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FROBENIUS TEST EXPONENTS FOR PARAMETER IDEALS IN

GENERALIZED COHEN–MACAULAY LOCAL RINGS

CRAIG HUNEKE, MORDECHAI KATZMAN, RODNEY Y. SHARP, AND YONGWEI YAO

Abstract. This paper studies Frobenius powers of parameter ideals in a commu-
tative Noetherian local ring R of prime characteristic p. For a given ideal a of R,
there is a power Q of p, depending on a, such that the Q-th Frobenius power of
the Frobenius closure of a is equal to the Q-th Frobenius power of a. The paper
addresses the question as to whether there exists a uniform Q0 which ‘works’ in
this context for all parameter ideals of R simultaneously.

In a recent paper, Katzman and Sharp proved that there does exists such a uni-
form Q0 when R is Cohen–Macaulay. The purpose of this paper is to show that
such a uniform Q0 exists when R is a generalized Cohen–Macaulay local ring. A
variety of concepts and techniques from commutative algebra are used, including un-
conditioned strong d-sequences, cohomological annihilators, modules of generalized
fractions, and the Hartshorne–Speiser–Lyubeznik Theorem employed by Katzman
and Sharp in the Cohen–Macaulay case.

0. Introduction

This paper studies a certain type of uniform behaviour of parameter ideals in a
commutative Noetherian ring R of prime characteristic p.

One motivation for our work comes from the theory of test exponents for tight
closure introduced by M. Hochster and C. Huneke in [8, Definition 2.2]. For an ideal
a of R and a non-negative integer n, the pn-th Frobenius power a[pn] of a is the ideal
of R generated by all pn-th powers of elements of a. Suppose, temporarily, that R is
reduced. Recall that a test element for R is an element c of R outside all the minimal
prime ideals of R such that, for each ideal a of R, and for r ∈ R, it is the case that
r ∈ a∗, the tight closure of a, if and only if crpn ∈ a[pn] for all n ≥ 0. It is a result of
Hochster and Huneke [7, Theorem (6.1)(b)] that such a test element exists if R is a
(reduced) algebra of finite type over an excellent local ring of characteristic p.

Let c be a test element for R, and let a be an ideal of R. A test exponent for c,
a is a power q = pe0 (where e0 is a non-negative integer) such that if, for an r ∈ R,
we have crpe ∈ a[pe] for one single e ≥ e0, then r ∈ a∗ (so that crpn ∈ a[pn] for all
n ≥ 0). In [8], it is shown that this concept has strong connections with the major
open problem about whether tight closure commutes with localization; indeed, to
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quote Hochster and Huneke, ‘roughly speaking, test exponents exist if and only if
tight closure commutes with localization’.

In a recent paper [19], R. Y. Sharp has shown that, for a test element c in a reduced
equidimensional excellent local ring R (of characteristic p), there exists a non-negative
integer e0 such that pe0 is a test exponent for c, a for every parameter ideal a of R.
(In such an R, a parameter ideal is simply an ideal that can be generated by part of
a system of parameters.) We can think of pe0 as a uniform parameter test exponent
for R.

It is natural to ask whether there is an analogous result for Frobenius closures.
Return to the general situation where we assume only that R is a commutative Noe-
therian ring of prime characteristic p. The Frobenius closure aF of an ideal a of R is
defined by

aF :=
{
r ∈ R : there exists 0 ≤ n ∈ Z such that rpn ∈ a[pn]

}
.

This is an ideal of R, and so is finitely generated; therefore there exists a power Q0 of
p such that (aF )[Q0] = a[Q0], and we define Q(a) to be the smallest power of p with this
property. Note that, for r ∈ R, it is the case that r ∈ aF if and only if rQ(a) ∈ a[Q(a)].

In [10, §0], M. Katzman and Sharp raised the following question: is the set {Q(b) :
b is a proper ideal of R} of powers of p bounded? In the case where R is Artinian,
that is, has dimension 0, it is easy to see that this question has an affirmative answer,
because in that case R/

√
0 is a direct product of fields, and one can deduce easily

from that that, if Q1 is a power of p such that
(√

0
)[Q1] = 0, then Q(b) ≤ Q1 for

every ideal b of R. For this reason, we shall assume that dim R > 0 for the remainder
of the paper.

H. Brenner [1] has recently shown that the answer to the question of Katzman and
Sharp, as stated above, is negative. Nevertheless, it might not be too unreasonable
to hope that, in the case where R is local, the set

{Q(b) : b is a parameter ideal of R}

is bounded. In [10, Theorem 2.5], Katzman and Sharp showed that this is the case
when R is a Cohen–Macaulay local ring: they showed that, then, there exists an

invariant η(R) of R such that (bF )[pη(R)] = b[pη(R)] for all parameter ideals b of R.
The purpose of this paper is to prove the corresponding result when R is a gener-
alized Cohen–Macaulay local ring, that is, when all the local cohomology modules
H i

m
(R) (i = 0, . . . , t − 1) (where m denotes the maximal ideal of R and t := dim R)

have finite length. Specifically, in Theorem 5.2 we prove the following.

Theorem. Let R be a generalized Cohen–Macaulay local ring of prime characteristic
p. Then there exists a power Q of p such that ((b)F )[Q] = b[Q] for every ideal b of R
that can be generated by part of a system of parameters of R.

In the Cohen–Macaulay case, the invariant η(R) was defined by means of the
Hartshorne–Speiser–Lyubeznik Theorem (see [10, Theorem 1.4]) about a certain type
of uniform behaviour of a left module over the Frobenius skew polynomial ring (as-
sociated to R) that is Artinian as an R-module: Katzman and Sharp applied this
Hartshorne–Speiser–Lyubeznik Theorem to the top local cohomology module of a
Cohen–Macaulay local ring.



FROBENIUS TEST EXPONENTS 3

In this paper, we make similar use of the Hartshorne–Speiser–Lyubeznik Theorem,
although we apply it to all the local cohomology modules of the generalized Cohen–
Macaulay local ring R. We also use a variety of other concepts and techniques from
commutative algebra, including unconditioned strong d-sequences and work of S. Goto
and K. Yamagishi [4] about them, filter-regular sequences, cohomological annihilators,
and modules of generalized fractions.

Other motivation for this work is provided in [10, §0]. There is no doubt in our
minds that uniform behaviour of Frobenius closures of the type established in this
paper is both desirable for its own sake and also relevant to the vigorous and ongoing
development of tight closure theory.

1. Notation and terminology

Throughout this paper, R will denote a Noetherian commutative ring with dim R =
t > 0, and a will denote an ideal of R. We shall use Var(a) to denote the variety
of a; thus Var(a) := {p ∈ Spec(R) : p ⊇ a}. We shall use min(R) to denote the set
of minimal prime ideals of R and R◦ to denote R \ ⋃

p∈min(R) p. The annihilator of

an R-module M will be denoted by AnnR(M). We shall sometimes use the notation

(R, m) to indicate that R is local with maximal ideal m; then, (R̂, m̂) will denote the
m-adic completion of R. Also in the local case, we say that x = x1, . . . , xl is a system
of parameters of (R, m) if

∑l
i=1 xiR is m-primary and l = t; we say x is a subsystem

of parameters of (R, m) if it is a subsequence of a system of parameters of R.

Notation 1.1. Throughout the paper, x = x1, x2, . . . , xl will denote a sequence of l
elements of R.

(i) We use N to denote the set of all non-negative integers, and N+ to denote
the set of all positive integers.

(ii) The main results concern the case where R has prime characteristic p, but
this hypothesis will only be in force when explicitly stated; then, q, q′, Q,

Q̃ and Qi (i ∈ N) will always denote powers of p with non-negative integer
exponents.

(iii) For integers i ≤ j, we denote the subset {i, . . . , j} of Z by [i, j], and we agree
that [i, j] = ∅ if i > j.

(iv) We adopt the normal convention that a0 = 1 for all a ∈ R.
(v) For each ∅ 6= Λ ⊆ [1, l], we set xΛ :=

∏
i∈Λ xi ∈ R. In case Λ = ∅, we agree

that xn
∅ = 1 and

∑
i∈∅ xn

i R = (0) for all n ∈ N.
(vi) For any Λ ⊆ [1, l] and n1, . . . , nl ∈ N, the sequence

(((∑
i∈Λ xni+j

i R
)

: xj
Λ

))
j=0,1,2,...

forms an ascending chain of ideals, and we denote its ultimate constant value

by
(∑

i∈Λ xni

i R
)lim

. Thus
(∑

i∈Λ xni

i R
)lim

=
⋃

j∈N

((∑
i∈Λ xni+j

i R
)

: xj
Λ

)
.

