
HAL Id: inria-00199773
https://hal.inria.fr/inria-00199773v4

Submitted on 27 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Metamodel-assisted particle swarm optimization and
application to aerodynamic shape optimization

Praveen Chandrashekarappa, Regis Duvigneau

To cite this version:
Praveen Chandrashekarappa, Regis Duvigneau. Metamodel-assisted particle swarm optimization and
application to aerodynamic shape optimization. [Research Report] RR-6397, INRIA. 2007, pp.39.
�inria-00199773v4�

CORE Metadata, citation and similar papers at core.ac.uk

Provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50281839?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00199773v4
https://hal.archives-ouvertes.fr


appor t  
de  r ech er ch e 

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
63

97
--

F
R

+
E

N
G

Thème NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Metamodel-assisted particle swarm optimization and
application to aerodynamic shape optimization

Praveen. C — Regis Duvigneau

N° 6397

December 2007





Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Metamodel-assisted partile swarm optimization andappliation to aerodynami shape optimizationPraveen. C , Regis DuvigneauThème NUM � Systèmes numériquesProjet OPALERapport de reherhe n° 6397 � Deember 2007 � 39 pages
Abstrat: Modern optimization methods like Geneti Algorithms (GAs) and PartileSwarm Optimization (PSO) have been found to be very robust and general for solvingengineering design problems. They require the use of large population size and may su�erfrom slow onvergene. Both of these lead to large number of funtion evaluations whihan signi�antly inrease the ost of the optimization. This is espeially so in view ofthe inreasing use of ostly high �delity analysis tools like CFD. Metamodels also knownas surrogate models, are a heaper alternative to ostly analysis tools. In this work weonstrut radial basis funtion approximations and use them in onjuntion with partileswarm optimization in an inexat pre-evaluation proedure for aerodynami design. Weshow that the use of mixed evaluations by metamodels/CFD an signi�antly redue theomputational ost of PSO while yielding optimal designs as good as those obtained withthe ostly evaluation tool.Key-words: Partile swarm optimization, metamodels, radial basis funtions, aerody-nami shape optimization



Optimisation par essaim de partiules assistée parmétamodèles et appliation à l'optimisation de formeaérodynamiqueRésumé : Les méthodes d'optimisation modernes omme les algorithmes génétiques etl'optimisation par essaim de partiules sont des méthodes robustes et générales pour ré-soudre des problèmes de oneption en ingénierie. Elles néessitent ependant d'utiliserune population de grande taille et peuvent sou�rir de vitesse de onvergene médiore.Cela onduit à un nombre d'évaluations de la fontion objetif important et des oûtsprohibitifs. C'est partiulièrement le as lors d'utilisation d'outils d'analyse sophistiquéset oûteux, omme les solveurs CFD. Les métamodèles sont une alternative moins oû-teuse que es outils d'analyse. Dans ette étude, on onstruit des approximations de typefontions à base radiale et on les utilise en onjontion ave une méthode d'optimisationpar essaim de partiules dans une proédure de pré-évaluation inexate pour la oneptionoptimale en aérodynamique. On montre que l'utilisation d'évaluations mixtes métamo-dèles/CFD peut réduire signi�ativement le oût de alul pour une méthode d'optimisationpar essaim de partiules, tout en onduisant à une solution aussi performante.Mots-lés : Optimisation par essaim de partiules, Métamodèles, fontions à baseradiale, Coneption optimale en aérodynamique



Metamodel-assisted PSO 31 IntrodutionOptimization methods like geneti algorithms, partile swarm optimization, et. havebeen found to be ideal for solving large sale problems. Among their many advantages aretheir ability to handle non-smooth funtions (sine gradient information is not required)and the possibility of �nding global optimal solutions. A distinguishing feature of thesemethods is that they operate with a population/swarm, i.e., they make use of multipleandidate solutions at eah step of their iteration. This requires the omputation of theost/�tness funtion for eah andidate in every optimization iteration. The ability toloate the global optimum depends on su�ient exploration of the design spae whihrequires using a su�iently large population size. This is espeially true when the ostfuntion is multi-modal and the dimension of the design variable spae is high. With theinreasing use of high �delity models, e.g. Navier-Stokes equations for �ow analysis, theomputation of the ost funtion for a single design an be ostly in terms of time andresoure utilization. The ombination of suh high-�delity analysis tools with population-based optimization tehniques an render them impratial or severely limit the size ofthe population that an be used.To overome this barrier, several researhers have used surrogate models [2, 9, 6, 14, 20℄in plae of the ostly evaluation tool. These surrogate models are inexpensive omparedto the exat model. There are several ways in whih a surrogate model an be developed.� Data-�tting models: An approximation to the ost funtion is onstruted usingavailable data. This data may be either generated spei�ally for onstruting themodel or may be taken from the initial few iterations of the optimization method.Examples of data-�tting models are polynomials (usually quadrati, also known asresponse surfae models), arti�ial neural networks (like multi-layer pereptron, ra-dial basis funtion networks) and Gaussian proess models (kriging). These modelsan be either global, whih make use of all available data, or loal, whih make useof only a small set of data around the point where the funtion is to be approxi-mated. Global models have been used as a omplete replaement of the original ostfuntion with optimization being arried out on the surrogate model. Loal modelshave been typially used to pre-sreen promising designs whih are then evaluatedusing the exat ost funtion. This leads to a redution in omputational ost sinethe number of exat funtion evaluations is redued.� Variable onvergene models: The ost funtion usually depends on the numerialsolution of a PDE. Most numerial methods are iterative in nature and ontain astopping riterion whih is measured in terms of a solution residual. To get anaurate solution a small value of the residual is usually used. Suh an auratesolution maybe unneessary when all we want is an estimate of a ost funtionwhih is usually some integral that onverges muh faster. In suh a situation thestopping riterion an be relaxed thereby onsiderably reduing the time taken bya single omputation.RR n° 6397



