
HAL Id: inria-00256896
https://hal.inria.fr/inria-00256896

Preprint submitted on 18 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gathering with Minimum Delay in Sensor Networks
Jean-Claude Bermond, Luisa Gargano Adele Rescigno

To cite this version:
Jean-Claude Bermond, Luisa Gargano Adele Rescigno. Gathering with Minimum Delay in Sensor
Networks. 2008. �inria-00256896�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50283904?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00256896
https://hal.archives-ouvertes.fr

Gathering with Minimum Delay in Sensor Networks

Jean–Claude Bermond, Luisa Gargano, Adele A. Rescigno, ????

February 8, 2008

Abstract

Data gathering is a fundamental operation in wireless sensor networks in which
data packets generated at sensor nodes are to be collected at a base station. We
investigate the delay of the gathering process and give an optimal data gathering
schedule for tree networks.

1 Introduction

A wireless sensor network is a multi-hop wireless network formed by a large number of low-
cost sensor nodes, each equipped with a sensor, a processor, a radio, and a battery. Due
to the many advantages they offer – e.g. low cost, small size, and wireless data transfer
– wireless sensor networks become attractive to a vast variety of applications like space
exploration, battlefield surveillance, environment observation, and health monitoring.

A basic activity in a sensor network is the systematic gathering of the sensed data at a
base station for further processing. A key challenge in such operation is due to the physical
limits of the sensor nodes, which have limited power and un–replenishable batteries. It is
then important to bound the energy consumption of data dissemination [6, 15, 27]. However,
an other important factor to consider in data gathering applications is the latency of the
information dissemination process. Indeed, the data collected by a node can frequently
change thus making essential that they are received by the base station as soon as it is
possible without being delayed by collisions [29]. In this paper, we will study optimal–time
data gathering algorithms in tree networks.

1.1 Network model

We adopt the sensor network model considered in [8]. In this model each sensor is equipped
with an half–duplex interface, hence,

i) a node cannot receive and transmit at the same time.

Moreover, each node is equipped with omnidirectional antennas allowing the transmis-
sion over a distance R. This implies that for any given node in the network, we can
individuate its neighbors as those sensors within distance R from it, that is, within its
transmission/interference range. In this model,

1

ii) a collision happens at a node x if two or more of its neighbors try to transmit at the
same time.

However, simultaneous transmissions among pair of nodes can successfully occur whenever
conditions i) and ii) of the above interference model are respected. The time is slotted so
that one–hop transmission of one data item consumes one time slot; the network is assumed
to be synchronous. Moreover, it is assumed that the only traffic in the network is due to
sensor data, thus data transmissions can be completely scheduled.

Summarizing, the network can be represented by means of a direct graph G = (V, A)
where V represents the sensor nodes and an arc (u, v) ∈ A if v is in the transmis-
sion/interference range of u. Throughout this paper we assume that all nodes have the
same transmission range, hence the graph G is a directed symmetric graph, e.g., (u, v) ∈ A
if and only if (v, u) ∈ A.

The collision–free data gathering problem can be then stated as follows [29].

Data Gathering. Given a graph G = (V, A) and a base station s, for each
v ∈ V − {s}, schedule the multi-hop transmission of the data items sensed at v
to s so that the whole process is collision–free, and the time when the last data
is received by s is minimized.

1.2 Our results

We will give optimal gathering schedules in case the graph modeling the sensor network is a
tree. We will actually study the data gathering problem by studying the related one–to-all
personalized broadcast problem in which the base station wants to communicate different
data items to each other node in the network.

One–to-all personalized broadcast: Given a graph G = (V, A) and a base
station s, for each v ∈ V − {s}, schedule the multi-hop transmission from s to
v of the data items destined to v so that the whole process is collision–free, and
the time when the last data item is received at the corresponding destination
node is minimized.

Solving the above dissemination problem is equivalent to solve the data gathering in sensor
networks. Indeed, let T denote the largest time–slot used by a dissemination algorithm,
a gathering schedule with delay T consists in scheduling a transmission from node y to x
during slot t if and only if the broadcasting algorithm schedules a transmission from node
x to y during slot T − t + 1, for any t with 1 ≤ t ≤ T .

1.3 Related work

Much effort has been devoted to the study of efficient data gathering algorithms taking into
consideration various aspects of sensor networks [1, 4].

The problem of minimizing the delay of the gathering process has been recently recog-
nized and studied. The authors of [8] first afford such a problem; they use the same model

2

for sensor networks adopted in this paper. The main difference with our work is that [8]
mainly deals with the case when nodes are equipped with directional antennas, that is, only
the designed neighbor of a transmitting node receives the signal while its other neighbors
can safely receive from different nodes. Under this assumption, [8] gives optimal gathering
schedules for trees. An optimal algorithm for general networks has been presented in [18]
under the hypothesis that each node has one packet of sensed data to deliver.
The work in [29] also deals with the latency of data gathering under the assumption of
unidirectional antennas; the difference with the model in [8] is the assumption of the pos-
sibility to have multiple channels between adjacent nodes. By adopting this model an
approximation algorithm with performance ratio 2 is obtained.

Fast gathering with omnidirectional antennas is considered in [2] and [3], under the
assumption of possibly different transmission and interference ranges, that is, when a node
transmits, all the nodes within a fixed distance dT can receive while nodes within distance
dI (dI ≥ dT) cannot listen to other transmissions due to interference (in our paper dI =
dT). Lower bounds on the time to gather are given and NP-hardness is proved in [2]; an
approximation algorithm with approximation factor 4 is also presented. Paper [3] presents
an on–line gathering algorithm under the described model.

Several papers deal with the problem of maximize the lifetime of the network through
topology aware placement [6, 9], data aggregation [11, 19, 17, 21], or efficient data flow
[7, 15, 25]. Papers [22, 28, 5] consider the minimization of the gathering delay in conjunction
with the energy spent to complete the process.

Finally, we notice that several papers deal with broadcasting in wireless networks [24],
however this problem is not the reverse of data gathering whereby different data packets
are gathered to the sink.

Paper Overview. The rest of the paper is organized as follows: In Section 2 we
formally describe the problem. Sections 3 and 4 present the proposed optimal solutions in
case of lines and trees, respectively.

2 Mathematical Formulation

We now formulate the one-to-all personalized broadcast problem. Consider a directed
symmetric graph G = (V, A) and let s ∈ V be a special node that will be called the source.

Each node v ∈ V − {s} is associated with an integer weight w(v) that represents the
number of data items destined to node v. The set w = {w(v) | v ∈ V − {s}} will represent
the set of weights of the nodes in V .

We need to schedule (time–label) the transmissions in order to create w(v) collision–free
routes from s to node v, for each v ∈ V − {s}.

Definition 1 Let p = (u0, · · · , uh) be a path in G. An increasing labeling L of p is an
assignment of integers, Lp(u0, u1) . . . , Lp(uh−1, uh), to the arcs of p such that

Lp(uj, uj+1) = Lp(uj−1, uj) + 1

3

for j = 1, . . . , h− 1.
The labeling is called t-increasing, for some integer t ≥ 1, if it is increasing and Lp(u0, u1) =
t.

Consider any set P of paths in G from s to (not necessarily pairwise distinct) nodes in
V −{s} together with their labelings Lp, for p ∈ P . Notice that any arc a ∈ A can belong
to either zero, or one or more paths in P .

Definition 2 The labeling induced by P on the arcs of G consists of the multisets

L(u, v) = {Lp(u, v) | p ∈ P},

for each (u, v) ∈ A.

Let N(u) be the set of neighbors of u in G, that is, N(u) = {x | (u, x) ∈ A} = {x | (x, u) ∈
A}.

Definition 3 The labeling L induced by P on the arcs of G is called strictly collision–free
(SCF) if L is increasing and, for each (u, v) ∈ A it holds:

• L(u, v) is a set (e.g, any integer has at most one occurrence in L(u, v)),

• L(u, v) ∩ L(w, u) = ∅, for each w ∈ N(u),

• L(u, v) ∩ L(w, z) = ∅, for each w ∈ N(v) ∪ {v}, z ∈ N(w).

Definition 4 An instance of SCF labeling is a triple 〈G,w, s〉 where G is the graph, s is
the source, and w is the set of weights of the nodes in G.
A feasible solution for 〈G,w, s〉 is a pair (P , L) where:

• P is a set of w(v) paths (not necessarily distinct) from s to v in G, for each v ∈
V − {s};

• L is a SCF–labeling induced by P.

An optimal solution (P∗, L∗) is a feasible solution that minimizes the largest label assigned
to any arc of G.
The value attained by the optimal solution (P∗, L∗) for 〈G,w, s〉 is denoted by T ∗(〈G,w, s〉)
(or simply by T ∗(G) when w and s are clear from the contex).