In particular
(∑

i∈∅ xiR
)lim

= (0).
(vii) For any Λ ⊆ [1, l] and n1, . . . , nl ∈ N, we set

(∑
i∈Λ xni

i R
)(x)-unm

:=
(( ∑

i∈Λ xni

i R
)

:
∑

i∈[1,l]\Λ xiR
)
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and refer to this as the unmixed part of
∑

i∈Λ xni

i R relative to the sequence
x = x1, x2, . . . , xl.

Next, we recall some definitions of various concepts in commutative algebra.

Definition 1.2. Recall that a denotes an ideal of R.

(i) We say that x is an a-filter regular sequence if there exists an integer n ∈ N

such that an ⊆ AnnR

(((∑j−1
i=1 xiR

)
: xj

)
/
∑j−1

i=1 xiR
)

for all j = 1, 2, . . . , l.
It is easy to see that x is an a-filter regular sequence if and only if, for
all p ∈ Spec(R) \ Var(a), the natural images of x1, . . . , xl form a possibly
improper regular sequence in Rp.

(ii) We say that x is a d-sequence if
(( ∑j

i=1 xiR
)

: xj+1xk

)
=

(( ∑j
i=1 xiR

)
: xk

)

for all j, k such that 0 ≤ j < k ≤ l.
(iii) If xn1

1 , . . . , xnl

l form a d-sequence in any order and for any positive integers
n1, n2, . . . , nl, then we say that x is an unconditioned strong d-sequence, or a
d+-sequence.

(iv) Generalized Cohen–Macaulay local rings were studied by P. Schenzel in [16]
(where they were called ‘quasi-Cohen–Macaulay local rings’ ([16, Defini-
tion 2])) and by Schenzel, N. V. Trung and N. T. Cuòng in [18]. When
(R, m) is local, we say that R is a generalized Cohen–Macaulay local ring
if

⋂t−1
i=0 AnnR(H i

m
(R)) (recall that t denotes dim R) contains an m-primary

ideal; since all the local cohomology modules of R with respect to m are
Artinian, this is the case if and only if H i

m(R) has finite length for all
i = 0, . . . , dim R − 1. Note that R is a generalized Cohen–Macaulay local

ring if and only if its completion R̂ is.
(v) Again when (R, m) is local, we say that R is is Cohen–Macaulay on the

punctured spectrum if Rp is Cohen–Macaulay for every p ∈ Spec(R) \ {m}.
Notation 1.3. Suppose that R has prime characteristic p. In these circumstances,
we shall always denote by f : R −→ R the Frobenius homomorphism, for which
f(r) = rp for all r ∈ R. We shall use the skew polynomial ring R[T, f ] associated to
R and f in the indeterminate T over R. Recall that R[T, f ] is, as a left R-module,
freely generated by (T i)i∈N, and so consists of all polynomials

∑n
i=0 riT

i, where n ∈ N

and r0, . . . , rn ∈ R; however, its multiplication is subject to the rule

Tr = f(r)T = rpT for all r ∈ R.

We refer to R[T, f ] as the Frobenius skew polynomial ring associated to R.
If G is a left R[T, f ]-module, then the set

ΓT (G) :=
{
g ∈ G : T jg = 0 for some j ∈ N+

}

is an R[T, f ]-submodule of G, called the T -torsion submodule of G; we say that G is
T -torsion precisely when G = ΓT (G).

Note that R itself has a natural structure as a left R[T, f ]-module under which
Tr = f(r) for all r ∈ R (that is, in which the action of the indeterminate T on an
element of R is just the same as the action of the Frobenius homomorphism). We
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shall use R[T,f ]Mod to denote the category of all left R[T, f ]-modules and R[T, f ]-
homomorphisms between them. The category of all R-modules will be denoted by
ModR.

2. Modules of generalized fractions

The concept of module of generalized fractions (due to Sharp and H. Zakeri [21])
will be used in this paper. The construction and basic properties of these modules
can be found in [21], but, at the request of the referee, we include in this section
explanation of some of the main ideas.

Reminder 2.1 (R. Y. Sharp and H. Zakeri [21, §2]). Let k ∈ N+. Let U be a
triangular subset of Rk [21, 2.1], that is, a non-empty subset of Rk such that

(i) whenever (u1, . . . , uk) ∈ U and n1, . . . , nk ∈ N+, then (un1
1 , . . . , unk

k ) ∈ U also;
and

(ii) whenever (u1, . . . , uk), (v1, . . . , vk) ∈ U , then there exists (w1, . . . , wk) ∈ U

such that wi ∈
(∑i

j=1 ujR
)
∩

(∑i
j=1 vjR

)
for all i = 1, . . . k, so that there

exist k × k lower triangular matrices H and K with entries in R such that

H[u1, . . . , uk]
T = [w1, . . . , wk]

T = K[v1, . . . , vk]
T .

(Here, T denotes matrix transpose, and [z1, . . . , zk]
T (for z1, . . . , zk ∈ R) is to

be interpreted as a k × 1 column matrix in the obvious way.)

It will be convenient for us to use Dk(R) to denote the set of k × k lower triangular
matrices with entries in R; we use det(H) to denote the determinant of an H ∈ Dk(R).

Let M be an R-module. Define a relation ∼ on M × U as follows: for m, n ∈ M
and (u1, . . . , uk), (v1, . . . , vk) ∈ U , write (m, (u1, . . . , uk)) ∼ (n, (v1, . . . , vk)) precisely
when there exist (w1, . . . , wk) ∈ U and H,K ∈ Dk(R) such that

H[u1, . . . , uk]
T = [w1, . . . , wk]

T = K[v1, . . . , vk]
T

and det(H)m − det(K)n ∈ ∑k−1
j=1 wjM.

Then ∼ is an equivalence relation; for m ∈ M and (u1, . . . , uk) ∈ U , we denote the
equivalence class of (m, (u1, . . . , uk)) by the ‘generalized fraction’

m

(u1, . . . , uk)
.

The set of all equivalence classes of ∼ is an R-module, called the module of generalized
fractions of M with respect to U , under operations for which, for m, n ∈ M and
(u1, . . . , uk), (v1, . . . , vk) ∈ U ,

m

(u1, . . . , uk)
+

n

(v1, . . . , vk)
=

det(H)m + det(K)n

(w1, . . . , wk)

for any choice of (w1, . . . , wk) ∈ U and H,K ∈ Dk(R) such that

H[u1, . . . , uk]
T = [w1, . . . , wk]

T = K[v1, . . . , vk]
T ,

and, for r ∈ R,

r
m

(u1, . . . , uk)
=

rm

(u1, . . . , uk)
.

This module of generalized fractions is denoted by U−kM .
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Remark 2.2. Use the notation of 2.1. It is worth bearing in mind, when one is calculat-
ing with generalized fractions in U−kM , that, whenever (u1, . . . , uk), (y1, . . . , yk) ∈ U
and L ∈ Dk(R) are such that L[u1, . . . , uk]

T = [y1, . . . , yk]
T , then, for all m ∈ M ,

m

(u1, . . . , uk)
=

det(L)m

(y1, . . . , yk)
in U−kM.

This sometimes permits us to change a denominator to one that is, in some sense,
more convenient.

Example 2.3. For our given sequence x = x1, x2, . . . , xl and any i ∈ N+, we set

U(x)i := {(xn1
1 , . . . , xni

i ) : for some j ∈ [0, i], n1, . . . , nj ∈ N+, nj+1 = · · · = ni = 0},
where xk is interpreted as 1 when k ≥ l + 1. Then U(x)i is a triangular subset of Ri

for each i ∈ N+.

Discussion 2.4. We use the notation of 2.1.

(i) The construction of a module of generalized fractions can be viewed as a
generalization of ordinary fraction formation in commutative algebra: see
[21, 3.1].

