip) ≥ 84 + 28/p2; we get here only an inequality because the instability of
Syz(x4p, y4p, z4p) might be even worse than the instability detected in Lemma 1.1.

Remark 4.10. H. Schoutens defined another variant of tight closure for finitely gen-
erated algebras R over C, called non-standard tight closure (see [23]). He uses

methods from model theory and an identification ulimZ/(p) ∼= C, where ulim de-
notes the ultraproduct with respect to a fixed non-principal ultrafilter. Then the
ultraproduct of the various Frobenius morphisms of the approximations Rp gives a
characteristic zero Frobenius R → R∞ = ulim Rp and yields a new closure opera-
tion with several variants. A natural question is whether these closure operations
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are independent of the choice of the ultrafilter and whether the several variants
coincide or not (Question 1 after Theorem 10.4 in [23]). Our example shows at
once that the so-called generic tight closure depends on the choice of the ultra-
filter. Moreover, if the parameter theorem of Hara [19, Theorem 6.1] holds for
non-standard tight closure for two-dimensional graded C-domains, then it follows
that also non-standard tight closure depends on the ultrafilter.

Question 4.11. Suppose that R is a finitely generated extension of Z, let I ⊆ R
denote an ideal and let f ∈ R. Set M = {p prime : fp ∈ (Ip)

∗}. Is it possible to
characterize the subsets of the prime numbers which arise in this way? Do there
always exist congruence conditions which describe such an M up to finitely many
exceptions?
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