4

Fig. 1: A tree T .
Example. Let T = (V, E) be the tree given in Fig. 1, and let s be the source and w(u) = 1
for each u 6= s. A solution for (T, s,w) is the pair (P , L) where

P = {p1 = (s, a, d, f),p2 = (s, b, e),p3 = (s, a, c),p4 = (s, b),p5 = (s, a, d),p6 = (s, a)}

and L is such that

Lp1(s, a) = 1, Lp1(a, d) = 2, Lp1(d, f) = 3, Lp2(s, b) = 2, Lp2(b, e) = 3, Lp3(s, a) = 4,

Lp3(a, c) = 5, Lp4(s, b) = 5, Lp5(s, a) = 6, Lp5(a, d) = 7, Lp6(s, a) = 8

and
L(s, a) = {1, 4, 6, 8}, L(a, c) = {5}, L(a, d) = {2, 7},

L(d, f) = {3}, L(s, b) = {2, 5}, L(b, e) = {3}.

Notice that minimizing the largest label is equivalent to minimize the time needed by
the algorithm. Indeed, one can just consider solutions where all labels in {1, · · · , T} are
used: If some integer c is never used, then we can decrease by 1 the value of each label
c′ ≥ c + 1 in the considered feasible solution.

2.1 Notation

The following notation will be used in the sequel.

• Set a path (resp. a t–path) to node v: establish a path from s to v together with its
increasing labeling (resp. t–increasing labeling);

• A node v 6= s is completed: if w(v) paths from s to v have been set.

3 Lines

In this section we present an optimal algorithm to solve the SCF–labeling problem for
an instance 〈G,w, s〉, where G is a line, s is one of its end points, and node weights are
arbitrary non negative integers, that is, w(v) ≥ 0 for each v 6= s.

Let G be the line of length n with nodes 0, 1, · · · , n and let (i, i+1), for i = 0, · · · , n−1,
be the connection between subsequent nodes. Assume that the source node is s = 0 and
w(n) > 0 (otherwise delete the end vertices of the line with weight 0).

Lemma 1 A solution (P , L) of 〈G,w, s〉 is feasible iff

1) The labeling L induced by P is increasing,

2) for each p,q ∈ P with Lq(s, 1) ≥ Lp(s, 1): if p leads from s to node h, with 1 ≤ h ≤ n,
then

Lq(s, 1) ≥ Lp(s, 1) + min{3, h}. (1)

5

Proof. Conditions of Definition 3 become in the case of the line:

Lq(i, i + 1) 6= Lp(i, i + 1); Lq(i, i + 1) 6= Lp(i + 1, i + 2); Lq(i, i + 1) 6= Lp(i + 2, i + 3).

As Lp(i, i+1) = Lp(s, 1)+ i and Lq(i, i+1) = Lq(s, 1)+ i they are equivalent to Lq(s, 1) 6=
Lp(s, 1); Lq(s, 1) 6= Lp(1, 2); Lq(s, 1) 6= Lp(2, 3). Thus

• If h ≥ 1 then Lq(s, 1) 6= Lp(s, 1) and Lq(s, 1) ≥ Lp(s, 1) trivially imply Lq(s, 1) ≥
Lp(s, 1) + 1.

• If h ≥ 2 then Lq(s, 1) 6= Lp(1, 2) = Lp(s, 1) + 1; this together with Lq(s, 1) ≥
Lp(s, 1) + 1 implies Lq(s, 1) ≥ Lp(s, 1) + 2.

• Finally, if h ≥ 3 we have Lq(s, 1) 6= Lp(2, 3) = Lp(s, 1) + 2; knowing that Lq(s, 1) ≥
Lp(s, 1) + 2, we get Lq(s, 1) ≥ Lp(s, 1) + 3.

ut
For each node i = 1, · · · , n, let w(i) be the weight of node i, and define βi =

∑
j≥i w(j),

and let M1 = w(1) + 2w(2) + 3β3; M2 = 2w(2) + 3β3 and Mi = i + 3(βi − 1) if i ≥ 3.

Lemma 2 For a line G with nodes s = 0, 1, . . . , n, it holds

T ∗(G) ≥ max
1≤i≤n

Mi.

Proof. By the preceding lemma, all the labels in L(s, 1), L(1, 2), L(2, 3) are different. We
have w(1) + w(2) + β3 labels in L(s, 1) as there are w(1) + w(2) + β3 paths using the arc
(s, 1); similarly we have w(2) + β3 labels in L(1, 2) and β3 labels in L(2, 3). So all together
we have at least M1 = w(1) + 2w(2) + 3β3 different labels and so T ∗(G) ≥ M1. Note that
M2 ≤ M1.

If i ≥ 3 then the starting labels of any pair of the βi paths to j ≥ i differ of at least 3;
besides, since any feasible labeling is an increasing labeling we have that the largest label
of arc (i− 1, i) is ≥ i + 3(βi − 1). ut

We first give in Fig. 2 an SCF-labeling on the line G with the source at node 0 and
then we will prove that it is optimal.

LINE-labeling (G,w, s)
• Set P = ∅, k = 1.
• while node 1 is not completed do

- Let i be the largest node which is not completed (e.g i = max{j | 1 ≤ j ≤ n, w(j) > 0}.
- Set a k–path to i in G, call it pi.
- Let P = P ∪ {pi}.
- Let w(i) = w(i)− 1.
- Set k = k + min{3, i}.

• return (P , L), where L is the labeling induced by P .

6

Fig. 2: The SCF-labeling on lines with source at node 0.

Theorem 1 The algorithm LINE-labeling on G returns an optimal solution (P , L) of value

T ∗(G) = max
1≤i≤n

Mi.

Proof. The solution (P , L) returned by algorithm LINE-labeling is feasible for 〈G,w, s〉.
Indeed P contains w(i) paths from s to each i 6= s and the induced labeling L can be easily
proved to be a SCF-labeling of P by noticing that it satisfies 1) and 2) of Lemma 1.

Let Lmax(a) be the largest label assigned to the arc a, for a ∈ A. We shall show that
Lmax(i− 1, i) ≤ Mi for each i = 1, . . . , n.
The algorithm LINE-labeling first sets a path to the node n. Hence, the smallest label of
any arc (i− 1, i), with i ≤ h, is i. Furthermore, paths are set every 3 steps while there are
not completed nodes at distance at least 3 from s, and paths to node 2 are set every 2 steps
until it is completed. This and Definition 1 say that:
- If i ≥ 3 then L(i − 1, i) = {i, i + 3, i + 6, · · · , i + 3(βi − 1)}. Hence Lmax(i − 1, i) =
i + 3(βi − 1) = Mi.
- If i = 2 then by the algorithm first paths to the nodes at distance larger than 2 and
then paths to the node at distance 2 are set. This implies that the algorithm labels arc
(1, 2) with the integers in the set X = {2, 5, 8, · · · , 2 + 3(β3 − 1)} when paths to the
β3 nodes at distance at least 3 are set, and, if w(2) > 0, with the integers in the set
Y = {2 + 3(β3 − 1) + 3, · · · , 2 + 3β3 + 2(w(2)− 1)} when paths to node 2 are set for w(2)
times. Hence, we have L(1, 2) = X ∪ Y and

Lmax(1, 2) = 2 + 3(β3 − 1) if w(2) = 0, and Lmax(1, 2) = 2w(2) + 3β3 if w(2) > 0.

Then the largest label assigned to the arc (1, 2) is at most M2.
- If i = 1 then the algorithm labels arc (s, 1) with the integers in the set X = {1, 4, 7, · · · , 1+
3(β3−1)} when paths to the β3 nodes at distance at least 3 are set. If w(2) = 0 and w(1) > 0
the algorithm labels with the integers in Z = {1 + 3β3, · · · 3β3 + w(1)} when paths to 1 are
set.
If w(2) > 0 the algorithm labels the arc (s, 1) with the integers in Y = {1 + 3(β3 − 1) +
3, · · · 1+3β3 +2(w(2)− 1)} when paths to 2 are set and furthermore, if w(1) > 0, arc (s, 1)
is labeled with the integers in Z = {1+3β3 +2(w(2)− 1)+2, · · · 3β3 +2w(2)+w(1)} when
paths to 1 are set.
Hence, we have Lmax(s, 1) = 3β3 − 2 if w(1) = w(2) = 0; Lmax(s, 1) = 2w(2) + 3β3 − 1 if
w(1) = 0 and w(2) > 0, and Lmax(s, 1) = w(1) + 2w(2) + 3β3 if w(1) > 0. Then the largest
label assigned to the arc (s, 1) is at most M1. ut

The above theorem provides a simpler form of the optimal label (i.e. time) when each
sensor node has at least one request to be completed.

Corollary 1 If G is a line and w(i) ≥ 1, for 1 ≤ i ≤ n, then

T ∗(G) = M1 = w(1) + 2w(2) + 3
n∑

j=3

w(j).

In the particular case where w(i) = 1 for each node then we have that T ∗(G) = 3n− 3.

7

4 Trees

Let T = (V, E) be any tree and s be a fixed node in T . We assume here that each node has
exactly one path to be set, that is, w(v) = 1 for each v ∈ V − {s} (recall that the source
has weight w(s) = 0). We will show how to obtain an optimal labeling for 〈T,w, s〉.