(ii) For r1, . . . , rk ∈ R, we shall denote the diagonal k×k matrix in Dk(R) whose
diagonal entries are r1, . . . , rk by diag(r1, . . . , rk). Notice that

det(diag(r1, . . . , rk)) = r1 · · · rk,

and that, for non-negative integers n1, . . . , nk, m1, . . . , mk, we have

diag(rm1
1 , . . . , rmk

k )[rn1
1 , . . . , rnk

k ]T = [rm1+n1
1 , . . . , rmk+nk

k ]T .

(iii) The comments in (ii) can be useful. For example, if (u1, . . . , uk), (w1, . . . , wk)
∈ U are such that there exist H,K ∈ Dk(R) with

H[u1, . . . , uk]
T = [w1, . . . , wk]

T = K[u1, . . . , uk]
T ,

then

DH[u1, . . . , uk]
T = [w2

1, . . . , w
2
k]

T = DK[u1, . . . , uk]
T ,

where D := diag(w1, . . . , wk), and it turns out (see [21, Lemma 2.3]) that

det(DH) − det(DK) ∈ ∑k−1
i=1 w2

i R. This can be helpful when one has rather
little information about H but full knowledge of K.

To illustrate this, suppose that it is known, for some r ∈ R, that det(H)r ∈∑k−1
i=1 wiR; then det(DH)r = w1 · · ·wk det(H)r ∈ ∑k−1

i=1 w2
i R, and the above

considerations show that

det(DK)r = det(DH)r − (det(DH) − det(DK)) r ∈ ∑k−1
i=1 w2

i R.

(iv) The equivalence relation ∼ of 2.1 is such that, whenever (u1, . . . , uk) ∈ U and

the element m of M actually belongs to
∑k−1

i=1 uiM , then

m

(u1, . . . , uk)
= 0 in U−kM.

(v) Note that, by (iv), if k ≥ 2 and (v1, . . . , vk−2, 1, 1) ∈ U , then
n

(v1, . . . , vk−2, 1, 1)
= 0 in U−kM , for all n ∈ M.
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(vi) In the case where U consists entirely of possibly improper regular sequences
on M , there is the following converse of (iv), proved by Sharp and Zakeri in
[23, Theorem 3.15]: if (u1, . . . , uk) ∈ U and m ∈ M are such that

m

(u1, . . . , uk)
= 0,

then m ∈ ∑k−1
i=1 uiM .

Discussion 2.5. A chain of triangular subsets on R is a family U := (Ui)
∞
i=1 such

that

(i) Ui is a triangular subset of Ri for all i ∈ N+;
(ii) whenever (u1, . . . , ui) ∈ Ui (for any i ∈ N+), then (u1, . . . , ui, 1) ∈ Ui+1;
(iii) whenever (u1, . . . , ui) ∈ Ui with i > 1, then (u1, . . . , ui−1) ∈ Ui−1; and
(iv) (1) ∈ U1.

Given such a family U and an R-module M , we can construct a complex C(U , M) of
modules of generalized fractions

0
e−1

−−→ M
e0

−→ U−1
1 M

e1

−→ · · · ei−1

−−→ U−i
i M

ei

−→ U−i−1
i+1 M → · · · ,

in which e0(m) = m
(1)

∈ U−1
1 M for all m ∈ M and, for i ∈ N+,

ei

(
m

(u1, . . . , ui)

)
=

m

(u1, . . . , ui, 1)
∈ U−i−1

i+1 M

for all m ∈ M and (u1, . . . , ui) ∈ Ui. The comment in 2.4(v) shows that C(U , M) is
indeed a complex.

The Exactness Theorem of Sharp–Zakeri ([23, Theorem 3.3], but see L. O’Carroll
[15, Theorem 3.1] for a subsequent shorter proof) states that the complex C(U , M) is
exact if and only if, for all i ∈ N+, each element of Ui is a possibly improper regular
sequence on M .

Example 2.6. For our sequence x = x1, x2, . . . , xl, the family U(x) := (U(x)i)
∞
i=1,

where the U(x)i (i ∈ N+) are as defined in 2.3, is a chain of triangular subsets on
R. In particular, we can construct the complex of modules of generalized fractions
C(U(x), R), which we shall write as

0
e−1

−−→ R
e0

−→ U(x)−1
1 R

e1

−→ · · · ei−1

−−→ U(x)−i
i R

ei

−→ U(x)−i−1
i+1 R → · · · .

Note that U(x)−i
i R = 0 whenever i ≥ l+2. When working with a cohomology module

H i(C(U(x), R)) = Ker ei/ Im ei−1 (where i ∈ N) of the complex C(U(x), R), we shall
use ‘[ ]’ to denote natural images, in this cohomology module, of elements of
Ker ei.

In the special case in which (R, m) is local, l = dim R = t and x1, . . . , xl is a
system of parameters of R, it follows from the Exactness Theorem mentioned in
2.5 that R is Cohen–Macaulay if and only if C(U(x), R) is exact. In [24, Theorems
2.4 and 2.5], Sharp and Zakeri proved that (R, m) is a generalized Cohen–Macaulay
local ring if and only if there is a power of m that annihilates all the cohomology
modules of the complex C(U(x), R), and that when this is the case, the ith cohomology
module H i(C(U(x), R)) of the complex C(U(x), R) is isomorphic to H i

m
(R) for all

i = 0, . . . , dim R − 1 = l − 1. The latter result is relevant to this paper, although in
§4 we provide a refinement for use in the case where R has prime characteristic p.
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Some of the applications of modules of generalized fractions can be found in [22],
[23], [24], [15], [5] and [12]. This paper provides some more.

3. Background results

In this section, we shall collect together some observations and results, with appro-
priate references, that concern topics mentioned in §1 and which we plan to use.

Remark 3.1. Suppose that x = x1, . . . , xl is an unconditioned strong d-sequence in R.

(i) It is immediate from the definitions that, for any n1, . . . , nl ∈ N+, Λ ( [1, l]
and j ∈ [1, l] \ Λ, we have

((∑
i∈Λ xni

i R
)

: x
nj

j

)
=

((∑
i∈Λ xni

i R
)

: xj

)
=

(∑
i∈Λ xni

i R
)(x)-unm

.

(ii) Therefore, if a is an ideal of R such that a ⊆
√∑l

i=1 xiR, then every permuta-

tion of x1, . . . , xl is an a-filter regular sequence, because
∑l

i=1 xiR annihilates(∑
i∈Λ xiR :

∑
i∈[1,l]\Λ xiR

)/ (∑
i∈Λ xiR

)
for all Λ ( [1, l].

Theorem 3.2 (P. Schenzel [17, Satz 2.4.2]). Suppose that (R, m) is local; recall
that dim(R) = t. Then, for all systems of parameters a1, . . . , at of R, the ideal∏t−1

i=0 AnnR(H i
m
(R)) of R annihilates all the R-modules
((∑j

i=1 aiR
)

: aj+1

)
/
(∑j

i=1 aiR
)

(j = 0, . . . , t − 1).

In [3], S. Goto and T. Ogawa proved that, in a generalized Cohen–Macaulay local
ring (R, m), there exists a positive integer h such that every system of parameters of
R contained in mh is a d-sequence. The following corollary (of Schenzel’s Theorem
3.2) is a variation on that theme.

Corollary 3.3. Suppose that (R, m) is local with dim(R) = t, and that x = x1, . . . , xl

is a subsystem of parameters of R such that
∑l

i=1 xiR ⊆ ∏t−1
i=0 AnnR(H i

m
(R)). Then

x is an unconditioned strong d-sequence.

Proof. Let n1, . . . , nl be positive integers, and let j ∈ N be such that 0 ≤ j < l.
By Schenzel’s Theorem 3.2, the R-module

((∑j
i=1 xni

i R
)

: x
nj+1

j+1

)
/
( ∑j

i=1 xni

i R
)

is

annihilated by
∑l

i=1 xiR and so, in particular, by xj+1. Hence
((∑j

i=1 xni

i R
)

: x
nj+1

j+1

)
=

((∑j
i=1 xni

i R
)

: xj+1

)
.

Moreover, the hypotheses on x1, . . . , xl do not depend on the order in which this
sequence is written.