4 Praveen & Duvigneau� Variable resolution models: In these models, a hierarhy of grids is used and thesurrogate model is just the ostly evaluation tool but run on a oarse grid.� Variable �delity models: In these models, a hierarhy of physial models are used,for example Euler equations (surrogate model) and RANS equations (exat model).Even when a high �delity model like RANS is used, one an use a wall funtionapproximation as a surrogate model and a turbulene model applied upto to thewall as the exat model.Data �tting models have been extensively used for optimization of ostly funtions.Quadrati models were frequently used in the past but their lak of auray has ledto the development of more sophistiated approximation methods like neural networks,radial basis funtions and kriging. There are several variations in the use of metamodelsfor optimization. In o�-line trained methods, a metamodel is �rst onstruted by gener-ating a set of data points in the design spae and evaluating the ost funtion at thesepoints. This metamodel is then used to optimize the ost funtion without reourse to theexat funtion. The suess of this method relies on the ability to onstrut an auratemetamodel whih is doubtful for realisti problems whih usually involve large number ofdesign variables and omplex funtion landsapes. On-line trained methods onstrut andupdate the metamodel as and when required and are losely integrated into the optimiza-tion loop. Whenever a new funtion value is available, the metamodel is updated and theoptimization proeeds using the new metamodel. The metamodel beomes progressivelymore aurate as more and more data points are inluded in its onstrution.Evolutionary algorithms have been used with metamodels to redue the ost of exatfuntion evaluations. Giannakoglou et al. [10℄ use loal metamodels to pre-evaluate in-dividuals in the population; then a small perentage of individuals is seleted for exatevaluation and the results are stored in a database. The standard EA operators are ap-plied to the individuals using a ombination of exat and approximate funtion values.Buhe at al. [2℄ onstrut a sequene of loal kriging models and optimize them usingevolutionary algorithms. The metamodel is onstruted to model a loal region aroundthe best urrent individual. The data used to onstrut the loal models is ontinuouslyadjusted based on the loation of the best point disovered until then. At eah iterationthe optimal solution of the metamodel is evaluated on the exat funtion and the resultadded to the database. Zhou et al. [27℄ use a ombination of global and loal metamodelsto aelerate EA; the global model is used to pre-evaluate all individuals in the populationand a small perentage of promising individuals is optimized using a trust-region enabledgradient-based loal searh using a loal metamodel. The exat funtion evaluations gen-erated during the gradient searh are added to a database. The modi�ed individuals arereplaed in the population and the standard EA operators are applied.Emmerih et al. [6℄ apply kriging models in an IPE frame-work using evolutionary algo-rithms to solve multi-objetive optimization problems. They also study the performaneof di�erent pre-sreening riteria and extend them to the multi-objetive ase. INRIA



Metamodel-assisted PSO 5Funtion approximations that make use of both funtion and gradient values an also beonstruted [15℄, the gradients being e�iently omputed using adjoint methods. Gian-nakoglou et al. [12℄ onstrut neural network and RBF approximations using both funtionand gradient values and show that these models are more aurate than pure funtionbased metamodels. Both loal and global metamodels are used together with an IPEstrategy. However suh approximations are ostlier to onstrut sine they ontain largenumber of parameters.In this work we onsider data-�tting models, partiularly radial basis funtions whih havebeen found to be e�etive in interpolation of high dimensional data with small number ofdata points as ompared to polynomial based methods. Suh metamodels have alreadybeen used to improve the e�ieny of geneti algorithms. Brie�y, a geneti algorithm anbe desribed as follows:1. Evaluate the �tness of all individuals in the population2. Apply the seletion operator to eliminate non-promising individuals3. Apply the rossover operator to generate o�springs from the seleted individuals4. Apply mutation operator to modify randomly the o�springsGiannakoglou [9℄ has proposed a two-level evaluation strategy, alled Inexat Pre-Evaluation(IPE), to redue the omputational time related to GAs. It relies on the observation thatnumerous ost funtion evaluations are useless, sine numerous individuals do not surviveto the seletion operator. Hene, it is not neessary to determine their �tness aurately.The strategy proposed by Giannakoglou onsists in using metamodels to pre-evaluate the�tness of the individuals in the population. Then only a small portion of the populationwhih orresponds to the most promising individuals are aurately evaluated using theoriginal and expensive model.Inspired by the suess of GAs ombined with metamodels and IPE, we study the ap-pliation of a similar strategy to partile swarm optimization. PSO also requires a largenumber of funtion evaluations sine it requires a large number of partiles to e�etivelyloate the optimum. We propose a new pre-sreening riterion whih is spei� to PSO.The proposed algorithm is applied to the aerodynami shape optimization of a supersonibusiness jet and a transoni wing. In both ases substantial redution in the number ofCFD evaluations is ahieved while �nding optimal shapes that are as good as in the aseof CFD evaluations alone.2 Radial basis funtion modelsRadial basis funtion approximations were introdued by Hardy [13℄ to represent topo-graphial surfaes given sets of sparse sattered measurements. They have been found toRR n° 6397