4.1 Defintions and Notation

Definition 5 Given a tree T . We shall denote by |T | the size of T in terms of the weights
of the nodes in T , that is

|T | =
∑

v∈V (T)

w(v).

Notice that |T | represents the number of paths to be set in T . Since we assume that
w(v) = 1 for each v ∈ V − {s} then we start with |T | = |V | − 1.

Root T at s and let T1, T2, · · · , Tm denote the subtrees of T rooted at the sons of s. For
each i = 1, . . . ,m, we denote by:

– si the son of s which is the root of Ti,
– αi the number nodes at level 2 in Ti,
– βi the number nodes at level 3 or more in Ti.

Definition 6 Define the shade of subtree Ti, for 1 ≤ i ≤ m, as

τi = 1 + 2αi + 3βi.

Consider the case m = 1, then T consists of a root of degree 1 and T1 as the only subtree.
A one-to-all personalized optimal broadcasting in T is obtained by applying the optimal
algorithm LINE-labeling to the line L obtained from T by replacing the w(j) vertices at
distance j in T by a vertex j with weight w(j) in L. Then by Corollary 1 the number of
steps is T ∗(L) = 1 + 2α1 + 3β1.

One main idea of the algorithm consists in setting, if that is possible, a path to a node
in the subtree Ti having the biggest value τi. So we define the following order.

Definition 7 Given i, j = 1, . . . ,m with i 6= j, we say that

• Ti ≺ Tj if either τi > τj or τi = τj and |Ti| > |Tj|,

• Ti = Tj if τi = τj and |Ti| = |Tj|.

Unless otherwise stated, in the following we assume that the subtrees are ranked ac-
cording their shade that is T1, · · · , Tm is a reordering of the subtrees of T such that
T1 � · · · � Tm.
In order to describe the SCF labeling algorithm, we introduce the following terminology.

• One step: one time–slot.

8

• A node v 6= s is completed if a path from s to v has been set.

• Set a path (resp. a t-path) to Ti: set a path (resp. a t-path) to a node v in Ti which
is the furthest from s among all nodes in Ti which are not yet completed.

When we set a path to some Ti the corresponding value |Ti| of the remaining weights
in Ti will be decreased by one and also αi and βi if they are non zero.

• Ti is completed: if a path has been set to each node in Ti, that is |Ti| = 0.

• Step t is called idle if no t-path is set.

• Ti is available at step t (e.g. a t–path to Ti can be set) only if no path was set to a
node v in Ti at some step t′ s.t. t′ < t < t′ + min{3, `(v)}, where `(v) is the level of
v in T . Said otherwise, if at some step t′ we set a path to a node v in Ti, then Ti is
not available at step t′ + j where 1 ≤ j < min{3, `(v)}. in particular if v is at a level
at least 3, then Ti is not available at steps t′ + 1 and t′ + 2.

4.2 The algorithm

The SCF labeling algorithm on a tree T is given in Fig. 3. We first give an informal
description of the behavior of the algorithm during a generic step t ≥ 1: Let Ti be an
available subtree that precedes all the other available subtrees of T according to the order
relation �; set a t–path to Ti; update the shade of Ti.

9

TREE-labeling (T,w, s) [T has non empty subtrees T1, . . . , Tm and root s]
1. Set P = ∅ and t = 1

Let ti = 1 for i = 1, . . . ,m [ti is the minimum step at which a path to Ti can be set]
Set M = {1, . . . ,m} [M represents the set of subtrees not yet completed]

2. while M 6= ∅
2.1 Rename the indices in M so that for the permuted subtrees it holds T1 � T2 � . . . � T|M |.
2.2 if there exists i ≤ |M | with ti ≤ t then

Let i be the smallest such index (e.g. t1, . . . , ti−1 > t and Ti � Ti+1 � . . . � T|M |).
if NOT (|M | = 2, i = 1, β1 = 1, α2 > β2 = 0, t2 ≤ t + 1) then

[Execute the generic step of the algorithm]
- Set a t-path to Ti and call it p
- P = P ∪ {p}.
- If Ti is completed then M = M − {i} .
- ti = t + min{3, `}, where ` is the length of p,
- Update Ti, eg.: τi = τi −min{3, `},

w(si) = w(si)−
{

1 if ` = 1
0 oth.

, αi = αi −
{

1 if ` = 2
0 oth.

, βi = βi −
{

1 if ` ≥ 3
0 oth.

.

2.3 else [Here is the special case: |M | = 2, i = 1, β1 = 1, α2 > β2 = 0]
- Set a t-path to T1 and call it p
- Set a t + 1-path to s2 and call it q1

- Set a t + 2-path to T2 and call it q2

- P = P ∪ {p,q1,q2}.
- t1 = t + 3 and t2 = t + 4.
- Update T1 and T2 (e.g. τ1 = τ1 − 3, β1 = 0, τ2 = τ2 − 3, w(s2) = 0, α2 = α2 − 1).
- If α2 = 0 then M = {1} .
- t = t + 2.

2.4 t = t + 1.
endwhile

3. return (P , L)

Fig. 3: The SCF labeling algorithm on trees.

The TREE-labeling algorithm sets, at step t, a t-path to Ti only if Ti is available. As
in Lemma 1, we can then conclude that

Lemma 3 The solution (P , L) returned by algorithm TREE-labeling on 〈T,w, s〉 is feasible.

The rest of the paper is devoted to prove the optimality of the algorithm.

4.3 Preliminary Results

In this section we establish some facts that will be used in order to prove the optimality of
the proposed algorithm.

10

Fact 1 For any subtree Ti with |Ti| > 1 it holds

2|Ti| − 1 ≤ τi ≤ 3|Ti| − 3.

Proof. By definition |Ti| = βi + αi + 1 and τi = 3βi + 2αi + 1. Hence

2|Ti| − 1 = 2βi + 2αi + 1 ≤ 3βi + 2αi + 1 = τi ≤ 3βi + 3αi = 3|Ti| − 3,

where the last inequality follows noticing that |Ti| > 1 implies αi ≥ 1. ut

Fact 2 Let Ti � Tj.

• If τi = τj and Ti ≺ Tj then αi > αj and βi < βj.

• Ti = Tj (e.g., τi = τj and |Ti| = |Tj|) iff αi = αj and βi = βj.

Fact 3 If Ti � Tj then βj ≤
{ |Ti| − 2 if |Ti| ≥ 2

0 otherwise
.

Proof. Trivially, if |Ti| = 1 then βj = 0. Let then |Ti| > 1. If Ti � Tj then τi ≥ τj. This
implies that 3βi ≥ 3βj + 2αj − 2αi. From this we get

|Ti| = 1 + αi + βi ≥ 1 + αi +
3βj + 2αj − 2αi

3
≥ βj +

2

3
αj +

1

3
αi + 1.

Hence, noticing that αi ≥ 1, we get |Ti| ≥ βj + 2. ut

Definition 8 Define, for each i, j = 1, . . . ,m, with i 6= j,

∆i,j = |Ti|+ |Tj|+ βi − 1, and εT =
{

1 if T1 = T2

0 otherwise
.

Fact 4 For any i, j it holds ∆i,j − τi = |Tj| − |Ti|

Proof. Recalling that τi = 3βi + 2αi + 1 and by Definition 8 we have

∆i,j − τi = |Ti|+ |Tj|+ βi − 1− (1 + 2αi + 3βi) = |Ti|+ |Tj| − 2|Ti| = |Tj| − |Ti|.

ut

Fact 5 ∆i,j ≥ max{|T |, τ1 + εT} only if either i = 1 and j = 2, 3 or i = 2 and j = 1.

Proof. Assume first either i ≥ 3 or i = 2 and j ≥ 3. We have |T | − |Ti| − |Tj| ≥ |T1| or
|T | − |Ti| − |Tj| ≥ |T2|. By Fact 3 we know that βi < min{|T1|, |T2|} − 1. Hence, in any
case we get

|T | −∆i,j = |T | − |Ti| − |Tj| − βi + 1 > 2,

which implies ∆i,j < |T | ≤ max{|T |, τ1 + εT}.

11

Assume now i = 1 and j ≥ 4 and suppose, by contradiction, that ∆1,j ≥ |T | and ∆1,j ≥
τ1 + εT . We have

|T2|+ |T3| ≤ |T | − |T1| − |Tj| = |T | −∆1,j + β1 − 1 ≤ β1 − 1 ≤ |T1| − 3. (2)

From the assumption that ∆1,j ≥ τ1 + εT and by Fact 4 we get

|T1| ≤ |Tj|.

From this, (2), and Fact 1, we have

τj = 3βj +2αj +1 ≥ 2|Tj|−1 ≥ 2|T1|−1 ≥ 2(|T2|+ |T3|)+5 >
2

3
(τ2 +τ3)+5 ≥ 4

3
τ3 +5 > τ3

thus contradicting the assumption T3 � Tj for any j ≥ 4. ut

4.4 A lower bound

We establish a lower bound on the optimal labeling of any instance 〈T,w, s〉.
Let T be such that T1 � T2 � . . . � Tm. Define

Max(T) = max{|T | = N − 1, τ1 + εT , ∆1,2, ∆2,1, ∆1,3}

Theorem 2 Assuming that T1 � T2 � . . . � Tm, we have T ∗(T) ≥ Max(T).