Therefore, if j, k are such that 0 ≤ j < k ≤ l, then the fact that xk annihilates
((∑j

i=1 xni

i R
)

: x
nj+1

j+1

)
/
( ∑j

i=1 xni

i R
)

ensures that
((∑j

i=1 xni

i R
)

: x
nj+1

j+1 xnk

k

)
⊆

((∑j
i=1 xni

i R
)

: xnk+1
k

)
, and the preceding

paragraph shows that
(( ∑j

i=1 xni

i R
)

: xnk+1
k

)
=

((∑j
i=1 xni

i R
)

: xnk

k

)
.

Therefore xn1
1 , . . . , xnl

l is a d-sequence. Since the hypotheses on x1, . . . , xl do not de-
pend on the order in which this sequence is written, we see that x is an unconditioned
strong d-sequence. �
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The next proposition is an extension of a well-known result. For an explanation
of what it means to say that a local ring is formally catenary, and for a proof of L.
J. Ratliff’s Theorem that a universally catenary local ring is formally catenary, the
reader is referred to [14, p. 252].

Proposition 3.4. Assume that (R, m) is a formally catenary local ring all of whose
formal fibres are Cohen–Macaulay. (These hypotheses would be satisfied if R was an
excellent local ring.)

Suppose that R is equidimensional and Cohen–Macaulay on the punctured spectrum.
Then R is a generalized Cohen–Macaulay local ring.

Proof. Since R is equidimensional and formally catenary, R̂ is equidimensional; the

hypothesis concerning the formal fibres ensures that R̂ is Cohen–Macaulay on the
punctured spectrum. Thus one can assume that R is complete, and in that case the
claim follows from work of P. Schenzel, N. V. Trung and N. T. Cuòng [18, (2.5) and
(3.8)]. �

The next two results are entirely due to S. Goto and K. Yamagishi [4]. Unfortu-
nately, as far as we are aware, [4] only exists as a preprint that has been circulating
informally for more than 15 years, without formal publication. T. Kawasaki included
a proof of [4, Lemma 2.2] in [11, Theorem A.1]; as we have not been able to find a
formally published proof of [4, Theorem 2.3], we have included one below.

Theorem 3.5 (S. Goto and K. Yamagishi [4, Lemma 2.2]). (See also [11, Theorem
A.1].) Suppose that x = x1, . . . , xl is an unconditioned strong d-sequence in R. Then,
for each ∆ ( [1, l] and each j ∈ [1, l] \ ∆, and for all positive integers n1, . . . , nl, we
have

(∑
i∈∆ xni

i R
)(x)-unm

=
((∑

i∈∆ xni

i R
)

: xj

)

=
∑

Λ⊆∆

(∏
i∈Λ xni−1

i

)(∑
i∈Λ xiR

)(x )-unm
.

Proof. This result, originally due to Goto and Yamagishi, is proved in [11, Theo-
rem A.1] in the case where n1, . . . , nl ≥ 2, and one can check that that proof works
for all choices of positive integers n1, . . . , nl. �

Theorem 3.6 (S. Goto and K. Yamagishi [4, Theorem 2.3]). Suppose that x =
x1, . . . , xl is an unconditioned strong d-sequence in R and let n1, n2, . . . , nl ∈ N+ be
any positive integers.

(i) When l = 1,

(xn1
1 R)lim = xn1

1 R +
⋃

j∈N(0 : xj
1) = xn1

1 R + (0 : x1).

(ii) When l ≥ 2,
( ∑l

i=1 xni

i R
)lim

=
∑l

i=1

(( ∑
j∈[1,l]\{i} x

nj

j R
)

:R xi

)

=
∑l

i=1

(∑
j∈[1,l]\{i} x

nj

j R
)(x)-unm

.

Proof. (Goto–Yamagishi.) We use induction on l; the result is easy when l = 1, and
so we suppose that l ≥ 2 and that the result has been proved for smaller values of l.
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Let a ∈
( ∑l

i=1 xni

i R
)lim

, so that, without loss of generality, there exists m ∈ N+

such that xm
[1,l]a ∈ ∑l

i=1 xni+m
i R. Thus there exist b ∈ ∑l−1

i=1 xni+m
i R and c ∈ R such

that xm
[1,l]a = b + xnl+m

l c, and so

xm
[1,l−1]a − xnl

l c ∈
(( ∑l−1

i=1 xni+m
i R

)
: xm

l

)
=

((∑l−1
i=1 xni+m

i R
)

: xl

)
.

Therefore, by 3.5, we have

(‡) xm
[1,l−1]a − xnl

l c =
∑

Λ⊆[1,l−1]

∏
i∈Λ xni+m−1

i hΛ,

where hΛ ∈
( ∑

i∈Λ xiR
)(x)-unm

for all Λ ⊆ [1, l − 1]. However, for each Λ ( [1, l − 1]
and j ∈ [1, l − 1] \ Λ, we have

((∑
i∈Λ xiR

)
: xl

)
=

(∑
i∈Λ xiR

)(x)-unm
=

(( ∑
i∈Λ xiR

)
: xj

)

by 3.1(i), so that x[1,l−1]hΛ ∈ ∑
i∈Λ x2

i R. We now multiply both sides of equation (‡)
by x[1,l−1] to obtain that

xm+1
[1,l−1]

(
a − ∏l−1

i=1 xni−1
i h[1,l−1]

)
∈ ∑l−1

i=1 xni+m+1
i R + xnl

l R.

Since the natural images of x1, . . . , xl−1 in the ring R/xnl

l R form an unconditioned
strong d-sequence in that ring, it follows from the inductive hypothesis that

a − ∏l−1
i=1 xni−1

i h[1,l−1] ∈
∑l−1

i=1

((∑
j∈[1,l−1]\{i} x

nj

j R + xnl

l R
)

:R xi

)
+ xnl

l R + xn1
1 R

=
∑l−1

i=1

((∑
j∈[1,l−1]\{i} x

nj

j R + xnl

l R
)

:R xi

)
+ xn1

1 R.

(The presence of the ideal xn1
1 R on the right hand side ensures that the argument

applies to the case where l = 2.) Since
(∑l−1

i=1 xiR
)(x )-unm

=
((∑l−1

i=1 xiR
)

: xl

)
, we

see that ∏l−1
i=1 xni−1

i h[1,l−1] ∈
((∑l−1

j=1 x
nj

j R
)

:R xl

)

(even in the case where l = 2) and so a ∈ ∑l
i=1

((∑
j∈[1,l]\{i} x

nj

j R
)

:R xi

)
. Therefore

( ∑l
i=1 xni

i R
)lim ⊆ ∑l

i=1

((∑
j∈[1,l]\{i} x

nj

j R
)

:R xi

)
=

∑l
i=1

(∑
j∈[1,l]\{i} x

nj

j R
)(x)-unm

,

and the reverse inclusion is easy. �

The following corollary is immediate from 3.5 and 3.6.

Corollary 3.7. Suppose that x = x1, . . . , xl is an unconditioned strong d-sequence in
R (with l ≥ 1) and let n1, n2, . . . , nl ∈ N+ be any positive integers. Then

(i) x[1,l]

( ∑l
i=1 xni

i R
)lim ⊆ ∑l

i=1 xni+1
i R; and

(ii)
(∑l

i=1 xni

i R
)lim

=
∑

Λ([1,l]

(∏
i∈Λ xni−1

i

) (∑
i∈Λ xiR

)(x)-unm
when l ≥ 2.

Theorem 3.8. Let x = x1, x2, . . . , xl be a d-sequence in R.

(i) (C. Huneke [9, Proposition 2.1].) Then
(( ∑r

i=1 xiR
)

: xr+1

)⋂ (∑l
i=1 xiR

)
=

∑r
i=1 xiR for all r = 0, . . . , l − 1.

(ii) If x = x1, x2, . . . , xl is an unconditioned strong d-sequence in R, then
( ∑

i∈Λ xni

i R
)(x)-unm ⋂ (∑l

i=1 xni

i R
)

=
∑

i∈Λ xni

i R

for all positive integers n1, n2, . . . , nl and each Λ ( [1, l].
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Proof. (ii) This is immediate from Huneke’s result quoted in part (i), because

(∑
i∈Λ xni

i R
)(x)-unm

=
((∑

i∈Λ xni

i R
)

: xj

)
=

((∑
i∈Λ xni

i R
)

: x
nj

j

)
for j ∈ [1, l] \ Λ:

see 3.1(i). �

As in [10], use will be made of the following extension, due to G. Lyubeznik, of a
result of R. Hartshorne and R. Speiser. It shows that, when R is local and of prime
characteristic p, a T -torsion left R[T, f ]-module which is Artinian (that is, ‘cofinite’
in the terminology of Hartshorne and Speiser) as an R-module exhibits a certain
uniformity of behaviour.