6 Praveen & DuvigneauName φ(r) Parameters SmoothnessGaussian exp (−r2/a2) − C∞Inverse multiquadri (r2 + a2)s/2 s < 0 C∞Sobolev spline rsKs(r) s > 0 C⌊s⌋Table 1: Unonditionally positive de�nite funtionsbe very aurate for interpolation of arbitrarily sattered data [23℄. There are two typesof radial basis funtions, pieewise smooth and in�nitely smooth. The pieewise smoothRBFs lead to an algebrai rate of onvergene to the desired funtion as the number ofpoints inrease, whereas the in�nitely smooth RBFs yield a spetral or even faster rate ofonvergene, assuming of ourse that the desired funtion itself is smooth. Radial basisfuntion interpolation seeks an approximation f̂ of the form
f̂(x) =

N
∑

n=1

wnΦ(x − xn)where Φ(x) = φ(‖x‖) is a radial funtion. Examples of radial basis funtions are givenin Table 1. In the RBF terminology, the positions xn, n = 1, . . . , N are alled the RBFenters.The oe�ients w = [w1, w2, . . . , wN ]⊤ are determined from the interpolation onditions
f̂(xm) = fm, m = 1, 2, . . . , Nwhih an be written in matrix form as1

Aw = Fwith F = [f1, f2, . . . , fN ]⊤. The matrix A has elements Amn = Φ(xm − xn) and is sym-metri sine Φ is a radial funtion. For the funtions in Table 1, the matrix A is alsopositive-de�nite for every set of N distint points in R
d; this is true for any value of N or

d. Suh funtions are said to be unonditionally positive de�nite. There are radial basisfuntions whih do not have this property; some examples are given in Table 2. In thisase, we an make the RBF onditionally positive de�nite by adding a suitable family ofpolynomials.
f̂(x) =

N
∑

n=1

wnΦ(x − xn) +

M(q)
∑

l=1

αlpl(x)1For brevity of notation, the subsript N will be dropped in this setion. INRIA



Metamodel-assisted PSO 7Name φ(r) Parameters qSpline rs s > 0, s /∈ 2N q ≥ ⌈s/2⌉Thin-plate spline rs log r s > 0, s ∈ 2N q > s/2Multi-quadri (r2 + a2)s/2 s > 0, s /∈ 2N q ≥ ⌈s/2⌉Table 2: Conditionally positive de�nite funtionswhere pl, l = 1, ...M(q) forms a basis for Pq, the spae of polynomials of degree ≤ q. Theequations to determine the oe�ients w and α are
N

∑

n=1

wnΦ(xm − xn) +

M
∑

l=1

αlpl(xm) = fm, m = 1, . . . , N

N
∑

n=1

wnpl(xn) = 0, l = 1, . . . , MThe above set of equations is guaranteed to have a unique solution for any disjoint dataset. If N ≥ M and the unknown funtion f ∈ Pq then the above interpolation will exatlyreprodue the funtion.Note: The basis funtions an be either dereasing (for example the Gaussian) or inreas-ing (for example the thin plate splines) funtions, and lead to full matries. There are alsobasis funtions with ompat support whih lead to sparse oe�ient matries; howeverthese give only algebrai onvergene while the smooth basis funtions give exponentialonvergene.Note: In the present work we onsider only interpolating RBFs whih exatly reproduethe input data. One an also use �tted RBF models whih may not exatly interpolatethe data [11℄. RBF models an also be onsidered where the enters do not oinide withthe loation of the data points [9℄.2.1 E�et of attenuation fatorThe attenuation fator in radial basis funtions has a ritial in�uene on the aurayof the interpolation model. We illustrate this with a numerial example. The RBFinterpolant is onstruted for a test funtion f(x) = x(1 − x) sin(2πx) using the datafrom 10 equally spaed points in [0, 2]. The error between the interpolant and the exatfuntion is evaluated on a grid of 100 points. Table (3) shows the error and onditionnumber for di�erent attenuation fators. We notie that for both very small and verylarge values of a the error is high. The ondition number of the oe�ient matrix A isseen to inrease with inreasing values of the attenuation fator. The high error at largeRR n° 6397



8 Praveen & Duvigneau
a 0.01 0.1 0.5 1.0 2.0Mean error 1.29 0.142 0.0114 0.0978 16.3Max error 1.24 0.213 0.0181 0.156 19.6Condition no. 1.0 3.4 1.1 × 109 3.4 × 1014 2.8 × 1018Table 3: E�et of attenuation fator on the error of RBF interpolation for test funtion

f(x) = x(1 − x) sin(2πx)
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Figure 1: RBF interpolant for test funtion f(x) = x(1 − x) sin(2πx): (a) a = 0.01, (b)
a = 0.1, () a = 0.5, and (d) a = 1.0values of a is due to the numerial instability resulting from ill-onditioning of the matrix
A. Note that as long as the ondition number is not very high, the interpolant exatlyreprodues the training data. The RBF interpolant and the exat funtion are plottedin Figures 1. Figure 2 shows the variation of average error and ondition number withattenuation fator. We notie that the error has a minimum for a partiular value ofattenuation fator ao ≈ 0.45 with average error of 2.87e-4. A theoretial justi�ation forthe existene of an optimal value for the attenuation fator has been reently given in [17℄.INRIA