Proof. Any algorithm needs to set a path to each node, hence T ∗(T) ≥ |T |.
By Definition 6 and Corollary 1, the shade τi of Ti is the minimum label that can be assigned
when only paths to the nodes in Ti are set. Since paths must be set to all nodes in each Ti,
for i = 1, · · · , m, and τ1 ≥ τ2 ≥ · · · ≥ τm we have that T ∗(T) ≥ τ1.
Furthermore, if T1 = T2 then at least τ1 + 1 labels are necessary.
Consider now ∆i,j. For each path to a node at level at least 3 in Ti no path to some other
node in Ti can be set in the following 2 steps. Moreover, at most one of the following two
steps can be used to set a path to Tj, except for the eventual step in which a path to the
root of Tj is set and immediately after a path to some other node in Tj is set. The remaining
step can be used to set a path to some T` with ` 6= i, j. Hence, for any algorithm there are
at least βi−1−

∑
` 6=i,j |T`| idle steps, which implies T ∗(T) ≥ |T |+βi−1−

∑
` 6=i,j |T`| = ∆i,j.

By Fact 5, we obtain that T ∗(T) is lower bounded by Max(T). ut

4.5 Optimality

We show now that the SFC–labeling algorithm for trees is optimal, that is, the maximum
label assigned to any arc of T is T (T) ≤ Max(T) thus matching the lower bound of
Theorem 2.

We first recall that we are in the hypothesis that the weight of each node is 1. The order
in which nodes are chosen as end–points of the paths set by the algorithm implies that the
largest label assigned to an arc of T is always to be searched among those assigned to the
arcs outgoing the root s of T . Therefore, it coincides with the largest t for which a t–path
is set in T .

12

Lemma 4 Let t denote the largest integer such that a t–path is set in T during the execution
of the SFC–labeling algorithm. The largest label assigned by the algorithm to any arc of T
is T (T) = t.

By the above Lemma, we need to show that the largest t such that a t–path is set in T
is upper bounded by Max(T).

The proof will proceed by induction. We will consider the first steps of the algorithm
mainly those which send to different subtrees (before the step where we send again to a
subtree to which we already sent) and we will apply the induction on the tree T ′ obtained
by deleting the vertices completed in these first steps. For that we introduce the following
definition.

Definition 9 We denote the fact that the algorithm on T starts by setting k paths to
pairwise different subtrees of T (that is, it sets a t–path to some node vi in Ti, for i =
1, . . . , k) by

〈T1 . . . Tk〉

We denote by T ′ the updated tree, resulting from 〈T1 . . . Tk〉, that is, T ′ has subtrees
T ′

1 . . . , T ′
k, T

′
k+1 . . . , T ′

m, where

- T ′
i denotes the updated subtree Ti after the i–path to vi has been set (that is, w′(vi) = 0

and |T ′
i | = |Ti| − 1, for i = 1, . . . , k

- T ′
k+1 = Tk+1, . . . , T

′
m = Tm.

Notice that the subtrees T ′
1 . . . , T ′

m, are not necessarily ordered according to the relation
�. Let i1, i2, · · · , im be a permutation of 1, . . . ,m such that T ′

i1
� . . . � T ′

im ; we will always
consider permutations that maintain the original order on equal subtrees, that is

if T ′
ij

= T ′
i`

then ij < i`. (3)

We denote by α′
i, β

′
i, τ

′
i the parameters of T ′

i . In particular (unless the special case k = 2,
β1 = 1, α2 > β2 = 0, T3 = ∅, and T2 is available) we have for i = 1, . . . , k:

α′
i = αi−

{
1 if βi = 0, αi ≥ 1
0 otherwise

, β′
i = βi−

{
1 if βi ≥ 1
0 otherwise

, τ ′i = τi−

3 if βi ≥ 1
2 if βi = 0, αi ≥ 1
1 if |Ti| = 1
0 if Ti = ∅

.

The following properties hold for T ′.

Fact 6 Assume 〈T1 . . . Tk〉 and that NOT (k = 2, β1 = 1, α2 > β2 = 0 and T3 = ∅). For
any 1 ≤ i < j ≤ k.

1) If τi > τj then τ ′i ≥ τ ′j;

13

2) if Ti ≺ Tj and T ′
j ≺ T ′

i then βj = 0, βi ≥ 2, |Ti| < |Tj|, and τi = τj + 1.

Proof. If |Tj| = 1, then τ ′j = 0 ; otherwise τ ′i ≥ τi − 3 and τ ′j ≤ τj − 2; so τ ′i ≥ τ ′j.
Assume now that Ti ≺ Tj and T ′

j ≺ T ′
i . By Definition 7 we can have four cases:

- τi = τj with |Ti| > |Tj|, and τ ′j = τ ′i with |T ′
j| > |T ′

i |. This is impossible since it
should be both |Ti| > |Tj| and |Tj| = |T ′

j|+ 1 > |T ′
i |+ 1 = |Ti|.

- τi = τj with |Ti| > |Tj|, and τ ′j > τ ′i . By the algorithm this case can occur only if
βj = 0 and βi ≥ 1. By Fact 2 this is impossible.

- τi > τj and τ ′j > τ ′i . It is impossible by 1).

- τi > τj and τ ′j = τ ′i with |T ′
j| > |T ′

i |. We can have both τi > τj and τ ′j = τ ′i only if
τ ′i = τi − 3 = τj − 2 = τ ′j. Hence we have τi = τj + 1 and βj = 0 < βi. Furthermore,
|T ′

j| > |T ′
i | implies |Tj| > |Ti| and βi ≥ 2 (otherwise, if βi = 1 we would get T ′

i = T ′
j).
ut

Fact 7 Assume 〈T1 . . . Tk〉 with either k ≥ 4 or k = 3 and T3 � T ′
1, T

′
2:

i) |T | ≥ τ1 + k − 2;

ii) |Ti| ≥ β1 + 1, for each i = 2, . . . , k;

iii) |Ti| ≥ β2 + 1, for each i = 3, . . . , k.

Proof.
Let T ′ be the tree resulting after 〈T1 . . . Tk〉. If |T1| = 1 then |Ti| = 1 for each i = 1, · · · , k;
hence, i), ii), and iii) hold. We assume then that |T1| ≥ 2 which implies α1 ≥ 1.

We first prove ii). If k ≥ 4 then at steps 4, . . . , k we did not choose T ′
1 which was available

and so T2 � T3 � . . . � Tk � T ′
1. If k = 3 T3 � T ′

1 by hypothesis. So we have

Ti � T ′
1 for each i = 2, . . . , k.

Let ∆ = 1 if β1 ≥ 1 and 0 otherwise .
It can occur either τi > τ ′1 = τ1 − 2−∆ or τi = τ ′1 = τ1 − 2−∆ with |Ti| ≥ |T ′

1| = |T1| − 1,
Hence, w.l.o.g. let 1 ≤ ` ≤ k be such that

τ2 ≥ · · · ≥ τ` > τ1 − 2−∆

and
τ`+1 = · · · = τk = τ1 − 2−∆ with |T`+1|, . . . |Tk| ≥ |T1| − 1. (4)

Recalling that τi > τ ′1 ≥ 1 we get

αi ≥ 1, i = 1, . . . , k. (5)

14

For any i = 2, . . . , ` we have τi = 3βi + 2αi + 1 ≥ 3β1 + 2α1 −∆. We can then deduce that,

βi ≥ β1 +
2

3
α1 −

2

3
αi −

1 + ∆

3

and

|Ti| = βi+αi+1 ≥ β1+
2

3
α1−

2

3
αi−

1 + ∆

3
+αi+1 = β1+

2

3
α1+

αi

3
+

2−∆

3
≥ β1+

2

3
α1+

1

3
,

(6)
where the last inequality holds since αi ≥ 0 and ∆ ≤ 1.
From this, recalling that α1 ≥ 1, we get that |Ti| ≥ β1 + 1 and ii) holds for any i ≤ `.
For i = ` + 1, . . . , k, we have |Ti| ≥ |T1| − 1 = β1 + α1 ≥ β1 + 1. Hence ii) holds for each
i = 2, . . . , k.