Theorem 3.9 (G. Lyubeznik [13, Proposition 4.4]). (Compare Hartshorne–Speiser
[6, Proposition 1.11].) Suppose that (R, m) is local and of prime characteristic p, and
let G be a left R[T, f ]-module which is Artinian as an R-module. Then there exists
e ∈ N such that T eΓT (G) = 0.

Hartshorne and Speiser first proved this result in the case where R is local and
contains its residue field which is perfect. Lyubeznik applied his theory of F -modules
to obtain the result without restriction on the local ring R of characteristic p. A short
proof of the theorem, in the generality achieved by Lyubeznik, is provided in [20].

Lemma 3.10 (Katzman–Sharp [10, Lemma 3.5]). Suppose that R has prime charac-
teristic p.

(i) Let n ∈ N+ and let U be a triangular subset of Rn. Then the module of
generalized fractions U−nR has a structure as left R[T, f ]-module with

T

(
r

(u1, . . . , un)

)
=

rp

(up
1, . . . , u

p
n)

for all r ∈ R and (u1, . . . , un) ∈ U.

(ii) It follows easily that the complex C(U(x), R) of modules of generalized frac-
tions of 2.6 is a complex of left R[T, f ]-modules and R[T, f ]-homomorphisms;
hence all its cohomology modules H i(C(U(x), R)) (i ∈ N) have natural struc-
tures as left R[T, f ]-modules.

4. Preparatory results

Most of the results in this section concern the case where R has prime characteristic
p, but the first two do not.

Lemma 4.1. Suppose that (R, m) is local, and consider the complex of modules of
generalized fractions C(U(x), R) of 2.6. Let r be an integer such that 0 ≤ r < l. (In
the case where r = 0, a generalized fraction such as h/(x1, . . . , xr) (where h ∈ R) is
to be interpreted simply as h.)

(i) If h ∈
((∑r

i=1 xiR
)

: xr+1

)
, then

h

(x1, . . . , xr)
∈ Ker er, so that

[
h

(x1, . . . , xr)

]
∈ Hr(C(U(x), R)).

(The notation ‘[ ]’ is explained in 2.6.)
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(ii) Let n ∈ N+ and h ∈ R. Then

h

(xn
1 , . . . , xn

r )
∈ Im er−1

if and only if h ∈ (
∑r

i=1 xn
i R

)lim
.

Proof. When r = 0, all the claims are easy. We therefore omit the proofs in that case
and assume that 1 ≤ r < l.

(i) Since xr+1h ∈ ∑r
i=1 xiR, it is immediate from 2.2 and 2.4(iv) that

er

(
h

(x1, . . . , xr)

)
=

h

(x1, . . . , xr, 1)
=

xr+1h

(x1, . . . , xr, xr+1)
= 0 ∈ U(x)−r−1

r+1 R.

(ii) (⇐) Assume that h ∈ (
∑r

i=1 xn
i R

)lim
. Thus there exists m ∈ N such that

xm
[1,r]h ∈ ∑r

i=1 xn+m
i R. Thus we can write xm

[1,r]h =
∑r

i=1 six
n+m
i for some s1, . . . , sr ∈

R. Then, in U(x)−r
r R, we have

h

(xn
1 , . . . , xn

r−1, x
n
r )

=
xm

[1,r]h

(xn+m
1 , . . . , xn+m

r−1 , xn+m
r )

=

∑r
i=1 six

n+m
i

(xn+m
1 , . . . , xn+m

r−1 , xn+m
r )

=
srx

n+m
r

(xn+m
1 , . . . , xn+m

r−1 , xn+m
r )

(on use of 2.4(iv))

=
sr

(xn+m
1 , . . . , xn+m

r−1 , 1)

=

{
er−1(sr) if r = 1,

er−1
(

sr

(xn+m
1 ,...,xn+m

r−1 )

)
if r ≥ 2.

(⇒) By 2.2, we can write, in U(x)−r
r R,

h

(xn
1 , . . . , x

n
r )

= er−1

(
g

(xm+n
1 , xm+n

2 , . . . , xm+n
r−1 )

)
=

xm+n
r g

(xm+n
1 , xm+n

2 , . . . , xm+n
r )

for some m ∈ N and g ∈ R. Thus

xm
[1,r]h − xm+n

r g

(xm+n
1 , xm+n

2 , . . . , xm+n
r )

= 0 in U(x)−r
r R.

By the definition of modules of generalized fractions (see 2.1), there exist u ∈ N and
H ∈ Dr(R) such that

H[xm+n
1 , . . . , xm+n

r ]T = [xm+n+u
1 , . . . , xm+n+u

r ]T

and det(H)(xm
[1,r]h − xm+n

r g) ∈ ∑r−1
i=1 xm+n+u

i R. Since

diag(xu
1 , . . . , x

u
r )[x

m+n
1 , . . . , xm+n

r ]T = [xm+n+u
1 , . . . , xm+n+u

r ]T ,

we can use the method of 2.4(iii) to see that

xm+n+u
[1,r] xu

[1,r](x
m
[1,r]h − xm+n

r g) ∈ ∑r−1
i=1 x2m+2n+2u

i R.

Consequently, x2m+n+2u
[1,r] h ∈ ∑r−1

i=1 x2m+2n+2u
i R + x2m+2n+2u

r R; this implies that

h ∈
((∑r

i=1 x2m+2n+2u
i R

)
: x2m+n+2u

[1,r]

)
⊆

(∑r
i=1 xn

i R
)lim

,

as required. �
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It is an immediate consequence of Corollary 3.3 that a generalized Cohen–Macaulay
local ring has a system of parameters that is an unconditioned strong d-sequence. We
now use modules of generalized fractions to establish a converse of this.

Theorem 4.2. Suppose that (R, m) is local; recall that dim(R) = t. Then the follow-
ing statements are equivalent:

(i) R is generalized Cohen–Macaulay;
(ii) there exists h ∈ N+ such that yk

1 , . . . , y
k
t is an undconditioned strong d-

sequence, for every system of parameters y1, . . . , yt of R and every k ≥ h;
(iii) there exists a system of parameters of R which is an unconditioned strong

d-sequence.

Proof. (i) ⇒ (ii) This is immediate from Corollary 3.3 and the definition of generalized

Cohen–Macaulay local ring: just choose h so that mh ⊆ ⋂t−1
i=0 AnnR(H i

m(R)).
(ii) ⇒ (iii) This is clear.
(iii) ⇒ (i) Take l = t and x1, . . . , xt to be a system of parameters of R that is an

unconditioned strong d-sequence. By 3.1(ii), every permutation of x1, . . . , xt is an
m-filter regular sequence. In order to show that R is generalized Cohen–Macaulay, it
is enough, by symmetry, to show that xi+1H

i
m(R) = 0 for all i = 0, . . . , t − 1.

We now apply [24, Corollary 2.3 and Theorem 2.4] to the complex C(U(x), R) of
2.6. Note that, for all i ∈ N+, every element of U(x)i is an m-filter regular sequence.
The cited results from [24] therefore show that

H i(C(U(x), R)) = Ker ei/ Im ei−1 ∼= H i
m
(R) for all i = 0, . . . , t − 1.

It is therefore enough for us to show that, for an i ∈ {0, . . . , t − 1}, we have
xi+1 Ker ei ⊆ Im ei−1. We shall deal here with the case where i > 0, and leave to
the reader the (easy) modification for the case where i = 0.

Let α ∈ Ker ei. By 2.2, we can write

α =
r

(xn
1 , . . . , x

n
i )

for some r ∈ R and n ∈ N+.

Therefore
xn

i+1r

(xn
1 , . . . , x

n
i , xn

i+1)
=

r

(xn
1 , . . . , x

n
i , 1)

= ei(α) = 0.

By 2.1 and 2.2, this means that there exist v ∈ N+ and H ∈ Di+1(R) such that

H[xn
1 , . . . , x

n
i+1]

T = [xn+v
1 , . . . , xn+v

i+1 ]T and det(H)xn
i+1r ∈ ∑i

j=1 xn+v
j R.