Metamodel-assisted PSO 9
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Figure 2: Variation of L2 error and ondition number with attenuation fator2.2 Optimization of attenuation fatorIn [21℄, several empirial methods for hoosing the attenuation fator are disussed; seethis paper for further referenes. Some researhers had expressed the hope that theremay be a universally optimal value of the attenuation fator. Based on numerial experi-ments, Rippa [21℄ onludes that the best attenuation fator depends on the number anddistribution of data points, on the funtion f and on the preision of the omputation2.An obvious way to optimize the attenuation fator is to divide the available data into twosubsets, a training set and a testing set; we an use the training set to onstrut the RBFmodel and use it to evaluate the funtion on the testing set. The attenuation fator anbe optimized so that the error of interpolation on the testing set is minimized. However,in pratial optimization problems, we may not have su�ient number of data points toperform the above sub-division. An alternative approah is the leave-one-out tehnique.Let f̂ (n)(x; a) denote the RBF interpolant onstruted using the data points
X(n) = {x1, x2, . . . , xn−1, xn+1, . . . , xN}i.e., by ignoring the n'th data point in the full data set. This interpolant an be used toestimate the funtion value at the ignored point xn and the orresponding error

En = fn − f̂ (n)(xn; a)an also be omputed. By ignoring eah data point suessively and onstruting aninterpolant we obtain an error vetor2An interesting result in [3℄ states that there exists an attenuation fator and loation of the RBFenters whih leads to an interpolation formula uniformly aurate for all funtions in a ompat subsetof C(K), where K is a ompat subset of R
d.RR n° 6397



10 Praveen & Duvigneau
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Figure 3: Variation of C(a) with attenuation fator for test funtion f(x) = x(1 −
x) sin(2πx)

E(a) = [E1, E2, . . . , EN ]⊤Rippa [21℄ suggests minimizing some norm of the above error vetor with respet to theattenuation fator, i.e., �nd a∗ suh that
a∗ = argmin ‖E(a)‖Rippa gives some numerial examples to show that the funtion C(a) = ‖E(a)‖ behavessimilar to the atual error. In partiular, they ahieve their minimum at similar values ofattenuation fator. Figure (3) plots C(a) for test funtion whih indiates the existeneof an optimum value a∗ ≈ 0.353.2.3 E�ient implementationThe omputation of C(a) requires the solution of N linear equations eah of order (N −

1) × (N − 1). If the linear system is solved using LU deomposition the total number ofoperations is of order N4 whih an be very expensive even for moderate size data sets.An e�ient algorithm is given in [21℄ whih requires only one LU deomposition at a ostof O(N3). Below, we essentially reprodue the algorithm as given in [21℄.The RBF interpolant using the data points X(n) is given by
f̂ (n)(x) =

N
∑

m=1,m6=n

w(n)
m Φ(x − xm)

INRIA



Metamodel-assisted PSO 11where the oe�ients w(n) are determined by solving the interpolation problem f̂ (n)(xr) =
f(xr), r = 1, . . . , n − 1, n + 1, . . . , N . We denote this in matrix notation as

A(n)w(n) = F (n)where A(n) is obtained from A by removing the n'th row and n'th olumn, and F (n) =
(f1, . . . , fn−1, fn+1, . . . , fN)⊤. We note that if y ∈ R

N is suh that yn = 0 then
Ay = z =⇒ A(n)(y1, . . . , yn−1, yn+1, . . . , yN)⊤ = (z1, . . . , zn−1, zn+1, . . . , zN)⊤ (1)Now onsider the solution u[n] to the system

Au[n] = e[n] (2)where e[n] is the n'th olumn of the N × N identity matrix. It is easy to verify that
u

[n]
n 6= 0. Indeed, if u

[n]
n = 0 then by (1) and (2) we onlude that

A(n)(u
[n]
1 , . . . , u

[n]
n−1, u

[n]
k+1, . . . , u

[n]
N )⊤ = 0whih implies, by the non-singularity of A(n) that u[n] = 0, whih is impossible beause

u[n] is the solution to (1). Let us now onsider the vetor v[n] ∈ R
N de�ned by

v[n] = w −
wn

u
[n]
n

u[n]Then we have that
Av[n] = Aw −

wn

u
[n]
n

Au[n] = F −
wn

u
[n]
n

e[n] =

(

f1, . . . , fn−1, fn −
wn

u
[n]
n

, fn+1, . . . , fN

)⊤

and sine v
[n]
n = 0, we use (1) to onlude that

w(n) =
(

v
[n]
1 , . . . , v

[n]
n−1, v

[n]
n+1, . . . , v

[n]
N

)⊤This implies thatRR n° 6397



12 Praveen & Duvigneau
f̂ (n)(xn) =

N
∑

m=1,m6=n

w(n)
m Φ(xn − xm)