In the same way we can have iii) by noting that if we have k ≥ 4 then either T ′
1 � T ′

2

and so T4 � T ′
1 � T ′

2, or T ′
2 � T ′

1 and so by Fact 6, β2 = 0 and so T ′
2 was available at step 4

and so T4 � T ′
2

Consider now inequality i). By (6) we have that for each i = 2, . . . , `

|Ti| ≥ β1 +
2

3
α1 +

1

3
= |T1| −

α1

3
− 2

3
(7)

Hence, by (4) and (7) we have

|T | =
m∑

i=1

|Ti| ≥
k∑

i=1

|Ti| = |T1|+
∑̀
i=2

|Ti|+
k∑

i=`+1

|Ti|

≥ |T1|+ (`− 1)(|T1| −
α1

3
− 2

3
) + (k − `)(|T1| − 1)

= k|T1| − k + 1− (`− 1)
α1 − 1

3

= τ1 + (k − 3)β1 + (k − 2)α1 − (`− 1)
α1 − 1

3
. (8)

The function in (8) is decreasing in ` and its minimum, for ` = k, is τ1 + (k − 3)β1 +
(k − 2)α1 − (k − 1)α1−1

3
. Recalling that α1 ≥ 1 and k ≥ 3, we get the desired bound

|T | ≥ τ1 + k − 2. ut

Theorem 3 Assume that T1 � . . . � Tm. Denote by (P , L) the solution returned by
algorithm TREE-labeling. It holds

T (T) ≤ Max(T) (9)

Proof. At any step of the algorithm the tree can have any number m ≥ 1 of subtrees of
positive weight. When we say that the algorithm sets a t–path to a subtree Ti and |Ti| = 0
at step t, this means that no t–path is actually set (e.g. t is an idle step).

We first analyze the special case of the algorithm in which m = 2, β1 = 1, β2 = 0 and T2

is available. So τ1 > τ2 and α1 ≥ α2 − 1. The first two steps of the algorithm are 〈T1T2〉,

15

where the path set to T2 is a path to s2 (the root of T2). Let T ′ be the tree resulting after
〈T1T2〉, at the third step a path to T ′

2 is set. Hence, the first three steps of the algorithm
are

〈T1T2〉〈T ′
2〉

Let T 2 be the tree resulting after 〈T1T2〉〈T ′
2〉. Next the algorithm on T proceeds as follows

〈T 2
1 T 2

2 〉〈T 3
1 T 3

2 〉 . . . 〈T `
1T

`
2〉 . . . 〈T

α1+1
1 Tα1+1

2 〉〈Tα1+2
1 〉.

where T ` is the tree resulting from T `−1 after the 2 steps 〈T `−1
1 T `−1

2 〉. To see this, we notice
that in each T ` it holds T `

1 ≺ T `
2 , since τ 2

1 = τ1 − 3 > τ2 − 3 = τ 2
2 and τ `

1 = τ `−1
1 − 2 > τ `

2 =
max{τ `−1

2 − 2, 0}, for ` > 2. Moreover, in the hypothesis of this case α1 ≥ α2 − 1, which
implies that T `

2 = ∅ for ` > α2. Finally, by the hypothesis we have

εT = 0, |T | = 3 + α1 + α2 ≤ 3 + 2α1 + 1 = τ1, and ∆1,2, ∆2,1 ≤ |T |.
Hence, Max(T) = τ1; but

T (T) = 3 + 2α1 + 1 = τ1 = Max(T).

The rest of the proof is devoted to show that T (T) ≤ Max(T) for each tree. The proof
is by induction on the shade of T1, (recall that T1 � T2 � . . . � Tm). As a base consider
the trees of the special case above and trees T such that τ1 = 1; in the latter case, we have
|Ti| = 1 for each i = 1, . . . ,m and T (T) = |T | = Max(T).

Suppose now that (9) holds for any tree in which the shade of the first subtree (according
to the relation �) is at most τ1 − 1; we prove that (9) holds for T .

Notice that we are assuming that T does not belong to the special case (e.g., m = 2,
β1 = 1, β2 = 0, and T2 is available) and that |T1| ≥ 2.

We separate four cases according to the value attaining Max(T).

Case 1: Max(T) = ∆1,2 > max{τ1 + εT , |T |}.
In such a case we know that β1 > 1, otherwise ∆1,2 = |T1|+ |T2|+ β − 1 ≤ |T |; hence, the
first tree steps of the algorithm are (including the case |T3| = 0)

〈T1T2T3〉.

Let T ′ be the tree resulting after 〈T1T2T3〉. We will show that after the first 3 steps 〈T1T2T3〉,
the algorithm on T proceeds as on input T ′ and

Max(T ′) ≤ Max(T)− 3. (10)

This implies the desired inequality

T (T) = 3 + T (T ′) ≤ 3 + Max(T ′) = Max(T).

By definition of ∆1,2 and using ∆1,2 > |T |, we get

|T | − |T1| − |T2| < β1 − 1. (11)

16

By Fact 4 and using ∆1,2 > τ1, we get

|T1| < |T2|. (12)

By (11) and Fact 1, we get

τ3 < 3|T3| ≤ 3(|T | − |T1| − |T2|) < 3(β1 − 1) = (3β1 + 2α1 + 1)− (2α1 + 4),

from which, since α1 ≥ 1, it follows

τ3 < τ1 − 6 = τ ′1 − 3. (13)

Moreover, by (11) and (12) we have

|T2| ≥ |T1|+ 1 ≥ β1 + α1 + 2 ≥ β1 + 3 > (|T | − |T1| − |T2|) + 4 ≥ |T3|+ |T4|+ 4; (14)

which, using Fact 1, implies

τ2 ≥ 2|T2| − 1 > 2(|T3|+ |T4|) + 7 ≥ 4 min{|T3|, |T4|}+ 7.

Noticing that Fact 1 implies 4|T4| > τ4 and 4|T3| > τ3 ≥ τ4, we get

τ2 ≥ τ4 + 8. (15)

From (13) and (15) and recalling that τ1 ≥ τ2, we obtain that in the tree T ′, resulting
after 〈T1T2T3〉:

T ′
1 ≺ T ′

3, T ′
1 ≺ T ′

4 = T4, T ′
2 ≺ T ′

4 = T4.

Moreover, we have
T ′

2 ≺ T ′
3;

indeed, if we assume T ′
2 � T ′

3 we either have |T2| = |T3| or, by Fact 6, we have |T3| > |T2|
contradicting (14).

We notice now that T ′
1 6= T ′

2, since by (12) they have different weights. Hence, by
the definition of ≺ (cfr. Definition 7), we get that the only possible orderings on the the
subtrees of T ′ are:

T ′
1 ≺ T ′

2 ≺ T ′
3, T ′

1 ≺ T ′
2 ≺ T ′

4, T ′
2 ≺ T ′

1 ≺ T ′
3, T ′

2 ≺ T ′
1 ≺ T ′

4.

Moreover, both sequences of steps 〈T1T2T3〉〈T ′
1T

′
2〉 and 〈T1T2T3〉〈T ′

2T
′
1〉 are possible dur-

ing the execution of the algorithm on T ; in particular if T ′
2 ≺ T ′

1 we know by Fact 6 that
β2 = 0.
Hence, after the first 3 steps, the algorithm on T proceeds as on input T ′. For T ′ we have:

|T ′| = |T |−
{

3 if |T3| > 0
2 otherwise

, εT ′ = εT = 0 (since |T1| < |T2|), τ ′1 = τ1−3 (since β1 > 1).

In case T ′
1 ≺ T ′

2, it holds

∆′
1,2 = ∆1,2 − 3, ∆

′

2,1 =

{
∆2,1 − 3 if β2 > 0
|T ′

2|+ |T ′
1| − 1 < |T ′| if β2 = 0

, ∆′
1,3, ∆

′
1,4 < ∆1,2 − 3,

17

where the last inequality follows from (14).
In case T ′

2 ≺ T ′
1, by Fact 6 we have β2 = 0, β1 ≥ 1 and τ1 > τ2; hence τ ′2 = τ2−2 = τ1−3

and

∆′
1,2 = ∆1,2 − 3, ∆′

2,i = |T ′
2|+ |T ′

i |+ β′
2 − 1 = |T ′

2|+ |T ′
i | − 1 < |T ′| (i = 1, 3, 4).

Summarizing, in both cases T ′
1 ≺ T ′

2 and T ′
2 ≺ T ′

1, inequality (10) holds.

Case 2: Max(T) = ∆2,1 > max{τ1 + εT , |T |}.
We first notice that by definition of ∆2,1 and using ∆2,1 > |T |, we get

2 ≤ |T | − |T1| − |T2|+ 2 ≤ β2, (16)

Using Fact 4 and ∆2,1 > τ1 ≥ τ2 we get

|T2| < |T1|. (17)

Moreover, since ∆2,1 > τ1 + εT , we get

|T1|+ β1 < |T2|+ β2, (18)

which also implies T1 6= T2 and
εT = 0. (19)

Finally, from (16) we have |T3| ≤ |T | − |T1| − |T2| ≤ β2 − 2; from this and Fact 1 it follows

τ3 ≤ 3|T3| − 3 ≤ 3β2 − 9 ≤ τ2 − 9. (20)

We distinguish now two subcases on the value of β1.

• β1 ≥ 1.
The first tree steps of the algorithm are therefore 〈T1T2T3〉. Let T ′ be the tree resulting
after 〈T1T2T3〉. From (16) and (20) and recalling that τ ′1 = τ1 − 3 ≥ τ2 − 3 = τ ′2, we
obtain that in the tree T ′:

T ′
1 ≺ T ′

2, T ′
2 ≺ T ′

3, T
′
4.