Since diag(xv
1, . . . , x

v
i+1)[x

n
1 , . . . , x

n
i+1]

T = [xn+v
1 , . . . , xn+v

i+1 ]T , we can use the technique

of 2.4(iii) to see that xn+2v
[1,i+1]x

n
i+1r ∈ ∑i

j=1 x2n+2v
j R. Therefore, since x1, . . . , xt is an

unconditioned strong d-sequence,

xn+2v
[1,i] r ∈

(∑i
j=1 x2n+2v

j R : x2n+2v
i+1

)
=

(∑i
j=1 x2n+2v

j R : xi+1

)
.

Hence xi+1r ∈
(∑i

j=1 x2n+2v
j R : xn+2v

[1,i]

)
⊆

(∑i
j=1 xn

j R
)lim

, so that

xi+1α = xi+1
r

(xn
1 , . . . , x

n
i )

=
xi+1r

(xn
1 , . . . , x

n
i )

∈ Im ei−1

by Lemma 4.1(ii). �
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It is well known that, when R has prime characteristic p, each local cohomology
module H i

a
(R), where i ∈ N, has a natural structure as a left R[T, f ]-module. A

detailed explanation is given in [10, 2.1], and the argument there can easily be mod-
ified to show that, if M is an arbitrary left R[T, f ]-module, then H i

a
(M) (formed by

regarding M as an R-module by restriction of scalars) inherits a natural structure
as a left R[T, f ]-module. However, in this paper, we are going to use the following
rather stronger statement.

Proposition 4.3. Suppose that R has prime characteristic p. Then
(
H i

a

)
i∈N

is a
negative strongly connected sequence of covariant functors from R[T,f ]Mod to itself.

Note. We identify H0
a with the a-torsion functor Γa in the natural way. If M is a left

R[T, f ]-module, then Γa(M) is an R[T, f ]-submodule of M . It should be noted from
the proof below that this R[T, f ]-module structure on Γa(M) is exactly the same
as the natural left R[T, f ]-module structure on H0

a
(M) = Γa(M) provided by the

proposition.

Proof. As this proof relies on the Independence Theorem for local cohomology (see [2,
4.2.1]), we shall use notation similar to that employed in [2, §4.2]. Let ⌈: ModR −→
ModR denote the functor obtained from restriction of scalars using the Frobenius
homomorphism f : thus, if Y is an R-module, then Y ⌈ denotes Y considered as an
R-module via f .

Let M be a left R[T, f ]-module. The map τM : M −→ M⌈ defined by τM (m) = Tm
is an R-module homomorphism. Consequently, for each i ∈ N, there is an induced
R-homomorphism H i

a
(τM) : H i

a
(M) −→ H i

a
(M⌈).

Let

Θ = (θi)i∈N :
(
H i

a
( • ⌈)

)
i∈N

∼=−→
(
H i

a[p]( • )⌈
)

i∈N

be the isomorphism of negative (strongly) connected sequences of covariant functors
(from ModR to ModR) that is inverse to the one given in the Independence Theorem
for local cohomology, in the form in which it is stated in [2, 4.2.1]. Thus θ0 is the
identity natural equivalence. Since a and a[p] have the same radical, H i

a
and H i

a[p] are
the same functor, for each i ∈ N.

Consider the Z-endomorphism ξi
M := θi

M ◦ H i
a(τM) : H i

a(M) −→ H i
a(M)⌈. We now

modify the argument of [10, 2.1] and use [10, Lemma 1.3] to show that H i
a
(M) has a

natural structure as a left R[T, f ]-module in which Tγ = ξi
M(γ) for all γ ∈ H i

a
(M).

Furthermore, if β : M −→ N is an R[T, f ]-homomorphism of left R[T, f ]-modules,
then

M M⌈-

β

τM

τN

β⌈

N N⌈-

? ?
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is a commutative diagram of R-homomorphisms, so that, for i ∈ N, the diagram

H i
a
(M)

Hi
a(τM )

H i
a
(M⌈) θi

M H i
a
(M)⌈- -

Hi
a(β) Hi

a(β⌈) Hi
a(β)⌈

H i
a
(N)

Hi
a(τN )

H i
a
(N⌈) θi

N H i
a
(N)⌈- -

? ? ?

also commutes. This means that, when H i
a(M) and H i

a(N) are given their natu-
ral structures as left R[T, f ]-modules, as in the preceding paragraph, then the R-
homomorphism H i

a
(β) : H i

a
(M) −→ H i

a
(N) is an R[T, f ]-homomorphism. In this

way, H i
a

becomes a functor from R[T,f ]Mod to itself.

Next, whenever 0 −→ L
α−→ M

β−→ N −→ 0 is an exact sequence of left R[T, f ]-
modules and R[T, f ]-homomorphisms, the diagram

0 L M N 0- - - -

τL τM τN

0 L⌈ M⌈ N⌈ 0

α β

α⌈ β⌈
- - - -

? ? ?

of R-modules and R-homomorphisms commutes, and so the vertical maps induce
a morphism of the long exact sequence of local cohomology modules of the upper
sequence into that for the lower sequence. It follows from this (and properties of the
isomorphism Θ of connected sequences) that the connecting R-homomorphisms

H i
a
(N) −→ H i+1

a
(L) (i ∈ N)

are all homomorphisms of left R[T, f ]-modules. Hence the long exact sequence of

local cohomology R-modules induced by 0 −→ L
α−→ M

β−→ N −→ 0 is actually a
long exact sequence of left R[T, f ]-modules and R[T, f ]-homomorphisms.

Everything else needed for completion of the proof is now straightforward. �

Our next result can be viewed as a strengthening, in the particular case where R
has prime characteristic p, of special cases of [24, Theorem (2.4)] and of results of K.
Khashyarmanesh, Sh. Salarian and H. Zakeri in [12, Theorem 1.2 and Consequences
1.3(i)] (which refer for proof to the proof of [24, Theorem (2.4)]).

Theorem 4.4. Suppose that (R, m) is local and of prime characteristic p, and that
x = x1, . . . , xl is an m-filter regular sequence of elements of m. Consider the complex
C(U(x), R) of modules of generalized fractions of 2.6, and note that, by 3.10(ii), this
is a complex of left R[T, f ]-modules and R[T, f ]-homomorphisms. Then there are
isomorphisms of R[T, f ]-modules

H i(C(U(x), R)) ∼= H i
m(R) for all i = 0, . . . , l − 1,

where the H i
m
(R) are considered as left R[T, f ]-modules in the natural way described

in 4.3.

Proof. First, it follows from [21, 3.2] and [22, 2.2] that Hj
m

(
U(x)−i

i R
)

= 0 for all
i = 1, . . . , l and all j ≥ 0. Second, one can use 1.2(i) and the Exactness Theorem
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for complexes of modules of generalized fractions (see 2.5) (in conjunction with [5,
Proposition 2.1]) to see that Supp (H i(C(U(x), R))) ⊆ {m} for all i ≥ 0.

With these observations, the theorem can be proved by an obvious modification
of the argument used to prove [24, Theorem (2.4)], provided one notes that all the
sequences

0 −→ Ker e0 −→ R −→ Im e0 −→ 0,

0 −→ Ker ei −→ U(x)−i
i R −→ Im ei −→ 0 (1 ≤ i ≤ l),

0 −→ Im ei−1 −→ U(x)−i
i R −→ Coker ei−1 −→ 0 (1 ≤ i ≤ l)

and

0 −→ Im ei−1 −→ Ker ei −→ Ker ei/ Im ei−1 −→ 0 (1 ≤ i ≤ l)

are exact sequences of left R[T, f ]-modules and R[T, f ]-homomorphisms, so that, by
Proposition 4.3, all the isomorphisms of local cohomology modules that they induce
are R[T, f ]-isomorphisms. �

Corollary 4.5. Suppose that (R, m) is local and of prime characteristic p; recall
that dim(R) = t. Since the local cohomology modules H i

m
(R) are left R[T, f ]-modules

that are Artinian as R-modules, it follows from the Hartshorne–Speiser–Lyubeznik
Theorem 3.9 that there exists e1 ∈ N such that

T e1ΓT (H i
m
(R)) = 0 for all i = 0, . . . , t − 1.