=

N
∑

m=1,m6=n

v[n]
m Φ(xn − xm)

=
N

∑

m=1

v[n]
m Φ(xn − xm)

=
(

Av[n]
)

n

= fn −
wn

u
[n]
nwhih gives the following simple formula for the error of interpolation at the exludedpoint xn

En = fn − f̂ (n)(xn) =
wn

u
[n]
nIf we use LU deomposition to solve the linear equation systems, the ost of one LUdeomposition of the matrix A is O(N3), while the ost of solving the N linear equations(2) is O(N2) so that the total ost is O(N3).Rippa has used Brent's method whih is a braketing algorithm for loating the minimum.In our tests we found that it is not possible to predit in advane a suitable braketinginterval sine this depends on the data set, the funtion and dimension of the problem.Hene we have used Partile Swarm Optimization (PSO) to loate the minimum of theost funtion C(a). Sine this is a one dimensional minimization problem a small numberof partiles should be su�ient; we have used �ve partiles in the swarm and tests indiatethat the minimum point an be loated with less than 100 iterations.2.4 Some pratial issuesThe radial basis funtions depend on the Eulidean distane between two data points. Ifthe omponents of the independent variables x ∈ R

d have widely di�erent sales then theEulidean norm may not be appropriate. In [9℄ a weighted norm has been used in plaeof the Eulidean norm, where the weights depend on the gradient of the funtion. Here,the independent variables {xn, n = 1, . . . , N} and funtion values {fn, n = 1, . . . , N} aresaled before onstruting the RBF model. The independent variables x ∈ R
d are saledso that eah omponent of x lies in the interval [−1/2, +1/2] while funtion values aresaled to lie in the interval [0, 1]. If the funtion is onstant, then in the saled spae allthe funtion values will be zero and the oe�ients w are also zero. A onstant funtionINRIA



Metamodel-assisted PSO 13is thus reovered exatly for any value of attenuation fator. Note that this avoids thedi�ulty of reproduing onstant funtions with RBF whih otherwise requires very �at(a → ∞) basis funtions.The oe�ient matrix A an beome ill-onditioned for large values of attenuation fator,and also for very large and dense data sets. What is a large attenuation fator depends onthe number of data points, their distribution and the dimension d. The best attenuationfator usually leads to a highly ill-onditioned oe�ient matrix. An unertainty prinipleestablished in [26℄ states that the attainable error and the ondition number of the RBFinterpolation matrix annot both be small at the same time. When the matrix is highly ill-onditioned, it is not possible to ompute the interpolant with �nite preision arithmetisine the solution of linear algebrai equations beomes unstable. In [8℄ a method isproposed to ompute the RBF interpolant for suh ill-onditioned ases. However this isostly for our present purpose and we use a simple limiting approah. While minimizingthe ost funtion C(a) we ompute the ondition number of the oe�ient matrix A; ifit is larger than some spei�ed value, then the ost funtion is not omputed but is setto an arbitrarily large positive number. The partiles in PSO are then naturally pulledtowards regions of well onditioned attenuation fators. In the present omputations, theupper limit on the ondition number is set to 1/ǫ where ǫ is the mahine preision.3 Partile swarm optimizationPSO is modeled on the behaviour of a swarm of animals when they hunt for food oravoid predators [19℄. In nature a swarm of animals is found to exhibit very omplexbehaviour3 and apable of solving di�ult problems like �nding the shortest distane toa food soure. However the rules that govern the behaviour of eah animal are thought tobe simple. Animals are known to ommuniate the information they have disovered totheir neighbours and then at upon that individually. The individuals ooperate throughself-organization but without any entral ontrol. The interation of a large number ofanimals ating independently aording to some simple rules produes highly organizedstrutures and behaviours.In PSO, a swarm of partiles wanders around in the design spae aording to somespei�ed veloity. Eah partile remembers the best position it has disovered and alsoknows the best position disovered by its neighbours and the whole swarm. The veloity ofeah partile is suh as to pull it towards its own memory and that of the swarm. Whilethere are many variants of the PSO algorithm, the one we use is desribed below andomplete details are available in [5℄. The algorithm is given for a funtion minimizationproblem
min

xl≤x≤xu

f(x)3See a video of a �ok of birds performing highly oordinated maneuverhttp://youtube.om/wath?v=XH-groCeKbERR n° 6397



14 Praveen & DuvigneauAlgorithm: Partile swarm optimization1. Set n = 02. Randomly initialize the position of the partiles and their veloities {xn
k , v

n
k}, k =

1, . . . , K.3. Compute ost funtion assoiated with the partile positions f(xn
k), k = 1, . . . , K4. Update the loal and global memory

xn
∗,k = argmin

0≤s≤n
f(xs

k), xn
∗ = argmin

0≤s≤n,1≤k≤K
f(xs

k) (3)5. Update the partile veloities
vn+1

k = ωnvn
k + c1r

n
1,k(x

n
∗,k − xn

k) + c2r
n
2,k(x

n
∗ − xn

k) (4)6. Apply raziness operator to the veloities7. Update the position of the partiles
xn+1