Hence, after the first 3 steps the algorithm on T proceeds as on input T ′. For T ′ we
have:

T ′
1 ≺ T ′

2 ≺ T ′
3 or T ′

1 ≺ T ′
2 ≺ T ′

4 = T4 ≺ T ′
3.

Moreover,

|T ′| = |T |−
{

3 if |T3| > 0
2 otherwise

, εT ′ = εT = 0 (since |T1| 6= |T2|), τ ′1 = τ1−3 (since β1 > 0).

∆′
1,2 = ∆1,2 − 3, ∆

′

2,1 = ∆2,1 − 3, ∆′
1,3 =

{
∆1,3 − 3 if |T3| > 0
∆1,3 − 2 ≤ ∆1,2 − 3 otherwise

;

similarly, if T4 ≺ T ′
3 , from Fact 5 one has ∆′

1,4 ≤ ∆2,1 − 3.

Summarizing, it holds Max(T ′) = Max(T)− 3. Therefore,

T (T) = 3 + T (T ′) ≤ 3 + Max(T ′) = Max(T).

18

• β1 = 0.
The first two steps of the algorithm are 〈T1T2〉. Let T ′ be the tree resulting after
〈T1T2〉. Recalling that β2 ≥ 2 and that τ1 − 2 > τ3 (cfr. (16) and (20)), we obtain
that the first 4 steps of the algorithm are

〈T1T2〉〈T ′
1T

′
3 = T3〉.

Let T ′′ be the tree resulting after 〈T1T2〉〈T ′
1T

′
3〉. Using (20), we have

τ ′′4 = τ4 ≤ τ3 ≤ τ2 − 9 = τ ′2 − 6 = τ ′′2 − 6.

Hence, after the first 4 steps the algorithm on T proceeds as on input T ′′ where the
subtrees with largest shade are T ′′

1 and T ′′
2 with

T ′′
1 ≺ T ′′

2 or T ′′
2 ≺ T ′′

1

followed by T ′′
3 and T ′′

4 in some order. Moreover,

|T ′′| = |T |−
{

4 if |T3| > 0
3 otherwise

, εT ′ = εT = 0 (since β2 ≥ 2, β1 = 0), τ ′′1 = τ1−4 (since β1 = 0),

Therefore |T ′′| ≤ ∆2,1 − 4 = Max(T)− 4 and τ ′′1 < Max(T)− 4

Moreover, if T ′′
2 ≺ T ′′

1

τ ′′2 = τ2 − 3 ≤ τ1 − 3 ≤ ∆2,1 − 4 = Max(T)− 4.

Finally,
∆

′′

1,2, ∆
′′

1,3, ∆
′′

1,4 < |T ′′| (since β1 = 0), ∆
′′

2,1 = ∆2,1 − 4,

and, by Fact 3,

∆′′
2,3, ∆

′′

2,4 ≤ |T ′′
2 |+ |T ′′

3 |+ |T ′′
4 |+ β′′

2 − 1 ≤ |T ′′
2 |+ |T ′′

3 |+ |T ′′
4 |+ |T ′′

1 | − 3 < |T ′′|.

Summarizing, it holds Max(T ′′) ≤ Max(T)− 4. Therefore,

T (T) = 4 + T (T ′) ≤ 4 + Max(T ′) ≤ Max(T).

Case 3: Max(T) = ∆1,3 > max{τ1 + εT , |T |}.
In this case we have β1 > 1, otherwise ∆1,3 ≤ |T |; hence, the first tree steps of the algorithm
are

〈T1T2T3〉.

By definition of ∆1,3 and using Fact 4, we get like in case 1

|T | − |T1| − |T3| < β1 − 1, (21)

|T1| < |T3|. (22)

19

By (21) and Fact 1, we get

τ3 ≤ τ2 ≤ 3|T2| − 3 ≤ 3(|T | − |T1| − |T3|)− 3 < 3β1 − 6 ≤ (τ1 − 3)− 6 = τ1 − 9. (23)

from which it follows

τ ′2 ≤ τ2 ≤ τ1 − 9 ≤ τ ′1 − 6, τ ′3 ≤ τ3 ≤ τ2 ≤ τ ′1 − 6. (24)

Moreover, by (21) and (22) we have

|T3| ≥ |T1|+ 1 ≥ β1 + α1 + 2 ≥ β1 + 3 ≥ (|T | − |T1| − |T3|) + 4 ≥ |T2|+ |T4|+ 4; (25)

which, by Fact 1, implies

τ3 ≥ 2|T3| − 1 ≥ 2(|T2|+ |T4|) + 7 ≥ 4 min{|T2|, |T4|}+ 7.

Noticing that Fact 1 implies 4|T4| ≥ τ4 and 4|T2| > τ2 ≥ τ4, we get

τ2 ≥ τ3 ≥ τ4 + 7. (26)

Let T ′ be the tree resulting after 〈T1T2T3〉. Recalling that β1 ≥ 2 and using (24) and
(26), we have

τ ′1 = τ1 − 3, τ4 ≤ τ ′2 ≤ τ2 ≤ τ ′1 − 6, τ4 ≤ τ ′3 ≤ τ3 ≤ τ2 ≤ τ ′1 − 6. (27)

From this we obtain that the only possible orderings of the first subtrees of T ′ are:

T ′
1 ≺ T ′

2 � T ′
3, T ′

1 ≺ T ′
3 ≺ T ′

2.

We notice that both sequences of steps 〈T1T2T3〉〈T ′
1T

′
2T

′
3〉 and 〈T1T2T3〉〈T ′

1T
′
3T

′
2〉 are

possible during the execution of the algorithm on T ; in particular if T ′
3 ≺ T ′

2 we know by
Fact 6 that β3 = 0. Hence, after the first 3 steps, the algorithm on T proceeds as on input
T ′.
For T ′ we have:

|T ′| = |T | − 3, εT ′ = εT = 0 (by (24) and (27)), τ ′1 = τ1 − 3 (by (27)),

∆′
1,2 ≤ ∆1,2 − 3, ∆′

1,3 ≤ ∆1,3 − 3, ∆
′

2,1 ≤
{

∆2,1 − 3 if β2 > 0
|T ′| otherwise

and, if T ′
3 ≺ T ′

2 , β3 = 0 and

∆′
3,1 = |T ′

3|+ |T ′
1| − 1 < |T ′|.

Hence Max(T ′) ≤ Max(T)− 3 and

T (T) = 3 + T (T ′) ≤ 3 + Max(T ′) ≤ Max(T).

20

==

Case 4: Max(T) = max{τ1 + εT , |T |}.
Let k be the largest integer such that the first k steps of the algorithm are

〈T1T2 . . . Tk〉,

and, letting T ′ be the tree resulting after 〈T1T2 . . . Tk〉, it holds Tk+1 6≺ T ′
i , for each i =

1, . . . , k.
• First assume that either k ≥ 4 or k = 3 and T3 � T ′

1, T
′
2. Let the ordering on T ′ be such

that
T ′

i � T ′
j � T ′

`

i.e., T ′
i has the largest shade among all the subtrees of T ′, followed by T ′

j and by some T ′
`.

Moreover,

a) during the execution of the algorithm on T , any sequences of steps 〈T1T2 . . . Tk〉〈T ′
i 〉

is possible, for any 1 ≤ i ≤ k − 1 .
Indeed, any of the subtrees T ′

1, T
′
2, . . . , T

′
k−2 is available at step k +1 and i can assume

any value among 1, . . . , k − 2. Moreover, if T ′
k−1 ≺ T ′

1 then Fact 6 implies βk−1 = 0;
hence T ′

k−1 is available at step k + 1 and i = k − 1 can hold.

b) if either T ′
k ≺ T ′

1 or T ′
k ≺ T ′

2 then by Fact 6 we have βk = 0, and this implies that T ′
k

is available at step k + 2 and j can assume value k.

We now distinguish two cases according to the value of i.

- Let i ≤ k − 1.
By a) and b) , we have that after the first k steps, the algorithm on T proceeds as on
input T ′. For T ′ we have:

|T ′| = |T | − k, τ ′i ≤ τi − 2 ≤
{

τ1 − 3 if i ≥ 2 (by Fact 6)
τ1 − 2 if i = 1

;

furthermore,

β1, β2 < |T3|, . . . , |Tk| (by Fact 7)
βi = βj = 0 for 3 ≤ i ≤ k − 1 and 3 ≤ j ≤ k (by Fact 6 since T ′

i � T ′
j ≺ T ′

1 or T ′
2)

βj ≤ |T1| − 2, |T2| − 2 for j > k (by Fact 3 since T1, T2 � Tj)

this and Fact 3 imply that
∆′

i,j, ∆
′
j,i, ∆

′
i,` ≤ |T ′|.