Set Q1 := pe1. Then Q1 has the following property: whenever x = x1, x2, . . . , xt is a
system of parameters of R that is also an m-filter regular sequence, and whenever r is

an integer with 0 ≤ r < t and h ∈
(∑r

i=1 xiR
)(x)-unm

is such that hq ∈
( ∑r

i=1 xq
i R

)lim

for some q, then hQ1 ∈
(∑r

i=1 xQ1

i R
)lim

.

Proof. In the case where r = 0, a generalized fraction such as h/(x1, . . . , xr) (where
h ∈ R) is to be interpreted simply as h. Let x = x1, x2, . . . , xt, r and h be as in the
statement of the corollary.

Consider the complex of modules of generalized fractions C(U(x), R) of 2.6. Since

h ∈
(∑r

i=1 xiR
)(x)-unm ⊆

((∑r
i=1 xiR

)
: xr+1

)
by 1.1(vii), it follows from Lemma

4.1(i) that

h

(x1, . . . , xr)
∈ Ker er, so that

[
h

(x1, . . . , xr)

]
∈ Hr(C(U(x), R)).

Since hq ∈
(∑r

i=1 xq
i R

)lim
, it follows from Lemma 4.1(ii) that

[
h

(x1, . . . , xr)

]
∈ ΓT (Hr(C(U(x), R))) .

Now Hr(C(U(x), R)) ∼= Hr
m
(R) as left R[T, f ]-modules, by Theorem 4.4. Therefore

[
hQ1

(xQ1

1 , . . . , xQ1
r )

]
= T e1

[
h

(x1, . . . , xr)

]
= 0, so that

hQ1

(xQ1

1 , . . . , xQ1
r )

∈ Im er−1.

Therefore hQ1 ∈
(∑r

i=1 xQ1

i R
)lim

by Lemma 4.1(ii). �
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Proposition 4.6. Suppose that (R, m) is local and of prime characteristic p; recall
that dim(R) = t. Then there exists Q2 such that, for each system of parameters

x = x1, . . . , xt of R, we have
((∑t

i=1 xiR
)F )[Q2] ⊆

(∑t
i=1 xQ2

i R
)F ⋂(∑t

i=1 xQ2

i R
)lim

.

(Note that
∑t

i=1 xQ2

i R =
(∑t

i=1 xiR
)[Q2]

.)

Proof. Our intention is to apply the Hartshorne–Speiser–Lyubeznik Theorem 3.9 to
the top local cohomology module H t

m(R) of R. Recall that H t
m(R) can be realized as

the t-th cohomology module of the C̆ech complex of R with respect to x1, . . . , xt. Thus
H t

m
(R) can be represented as the residue class module of Rx1···xt

modulo the image,

under the C̆ech ‘differentiation’ map, of
⊕t

i=1 Rx1···xi−1xi+1···xt
. See [2, §5.1]. We use

‘[ ]’ to denote natural images of elements of Rx1···xt
in this residue class module.

Recall also (from, for example, [10, 2.3]) that the natural left R[T, f ]-module struc-
ture on H t

m(R) is such that

T

[
r

(x1 · · ·xt)n

]
=

[
rp

(x1 · · ·xt)np

]
for all r ∈ R and n ∈ N.

Since H t
m
(R) is an Artinian R-module, it follows from the Hartshorne–Speiser–

Lyubeznik Theorem 3.9 that there exists e2 ∈ N such that T e2ΓT (H t
m
(R)) = 0. Set

Q2 = pe2.

Let a ∈
(∑t

i=1 xiR
)F

, so that there exists Q = pe such that aQ ∈
(∑t

i=1 xiR
)[Q]

=∑t
i=1 xQ

i R. Thus, in H t
m
(R), we have

T e

[
a

x1 · · ·xt

]
=

[
aQ

(x1 · · ·xt)Q

]
= 0, so that

[
aQ2

(x1 · · ·xt)Q2

]
= T e2

[
a

x1 · · ·xt

]
= 0.

By [10, (2.3)(i)], this means that aQ2 ∈
(∑t

i=1 xQ2

i R
)lim

. It is easy to check that((∑t
i=1 xiR

)F )[Q2] ⊆
(∑t

i=1 xQ2

i R
)F

, and so the proof is complete. �

Lemma 4.7. Suppose that (R, m) is local and of prime characteristic p. If the ideal

a of R satisfies ((aR̂)F )[Q] = (aR̂)[Q], then (aF )[Q] = a[Q].

Proof. Let r ∈ aF ; then r ∈ (aR̂)F in the ring R̂. Thus rQ ∈ (aR̂)[Q]∩R = (a[Q]R̂)∩R,

and the latter ideal is just a[Q] because R̂ is a faithfully flat extension of R. �

Lemma 4.8. Suppose that R is of prime characteristic p. If the ideals a and n of R

satisfy n[Q′] = 0 and (((a+n)/n)F )[Q̃] = ((a+n)/n)[Q̃] (in R/n), then (aF )[Q′Q̃] = a[Q′Q̃].

Proof. Let r ∈ aF ; then r + n ∈ ((a + n)/n)F in R/n. Thus (r + n)Q̃ ∈ ((a + n)/n)[Q̃];

that is, rQ̃ ∈ a[Q̃] + n. Consequently, rQ′Q̃ ∈ a[Q′Q̃]. �

5. The main results

Throughout this section, we assume that R has prime characteristic p.

Proposition 5.1. Suppose that R is of prime characteristic p. Assume that R is
semi-local or that the integral closure of R/

√
0 in its total ring of fractions is module-

finite over R/
√

0 (this would be the case if R was excellent). Then there exists Q3

such that ((xR)F )[Q3] = (xR)[Q3] for all x ∈ R◦ := R \ ⋃
p∈min(R) p.
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Proof. In case R is semi-local, as everything involved commutes with localization at
the finitely many maximal ideals of R, we can assume that (R, m) is local. Then, by
Lemma 4.7, we can further assume that (R, m) is complete and hence excellent.

Thus, also by Lemma 4.8, we can assume that R is reduced and that R is module-
finite over R, where R is the integral closure of R in its total fraction ring (R◦)−1R.
Consider

(
R ∩ R1/q

)∞
q=1

, which forms an ascending chain of R-submodules of R. As

R is module-finite over R, there exists Q such that R∩R1/q = R∩R1/Q for all q ≥ Q.
For any x ∈ R◦ and any y ∈ (xR)F , there exists q such that yq = axq for some a ∈

R. This means that (y/x)q = a/1 in (R◦)−1R, and this implies that y/x ∈ R ∩ R1/q.
By our choice of Q, we get y/x ∈ R ∩ R1/Q. Thus (y/x)Q = b/1 for some b ∈ R and
hence yQ = bxQ ∈ (xR)[Q]. �

The next theorem is the main result of this paper. Recall from Theorem 4.2 that a
local ring is generalized Cohen–Macaulay if and only if it has a system of parameters
that is an unconditioned strong d-sequence.

Theorem 5.2. Suppose that (R, m) is a generalized Cohen–Macaulay local ring of
prime characteristic p; recall that dim(R) = t > 0. Then there exists Q such that((∑j

i=1 xiR
)F )[Q]

=
(∑j

i=1 xiR
)[Q]

for all subsystems of parameters x1, . . . , xj of R.

Proof. In view of Proposition 5.1, we can assume that t ≥ 2.
In the first part of the proof, we are going to show that there exists Q0 such that((∑t

i=1 xiR
)F )[Q0]

=
(∑t

i=1 xiR
)[Q0]

for all systems of parameters x = x1, . . . , xt of
R that are unconditioned strong d-sequences.