k = xn
k + vn+1

k (5)8. Limit new partile positions to lie within [xl, xu] using re�etion at the boundaries9. If n < Nmax, then n = n + 1 and go to step 3, else STOP.In the original algorithm proposed by Kennedy and Eberhart [16℄ the random numbers r1,
r2 are salars, i.e., one random number is used for eah partile. In pratial implemen-tation, it is found that researhers have used both a salar and vetor version of randomnumbers. In the vetor version, a di�erent random number is used for eah omponent ofthe veloity vetor. This is equivalent to using random diagonal matries for r1 and r2.Wilke [25℄ has investigated the di�erene in performane of PSO between these versionsand onludes that the salar version is suseptible to getting trapped in a line searhwhile the vetor version does not have this problem. The vetor version is also preferredfor use with metamodels sine it has spae-�lling harateristis. We investigate the per-formane of these versions on a test ase of aerodynami optimization of a supersonibusiness jet. INRIA



Metamodel-assisted PSO 154 Metamodel assisted PSO with IPELike geneti algorithms, PSO is also a rank-based algorithm; the atual magnitude of ostfuntion of eah partile is not important but only their relative ordering matters. Anexamination of the PSO algorithm shows that the main driving fators are the loal andglobal memories. Most of the ost funtions are disarded exept when it improves theloal memory of the partile. Hene in the ontext of PSO also, an inexat pre-evaluationstrategy seems to be advantageous in identifying promising partiles i.e. partiles whoseloal memory is expeted to improve, whih an then be evaluated on the exat funtion.When updating the loal and global memories, the ost funtions are of mixed type; somepartiles have ost funtions evaluated on the metamodel and a few are evaluated usingthe exat model. If the memories are updated using ost funtions evaluated on themetamodel, then there is the possibility that the memory may improve due to error in theost funtion. This erroneous memory may ause PSO to onverge to it or may lead towasteful searh. Hene the memories are updated using only the exatly evaluated ostfuntions. We propose a metamodel-assisted PSO with inexat pre-evaluation as follows;the �rst Ne iterations of PSO are performed with exat funtion evaluations whih arestored in a database. In the subsequent iterations the metamodel is used to pre-sreenthe partiles. In the present work Ne = 10 is used.Algorithm: Partile swarm optimization with IPE1. Set n = 02. Randomly initialize the position of the partiles and their veloities {xn
k , v

n
k}, k =

1, . . . , K.3. If n ≤ Ne ompute ost funtion assoiated with the partile positions f(xn
k), k =

1, . . . , K using the exat model, else ompute the ost funtion using metamodel
f̃(xn

k), k = 1, . . . , K.4. If n > Ne, then selet a subset of partiles Sn based on a pre-sreening riterion andevaluate the exat ost funtion for these partiles. Store the exat ost funtionsinto the database.5. Update the loal and global memory using only the exatly evaluated ost funtions
xn
∗,k = argmin

0≤s≤n
f(xs

k), xn
∗ = argmin

0≤s≤n,1≤k≤K
f(xs

k) (6)6. Store exatly evaluated funtion values into a database7. Update the partile veloities
vn+1

k = ωnvn
k + c1r

n
1,k(x

n
∗,k − xn

k) + c2r
n
2,k(x

n
∗ − xn

k) (7)
RR n° 6397



16 Praveen & Duvigneau8. Apply raziness operator to the veloities9. Update the position of the partiles
xn+1

k = xn
k + vn+1

k (8)10. Limit new partile positions to lie within [xl, xu] using re�etion at the boundaries11. If n < Nmax, then n = n + 1 and go to step 3, else STOP.The important aspet of metamodel assisted optimization is the riterion used to seletthe set S of partiles whose funtion value will be exatly evaluated. Giannakoglou [6℄disusses several pre-sreening riteria based on the estimated �tness funtion and varianeof the estimation whenever available, as in the ase of gaussian random proess models.The pre-sreening riteria are based on the notion of improvement. Let fmin be the urrentminimum funtion value and f̂(x) be the funtion value predited by the metamodel fora new design point x. We an de�ne an index of improvement for the design x as
I(x) =

{

0 if f̂(x) > fmin

fmin − f̂(x) otherwise (9)Designs with larger value of this index are likely to lead to a redution in the ost funtionand should be evaluated on the exat funtion. Some metamodels like kriging also givean estimate of the error in the approximation. This information an be useful to explorethose regions of the design spae whih are not su�iently probed. We do not onsiderthese other riteria but refer to [6℄ for further details.In the present work we use interpolating RBF metamodels whih do not provide anestimate of the variane. Hene the pre-sreening is based only on the estimated ostfuntion value and we investigate two di�erent riteria;� After the IPE phase, the partiles are sorted in the order of inreasing ost funtionand a spei�ed perentage of the best partiles i.e. those with small ost funtionvalues, are seleted for exat evaluation.� We also propose a new pre-sreening riterion for PSO as follows: the set Sn onsistsof all partiles whose ost funtion is predited to redue in the IPE phase, i.e.,
Sn = {k : f̃(xn

k) < f(xn−1
∗,k )} (10)The seond riterion is similar to the index of improvement but the minimum funtionvalue is that of the individual partiles memory. All partiles whose index is positive (non-zero) are evaluated on the exat funtion. Note that we do not speify any perentage asINRIA