Hence,

Max(T ′) = max{|T ′|, τ ′i + εT ′}

≤
{

max{|T | − k, τ1 − 3 + εT ′} if i ≥ 2 or i = 1 and β1 ≥ 1
max{|T | − k, τ1 − 2 + εT ′} if i = 1 and β1 = 0

21

Since εT ′ ≤ 1 and by i) of Fact 7, we have that if either i ≥ 2 or i = 1 and β1 ≥ 1
then max{|T | − k, τ1 − 3 + εT ′} = |T | − k.

Let us consider now i = 1 and β1 = 0.
Obviously if εT ′ = 0 then by Fact 7 we have max{|T | − k, τ1 − 2 + εT ′} = |T | − k.
Assume then εT ′ = 1. In this case T ′

1 = T ′
j for some j ≥ 2. This implies that

|T | ≥ |T1|+ |Tj|+ k − 2 = 2(α1 + 1) + k − 2 = 2α1 + k = τ1 + k − 1

and max{|T | − k, τ1 − 2 + εT ′} = max{|T | − k, τ1 − 1} = |T | − k. Hence, we have

Max(T ′) ≤ |T | − k,

and
T (T) = k + T (T ′) ≤ k + Max(T ′) ≤ |T | ≤ Max(T).

- Let i = k.
In this case we have T ′

k ≺ T ′
1, T

′
2, . . . , T

′
k−1. Hence, by Fact 6 we get β1, . . . , βk−1 ≥ 1

and βk = 0 that imply T ′
1 � . . . � T ′

k−1. Since a path to T ′
k cannot be set at step

k + 1, we obtain that the first k + 1 steps of the algorithm are

〈T1T2 . . . Tk〉〈T ′
1〉.

Let T ′′ be the tree resulting after 〈T1T2 . . . Tk〉〈T ′
1〉. We have that, after the first k + 1

steps, the algorithm on T proceeds as on input T ′′ where the subtree with largest
shade is T ′′

k followed by T ′′
2 , T ′′

3 in this order; i.e.,

T ′′
k ≺ T ′′

2 � T ′′
3 .

Moreover,

|T ′′| = |T |−k−1, τ ′′k = τ ′k = τk−2 = τ1−3 (by Fact 6) , εT ′′ = 0 (since T ′′
k ≺ T ′′

2)

∆′′
k,2, ∆

′′
k,3 < |T ′′| (since βk = 0), ∆′′

2,k ≤ |T ′′
k |+|T ′′

2 |+|T ′′
1 |−3 ≤ |T ′′|−3 (by Fact 3)

Hence, by using Fact 7 we get Max(T ′′) = max{|T ′′|, τ ′′k + εT ′′ , ∆′′
k,2, ∆

′′
2,k, ∆

′′
k,3} ≤

max{|T | − k − 1, τ1 − 3} = |T | − k − 1 = |T ′′| and

T (T) = k + 1 + T (T ′′) ≤ k + 1 + Max(T ′′) ≤ k + 1 + |T ′′| = |T | ≤ Max(T).

• Assume now that k = 3 and either T ′
1 ≺ T3 or T ′

2 ≺ T3 (including also the case T3 = ∅).
Suppose that β1 = 0: since k = 3, we can deduce that T ′

1 � T3. Therefore, T ′
2 ≺ T3 ≺ T ′

1.
By Fact 6, we get to the contradiction β1 ≥ 2. Hence, throughout this case we can assume

β1 ≥ 1 and τ ′1 = τ1 − 3. (28)

22

Furthermore,

|T ′| = |T | − 3 ∆′
1,2 = ∆1,2 − 3, ∆′

2,1 ≤
{

∆2,1 − 3 if β2 ≥ 1
|T | − 3 if β2 = 0

, ∆′
1,3 = ∆1,3 − 3,

(29)
and by Fact 7

∆′
1,4 = |T1|+ |T4|+ β1 − 1− 2 ≤ |T1|+ |T4|+ |T2| − 5 < |T | − 5. (30)

Moreover, by Fact 6 we get

if T ′
2 ≺ T ′

1 then β2 = 0, τ ′2 = τ2 − 2 = τ1 − 3 and ∆′
2,3, ∆

′
2,4 < |T | − 3 (31)

if T ′
3 ≺ T ′

2, T
′
1 then β3 = 0, and ∆′

3,1, ∆
′
3,2 < |T | − 3, (32)

if T ′
4 ≺ T ′

2, T
′
1 then β4 = 0, and ∆′

4,1, ∆
′
4,2 < |T | − 3. (33)

We show now that in each of the possible orderings on the subtrees of T ′, it holds

Max(T ′) ≤ max{|T | − 3, τ1 + εT − 3} = Max(T)− 3; (34)

indeed:

– If either T ′
1 � T ′

2 � T ′
3 or T ′

1 � T ′
2 � T4 ≺ T ′

3 then we have (34) by using (28), (29),
(30) and considering that εT ′ = εT ;

– if either T ′
1 � T ′

3 ≺ T ′
2 or T ′

1 � T ′
3 � T4 ≺ T ′

2 then we have (34) by using (28), (29),
(32), (30) and considering that εT ≤ 1 and that εT ′ = 0 (since β1 ≥ 1 and β3 = 0);

– if either T ′
1 � T4 ≺ T ′

2 or T ′
1 � T4 ≺ T ′

3 ≺ T ′
2 then we have (34) by using (28), (29),

(33), (30) and considering that εT ≤ 1 and that εT ′ = 0 (since β1 ≥ 1 and β4 = 0);

– if either T ′
2 ≺ T ′

1 � T ′
3 or T ′

2 ≺ T ′
1 � T4 ≺ T ′

3 then we have (34) by using (31),
(29) and considering that εT = 0 (since β1 ≥ 1 and β2 = 0) and that εT ′ = 0 (since
T ′

2 ≺ T ′
1);

– if either T ′
2 � T ′

3 ≺ T ′
1 or T ′

2 ≺ T ′
3 � T ′

4 ≺ T ′
1 then we have (34) by using (31),

(29), (32) and considering that εT = 0 (since β1 ≥ 1 and β2 = 0), that τ ′1 = τ ′2 (by
Fact 6) and that if εT ′ = 1 then β2 = β3 = 0, α2 = α3 and |T | > |T1| + |T2| + |T3| =
|T1|+ 2α2 + 2 ≥ τ ′2 + 4 = τ ′1 + 4;

– if either T ′
2 � T4 ≺ T ′

1 or T ′
2 � T4 ≺ T ′

3 ≺ T ′
1 then we have (34) by using (31), (29),

(33) and reasoning as in the previous case.

Hence, by (34) we have

T (T) = 3 + T (T ′) ≤ 3 + Max(T ′) ≤ Max(T).

23

• Finally, consider the last possible case: k = 2, T ′
1 � T3 and β1 = 0.

This means that the first two steps of the algorithm are 〈T1T2〉 and at the third step a path
to T ′

1 can be set. Hence, we have
τ ′1 = τ1 − 2.

Noticing that, by Fact 6, if β1 = 0 then T ′
2 6≺ T ′

1, we distinguish 4 cases according to the
relation between T ′

2 and T3.

- If T ′
1 � T ′

2 � T3 and β2 = 0 then

|T ′| = |T |−2, εT ′ = εT ∆′
1,2 = ∆′

2,1 = |T1|+|T2|−3 ≤ |T |−3, ∆′
1,3 < |T |−2.

Hence, Max(T ′) = max{|T | − 2, τ1 + εT − 2} = Max(T)− 2 and

T (T) = 2 + T (T ′) ≤ 2 + Max(T ′) = 2 + Max(T)− 2 = Max(T).

- If T ′
1 � T ′

2 � T3 and β2 > 0 (except for β2 = 1 and T3 = ∅) then the first 4 steps of
the algorithm are

〈T1T2〉〈T ′
1T

′
3〉

where T ′
3 = T3. Let T ′′ be the tree resulting after 〈T1T2〉〈T ′

1T
′
3〉. Hence, after the first

4 steps the algorithm on T proceeds as on input T ′′.

First notice that in this case T ′′
1 � T ′′

3 since otherwise by Fact 6 it should be β1 ≥ 2;
furthermore, T ′′

2 = T ′
2 ≺ T ′

3 since T ′
2 � T3. Hence, the possible orderings of the

subtrees of the tree T ′′ are:

T ′′
1 � T ′′

2 ≺ T ′′
3 , T ′′

1 � T ′′
2 ≺ T ′′

4 , T ′′
2 ≺ T ′′

1 � T ′′
3 , T ′′

2 ≺ T ′′
1 � T ′′

4 , T ′′
2 ≺ T ′′

4 ≺ T ′′
1 .

For T ′′ we have

|T ′′| = |T | − 4, ∆′′
1,2, ∆

′′
1,3, ∆

′′
1,4 < |T | − 4 = |T ′′| (since β1 = 0)

∆′′
2,1 = ∆2,1 − 4

∆′′
2,3, ∆

′′
2,4 < |T | − 4 = |T ′′| (since β2 ≤ T1 − 2 by Fact 3)

∆′′
4,2 < |T | − 4 = |T ′′| (since β4 ≤ T1 − 2 by Fact 3)

To bound Max(T ′), we distinguish two cases according to the relation between T ′′
2

and T ′′
1 . First notice that εT = 0 since β1 = 0 and β2 > 0.