Let Q1 be as in Corollary 4.5. Also, by Proposition 4.6, there exists Q2 such

that
((∑t

i=1 xiR
)F )[Q2] ⊆

( ∑t
i=1 xQ2

i R
)F ⋂ (∑t

i=1 xQ2

i R
)lim

for all systems of pa-
rameters x = x1, . . . , xt of R. Set Q0 = pQ1Q2. We are going to show that((∑t

i=1 xiR
)F )[Q0]

=
(∑t

i=1 xiR
)[Q0]

for all systems of parameters x = x1, . . . , xt

of R that are unconditioned strong d-sequences. Notice that
((∑t

i=1 xiR
)F)[pQ1Q2]

=
(((∑t

i=1 xiR
)F )[Q2])[pQ1]

⊆
((∑t

i=1 xQ2

i R
)F ⋂(∑t

i=1 xQ2

i R
)lim)[pQ1]

by Proposition 4.6. Therefore, it suffices to prove that
((∑t

i=1 xQ2

i R
)F ⋂ (∑t

i=1 xQ2

i R
)lim)[pQ1] ⊆

(∑t
i=1 xQ2

i R
)[pQ1]

for each system of parameters x = x1, . . . , xt such that xQ2

1 , . . . , xQ2
t is an uncondi-

tioned strong d-sequence, and so it is enough to prove that
((∑t

i=1 xiR
)F ⋂ (∑t

i=1 xiR
)lim)[pQ1] ⊆

(∑t
i=1 xiR

)[pQ1]

for all systems of parameters x = x1, . . . , xt of R that are unconditioned strong d-
sequences. We therefore fix a typical such x = x1, . . . , xt. Notice that x is also an
m-filter regular sequence in any order, by Remark 3.1(ii).

Let y ∈
(∑t

i=1 xiR
)F ∩

(∑t
i=1 xiR

)lim
. Then there exists q′ = pq such that yq′ ∈

(∑t
i=1 xiR

)[q′]
, and without loss of generality we can assume that q ≥ max{p, Q1}.

We see, from Corollary 3.7(ii), that yp ∈
((∑t

i=1 xiR
)lim)[p] ⊆

(∑t
i=1 xp

i R
)lim

=
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∑
Λ([1,t] x

p−1
Λ

(∑
i∈Λ xiR

)(x )-unm
. We can therefore write yp =

∑
Λ([1,t] x

p−1
Λ hΛ with

hΛ ∈
(∑

i∈Λ xiR
)(x)-unm

for all Λ ( [1, t]. Consequently, we have

(∗0)
∑

Λ([1,t] x
pq−q
Λ hq

Λ = ypq ∈
(∑t

i=1 xiR
)[pq]

,

in which hq
Λ ∈

((∑
i∈Λ xiR

)(x )-unm)[q] ⊆
(∑

i∈Λ xq
i R

)(x)-unm
for all Λ ( [1, t] (in view

of 3.1(i)).

The immediate goal is to show that ypQ1 ∈
(∑t

i=1 xiR
)[pQ1]. To this end, as

ypQ1 =
∑

Λ([1,t] x
pQ1−Q1

Λ hQ1

Λ , it is enough for us to prove that

(†) xpQ1−Q1

Λ hQ1

Λ ∈ ∑
i∈Λ xpQ1

i R for all Λ such that Λ ( [1, t].

We now prove (†) by induction on |Λ|, the cardinality of Λ. When |Λ| = 0, we

have Λ = ∅; we recall our conventions that
∑

i∈∅ xpQ1

i R = (0) and x∅ = 1. When
we consider R as a left R[T, f ]-module as in 1.3, the R-submodule Γm(R) is actually

a T -torsion R[T, f ]-submodule. Since
(∑

i∈∅ xiR
)(x)-unm

=
(
0 :

∑t
i=1 xiR

)
, we have

h∅ ∈ Γm(R), so that hQ1

∅ = 0.
Now suppose that 1 ≤ r < t, and assume that (†) has been proved for |Λ| < r.

That assumption and (∗0) mean that

(∗r)
∑

Λ([1,t],|Λ|≥r xpq−q
Λ hq

Λ ∈
(∑t

i=1 xiR
)[pq]

.

To prove (†) for Λ ( [1, t] with |Λ| = r, there is no loss of generality in our assuming
that Λ = [1, r]. For every Λ′ ( [1, t] with |Λ′| ≥ r but Λ′ 6= [1, r], we have xpq−q

Λ′ hq
Λ′ ∈∑t

i=r+1 xpq−q
i R. Therefore, by (∗r), we have

xpq−q
[1,r] hq

[1,r] ∈
∑t

i=1 xpq
i R +

∑t
i=r+1 xpq−q

i R =
∑r

i=1 xpq
i R +

∑t
i=r+1 xpq−q

i R.

Since hq
[1,r] ∈

(∑r
i=1 xq

i R
)(x )-unm ⊆

(( ∑r
i=1 xq

i R
)

: xt

)
, it follows that

xpq−q
[1,r] hq

[1,r]xt ∈ xpq−q
[1,r]

(∑r
i=1 xq

i R
)
⊆ ∑r

i=1 xpq
i R;

this implies that

xpq−q
[1,r] hq

[1,r] ∈
(( ∑r

i=1 xpq
i R

)
: xt

)
=

(∑r
i=1 xpq

i R
)(x)-unm

.

Thus xpq−q
[1,r] hq

[1,r] ∈
( ∑r

i=1 xpq
i R

)(x )-unm ⋂( ∑r
i=1 xpq

i R +
∑t

i=r+1 xpq−q
i R

)
, and this is

equal to
∑r

i=1 xpq
i R by Theorem 3.8(ii); therefore hq

[1,r] ∈
(∑r

i=1 xq
i R

)lim
. Therefore

hQ1

[1,r] ∈
(∑r

i=1 xQ1

i R
)lim

by 4.5, so that xpQ1−Q1

[1,r] hQ1

[1,r] ∈
∑r

i=1 xpQ1

i R by Corollary 3.7(i).

This concludes the inductive step in the proof of (†) and so it follows that ypQ1 ∈(∑t
i=1 xiR

)[pQ1]. This is enough to complete the proof that
(( ∑t

i=1 xiR
)F )[Q0] =(∑t

i=1 xiR
)[Q0]

for all systems of parameters x = x1, . . . , xt of R that are uncondi-
tioned strong d-sequences.

Now let h be the integer of 4.2(ii) and let Q4 be a power of p with Q4 ≥ h. Also set
Q = Q4Q0. Let y1, . . . , yt be an arbitrary system of parameters of R. By Theorem
4.2, the system of parameters yQ4

1 , . . . , yQ4
t is an unconditioned strong d-sequence.



20 CRAIG HUNEKE, MORDECHAI KATZMAN, RODNEY Y. SHARP, AND YONGWEI YAO

Therefore, by the first part of the proof,
((∑t

i=1 yiR
)F)[Q4Q0] =

((( ∑t
i=1 yiR

)F )[Q4])[Q0] ⊆
(( ∑t

i=1 yQ4

i R
)F )[Q0]

=
(∑t

i=1 yQ4

i R
)[Q0]

=
(∑t

i=1 yiR
)[Q4Q0]

.

Thus we have shown that
((∑t

i=1 xiR
)F)[Q]

=
(∑t

i=1 xiR
)[Q]

for all systems of pa-
rameters x1, . . . , xt of R.

Finally, let j ∈ {0, . . . , t − 1}. For every n ∈ N+, we can apply what we have just
proved to the system of parameters x1, . . . xj , x

n
j+1, . . . , x

n
t . Thus

(( ∑j
i=1 xiR

)F )[Q] ⊆ ⋂
n∈N+

((∑j
i=1 xiR +

∑t
i=j+1 xn

i R
)F)[Q]

=
⋂

n∈N+

(∑j
i=1 xiR +

∑t
i=j+1 xn

i R
)[Q]

=
⋂

n∈N+

(∑j
i=1 xQ

i R +
∑t

i=j+1 xnQ
i R

)
=

(∑j
i=1 xiR

)[Q]

by Krull’s Intersection Theorem. Now the proof is complete. �

Corollary 5.3. Suppose that (R, m) is a formally catenary local ring all of whose for-
mal fibres are Cohen–Macaulay. (These hypotheses would be satisfied if R was an ex-
cellent local ring.) Assume further that R is equidimensional, of prime characteristic p

and of dimension 2. Then there exists Q such that
(( ∑l

i=1 xiR
)F )[Q]

=
( ∑l

i=1 xiR
)[Q]

for all subsystems of parameters x = x1, . . . , xl (where l ≤ 2, of course) of R.

Proof. The hypotheses about R are all inherited by R/
√

0, and so, in view of Lemma
4.8, we can assume that R is reduced. But then R is Cohen–Macaulay on the punc-
tured spectrum, and so is a generalized Cohen–Macaulay local ring by 3.4. The result
now follows from Theorem 5.2(ii). �
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