Metamodel-assisted PSO 17in the ase of GA with IPE. The number of exat funtion evaluations is automatiallydetermined and we expet this number to adapt itself as the ost funtion is progressivelyredued. Note that in this PSO+IPE approah, both the loal and global memories alwaysonsist of exatly evaluated partiles.5 Parameterization using the Free-Form DeformationapproahA ritial issue in parametri shape optimization is the hoie of the shape parameter-ization. The objetive of the parameterization is to desribe the shape, or the shapemodi�ation, by a set of parameters whih are onsidered as design variables during theoptimization proedure. Parameterization tehniques in shape optimization have to ful�llseveral pratial riteria:� the parameterization should be able to take into aount omplex geometries, pos-sibly inluding onstraints and singularities� the number of parameters should be as small as possible, sine the sti�ness of theshape optimization numerial formulation inreases abruptly with the number ofparameters� the parameterization should allow to ontrol the smoothness of the resulting shapesA survey of shape parameterization tehniques for multi-disiplinary optimization, whihare analyzed aording to the previous riteria, is proposed by Samareh [22℄. In aordanewith his onlusions, the Free-Form Deformation (FFD) tehnique [24℄ is adopted in thepresent study, sine it provides an easy and powerful framework for the deformation ofomplex shapes, as those enountered in aerodynamis or eletromagnetis.The FFD tehnique originates from the Computer Graphis �eld [24℄. It allows the defor-mation of an objet in a 2D or 3D spae, regardless of the representation of this objet.Instead of manipulating the surfae of the objet diretly, by using lassial B-Splines orBézier parameterization of the surfae, the FFD tehniques de�nes a deformation �eldover the spae embedded in a lattie whih is built around the objet. By transformingthe spae oordinates inside the lattie, the FFD tehnique deforms the objet, regardlessof its geometrial desription.More preisely, onsider a three-dimensional hexahedral lattie embedding the objet tobe deformed. Figure (4) shows an example of suh a lattie built around a realisti wing. Aloal oordinate system (ξ, η, ζ) is de�ned in the lattie, with (ξ, η, ζ) ∈ [0, 1]×[0, 1]×[0, 1].During the deformation, the displaement ∆q of eah point q inside the lattie is hereRR n° 6397



18 Praveen & Duvigneaude�ned by a third-order Bézier tensor produt:
∆q =

ni
∑

i=0

nj
∑

j=0

nk
∑

k=0

Bni

i (ξq)B
nj

j (ηq)B
nk

k (ζq)∆Pijk. (11)
Bni

i , Bnj

j and Bnk

k are the Bernstein polynomials of order ni, nj and nk (see for instane [7℄):
Bn

p (t) = Cp
n tp (1 − t)n−p. (12)

(∆Pijk)0≤i≤ni,0≤j≤nj,0≤k≤nk
are weighting oe�ients, or ontrol points displaements, whihare used to monitor the deformation and are onsidered as design variables during theshape optimization proedure.

Figure 4: Example of FFD lattie (red) around a wing.The FFD tehnique desribed above is well suited to omplex shape optimization, thanksto the following properties:� the initial shape an be exatly represented (no deformation ours when all weight-ing oe�ients are zero) ;� the deformation is performed whatever the omplexity of the shape (this is a free-form tehnique) ;� geometri singularities an be taken into aount (the initial shape inluding itssingularities is deformed) ;� the smoothness of the deformation is ontrolled (the deformation is ruled by Bern-stein polynomials) ;� the number of design variables depends on the user's hoie (the deformation isindependent of the shape itself) ; INRIA



Metamodel-assisted PSO 19� it niely deals with multi-level representation (thanks to the Bézier degree elevationproperty).The FFD tehnique is implemented in the shape optimization proedure and is used toontrol the shape deformation for appliations in both aerodynamis and eletromagnetis.6 Aerodynami �tness evaluation using CFDModeling This study is restrited to three-dimensional invisid ompressible �ows gov-erned by the Euler equations. Then, the state equations an be written in the onservativeform :
∂W

∂t
+

∂F1(W )

∂x
+

∂F2(W )

∂y
+

∂F3(W )

∂z
= 0, (13)where W are the onservative �ow variables (ρ, ρu, ρv, ρw, E), with ρ the density, −→U =

(u, v, w) the veloity vetor and E the total energy per unit of volume. −→F = (F1(W ), F2(W ), F3(W ))is the vetor of the onvetive �uxes, whose omponents are given by :
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. (14)The pressure p is obtained from the perfet gas state equation :
p = (γ − 1)(E −

1

2
ρ‖

−→
U ‖2), (15)where γ = 1.4 is the ratio of the spei� heat oe�ients.Spatial disretization Provided that the �ow domain Ω is disretized by a tetra-hedrization Th, a disretization of equation (13) at the mesh node si is obtained by inte-grating (13) over the volume Ci, that is built around the node si by joining baryentersof the tetrahedra and triangles ontaining si and midpoints of the edges adjaent to si :

V oli
∂Wi

∂t
+

∑

j∈N(i)

Φ(Wi, Wj ,
−→σ ij) = 0, (16)where Wi represents the ell averaged state and V oli the volume of the ell Ci. N(i) isthe set of the neighboring nodes. Φ(Wi, Wj ,