Let T ′′
1 � T ′′

2 . Since
εT ′′ = 1 iff β2 = 1 and α2 = α1 − 2

we have

if εT ′′ = 1 then |T | ≥ |T1|+ |T2|+ |T3| > |T1|+ |T2| = 2α1 + 1 = τ1

and

τ ′′1 + εT ′′ =

{
τ1 − 3 ≤ |T | − 4 if εT ′′ = 1
τ1 − 4 if εT ′′ = 0

24

Hence,

Max(T ′′) = max{|T ′′|, τ ′′1 + εT ′′ , ∆′′
2,1}

≤
{

max{|T | − 4, ∆2,1 − 4} ≤ Max(T)− 4 if εT ′′ = 1
max{|T | − 4, τ1 − 4, ∆2,1 − 4} ≤ Max(T)− 4 if εT ′′ = 0

(35)

Let T ′′
2 ≺ T ′′

1 . Since T ′′
2 6= T ′′

1 we have εT ′′ = 0. Furthermore, since T1 � T2, β1 = 0
and β2 > 0 we have |T1| > |T2|. Hence,

∆′′
2,1 = |T1|+ |T2|+ β2 − 5 ≥ 2|T2|+ β2 − 4 = 3β2 + 2α2 + 2− 4 = τ2 − 3 = τ ′′2

and

Max(T ′′) = max{|T ′′|, ∆′′
2,1} = max{|T | − 4, ∆2,1 − 4} ≤ Max(T)− 4. (36)

By (35) and (36) we have

T (T) = 4 + T (T ′) ≤ 4 + Max(T ′) = Max(T).

- If T ′
1 � T ′

2 and T3 ≺ T ′
2 then the only possible orderings of the subtrees of the tree T ′

are:
T ′

1 ≺ T3 � T ′
2, T ′

1 � T3 � T4.

For T ′ we have

|T ′| = |T | − 2, ∆′
1,2, ∆

′
1,3, ∆

′
1,4 < |T | − 2 (since β1 = 0)

∆′
3,1 ≤ |T3|+ |T1|+ |T2| − 4 < |T | − 4 (since β3 ≤ T2 − 2 by Fact 3).

Hence, if εT ′ ≤ εT then we have Max(T ′) ≤ Max(T)− 2.

Suppose now that εT ′ = 1 and εT = 0. We have T ′
1 = T3, α3 = α1 − 1, β1 = 0 = β3

and |T | ≥ |T1|+ |T2|+ |T3| = |T2|+ 2α1 + 1 ≥ τ1 + 1; hence,
Max(T ′) = max{|T ′|, τ ′1 + εT ′} = max{|T | − 2, τ1 − 1} = |T | − 2 ≤ Max(T)− 2.

In any case we get

T (T) = 2 + T (T ′) ≤ 2 + Max(T ′) ≤ Max(T).

- If T ′
1 � T ′

2, β2 = 1 and T3 = ∅ then after the first step 〈T1〉 on T , we get that the
algorithm continues as having in input a tree T corresponding to the special case
considered in the base. For T we have: |T | = |T | − 1, τ 1 = τ2, and Max(T) = τ2. We
get that Max(T) = τ2 ≤ τ1 − 1. Hence

T (T) = 1 + T (T) ≤ 1 + Max(T) ≤ τ1 ≤ Max(T).
ut

25

References

[1] Akyildiz I.F., Su W., Sankarasubramaniam Y., Cayirci E. : Wireless sensor networks: a
survey. Computer Networks, 38 (2002) 393–422.

[2] Bermond J.-C., Galtier J., Klasing R., Morales N., Perennes S.: Hardness and approximation
of gathering in static radio networks. Proceedings FAWN06 (2006).

[3] V. Bonifaci, P. Korteweg, A. Marchetti-Spaccamela, L. Stougie, An Approximation Algorithm
for the Wireless Gathering Problem, Proc. of SWAT 06, 2006.

[4] Chong C-Y, Kumar S.P.: Sensor networks: Evolution, opportunities, and challenges. Pro-
ceedings of the IEEE ,91 (8) (2003) 1247-1256.

[5] S. Coleri, P. Varaiya, Energy Efficient Routing with Delay Guarantee for Sensor Networks,
Wireless Networks, to appear

[6] Dasgupta K., Kukreja M., Kalpakis K.: Topology-aware placement and role assignment for
energy-efficient information gathering in sensor networks. Proceedings IEEE ISCC’03 (2003)
341-348.

[7] Falck E., Floreen P., Kaski P., Kohonen J., Orponen P.: Balanced data gathering in Energy-
constrained sensor networks. Proceedings of ALGOSENSORS 2004, LNCS 3121, 2004, 59-70.

[8] Florens C., Franceschetti M., McEliece R.J. Lower Bounds on Data Collection Time in Sen-
sory Networks. IEEE Journal on Selected Areas in Communications, 22 (6) (2004) 1110–
1120.

[9] Ganesan D., Cristescu R., Beferull-Lozano B.: Power-efficient sensor placement and trans-
mission structure for data gathering under distortion constraints. IPSN 2004, (2004) 142-150.

[10] Gupta P., Kumar P.R.: The Capacity of Wireless Networks. IEEE Transactions on Informa-
tion Theory 46 (2) (2000) 388–404.

[11] Gupta H., Navda V., Das S.R., Chowdhary V.: Efficient gathering of correlated data in
sensor networks. Proceedings of ACM MobiHoc’05, 2005, 402-413.

[12] Gandhi R., Parthasarathy S., Mishra A.: Minimizing broadcast latency and redundancy in ad
hoc networks. Proceedings of Int. Symposium on Mobile Ad Hoc Networking and Computing
2003, 2003.

[13] nostro

[14] Heinzelman W.R., Kulik J., Balakrishnan H.: Adaptive protocols for information dissemina-
tion in wireless sensor networks. Proceedings of ACM MobiCom 99, (1999) 174-185.

[15] Ho B., Prasanna V.K.: Constrained flow optimization with application to data gathering in
sensor networks. Proceedings of ALGOSENSORS 2004, LNCS 3121 (2004) 187-200.

[16] Intanagonwiwat C., Govindan R., Estrin D.: Directed diffusion: a scalable and robust com-
munication paradigm for sensor networks. Proceedings of ACM MobiCom 00 (2000) 56-67.

26

[17] Intanagonwiwat C., Govindan R., Estrin D., Heidemann J., Silva F.: Directed diffusion for
wireless sensor networking, IEEE/ACM Trans. Netw. 11(1), (2003) 2-16

[18] L. Gargano, A.A. Rescigno, ”Optimally Fast Data Gathering in Sensor Networks”, Proc. 31st
International Symposium on Mathematical Foundations of Computer Science (MFCS 2006),
Lecture Notes in Computer Science , Vol. 4162, pp. 399-411, Springer Verlag.

[19] Krishnamachari B., Estrin D., Wicker S.: Modeling data-centric routing in wireless sensor
networks. Proceedings of IEEE INFOCOM 2002, (2002).

[20] Kahn J.M., Katz R.H., Pister K.S.J.: Mobile Networking for Smart Dust. Proceedings of
ACM MobiCom 99, (1999).

[21] Lindsey S., Raghavendra C.: Pegasis: Power-efficient gathering in sensor wireless networks.
Proceedings of IEEE Aerospace Conference, 2002.

[22] Lindsey S., Raghavendra C., Sivalingam K.M.: Data gathering algorithms in sensor networks
using energy metrics. IEEE Transactions on Parallel and Distributed Systems 13 (9) (2002)
924-935.

[23] Mirkovic J., Venkataramani G.P., Lu S.,Zhang L.: A self-organizing approach to data forward-
ing in largescale sensor networks. Proceedings of IEEE Int. Conference on Communications
ICC’01, (2001).

[24] Pelc A.: Broadcasting in radio networks . Handbook of Wireless Networks and Mobile Com-
puting, I. Stojmenovic, Ed. John Wiley and Sons, Inc.,(2002) 509-528.

[25] Padmanabh K., Roy R.: Multicommodoty flow fased maximum lifetime routing in wireless
sensor network. Proceedings of IEEE ICPADS 2006,(2006) 187-194

[26] Sohrabi K., Gao J.i, Ailawadhi V., Pottie G.: Protocols for Self-organization of a Wireless
Sensor Network. IEEE Personal Communications, 7 (2000) 16–27.

[27] Shen C.,Srisathapornphat C., Jaikaeo C.: Sensor information networking architecture and
applications. IEEE Personal Communications, (2001) 52-59.

[28] Yu Y., Krishnamachari B., Prasanna V.: Energy-latency tradeoffs for data gathering in
wireless sensor networks. Proceedings of IEEE INFOCOM 2004, (2004).

[29] Zhu X., Tang B., Gupta H.: Delay efficient data gathering in sensor networks. Proceedings
of MSN 2005, LNCS 3794 (2005) 380-389.

27