−→σ ij) is an approximation of the integral ofthe �uxes (14) over the boundary ∂Cij between Ci and Cj , whih depends on Wi, Wj andRR n° 6397



20 Praveen & Duvigneau
−→σ ij the integral of a unit normal vetor over ∂Cij . These numerial �uxes are evaluatedusing upwinding, aording to the approximate Riemann solver of Roe :

Φ(Wi, Wj,
−→σ ij) =

−→
F (Wi) +

−→
F (Wj)

2
· −→σ ij − |AR(Wi, Wj,

−→σ ij)|
Wj − Wi

2
. (17)

AR is the jaobian matrix of the �uxes for the Roe average state and veri�es:
AR(Wi, Wj,

−→σ ij)(Wj − Wi) = (
−→
F (Wj) −

−→
F (Wi)) ·

−→σ ij. (18)A high order sheme is obtained by interpolating linearly the physial variables from sito the midpoint of [sisj ], before equation (16) is employed to evaluate the �uxes. Nodalgradients are obtained from a weighting average of the P1 Galerkin gradients omputedon eah tetrahedron ontaining si. In order to avoid spurious osillations of the solutionin the viinity of the shok, a slope limitation proedure using the Van-Albada limiteris introdued. The resulting disretization sheme exhibits a third order auray in theregions where the solution is regular.Time integration A �rst order impliit bakward sheme is employed for the timeintegration of (16), whih yields :
V oli
∆t

δWi +
∑

j∈N(i)

Φ(W n+1
i , W n+1

j ,−→σ ij) = 0, (19)with δWi = W n+1
i − W n

i . Then, the linearization of the numerial �uxes provides thefollowing integration sheme :
(

V oli
∆t

+ Jn
i

)

δWi = −
∑

j∈N(i)

Φ(W n
i , W n

j ,−→σ ij). (20)Here, Jn
i is the jaobian matrix of the �rst order numerial �uxes, whereas the righthand side of (20) is evaluated using high order approximations. The resulting integrationsheme provides a high order solution of the problem. More details an be found in [4℄.7 Test ase 1: Supersoni Business Jet OptimizationWe onsider the drag minimization of a supersoni business jet at a Mah number of

M∞ = 1.7 and angle of attak α = 1o subjet to a onstraint on the lift, volume andthikness. The onstraints are implemented by adding penalty terms to the ost funtion.The governing equations are the Euler equations of invisid ompressible �ow; hene thedrag is only omposed of lift-indued drag and wave drag. The wave drag has ontributionsdue to lift and volume; a redution in drag an be obtained just by reduing the volume.INRIA



Metamodel-assisted PSO 21

Figure 5: FFD box for supersoni business jetSine in pratie the volume of the wing has to be maintained for strutural and otherreasons, we impose a onstraint on the volume in the ost funtion through a volumepenalty term. The wings of supersoni airrafts are very thin in order to redue the wavedrag; the optimization must not redue the thikness of the wing sine this a�ets itsstrutural strength. Hene a penalty term whih ontrols the thikness is added to theost funtion. Finally the ost funtion that is used is given below
J =

Cd

Cdo

+ 104 max

(

0, 0.999 −
Cl

Clo

)

+ 103 max(0, Vo − V ) + Ip (21)where� Cd = drag oe�ient� Cl = lift oe�ient� V = volume of the wing� Ip = a penalty term to ontrol the thiknessRR n° 6397



22 Praveen & DuvigneauThe quantities with subsript "o" indiate the values orresponding to the referene orstarting shape. The penalty term Ip is omputed as follows. A box is inserted inside thereferene wing. When the wing grid is deformed, some points of the grid lying on thewing may go inside this box. The term Ip is omputed as
Ip = 1000

Number of grid points on wing surfae lying inside the boxTotal number of grid points on the wing surfae (22)This term approximately models the fration of the wing surfae that penetrates the innerbox and thus penalizes the ost funtion if the wing thikness beomes too small. TheCFD omputations are performed on an unstrutured grid with 37375 nodes and 184 249tetrahedra using a �nite volume sheme desribed in setion (6).7.1 FFD parameterizationThe FFD parameterization is built only around the wing as shown in �gure (5) with ξ,
η and ζ in the hordwise, spanwise and thikness diretions respetively. The lattie ishosen in order to �t the planform of the wing as losely as possible. The leading andtrailing edges are kept �xed during the optimization by freezing the ontrol points thatorrespond to i = 0 and i = ni. The ontrol points orresponding to k = nk whih ontrolthe displaement of the wing tip are held �xed. Moreover, ontrol points are only movedvertially. The parameterization orresponds to ni = 6, nj = 1 and nk = 2 and leads to
(7 − 2) × 2 × 2 = 20 degrees of freedom. The range of the ontrol points is restrited to
[−500, +500] during the optimization.7.2 Global metamodelIn order to study the e�et of various parameters in the use of metamodels, we �rst on-strut global metamodels for lift and drag oe�ients using RBF. The global metamodelwill be used as the exat model for performing some of the tests. A set of 1000 pointsin [−550, +550]20 is obtained using a Latin-Hyperube sampling [18℄; however only 684shapes have a valid grid sine the remaining shapes lead to negative volumes during griddeformation. The metamodel is onstruted using these 684 data points and the atten-uation fator for the drag and lift oe�ients are shown in table (4). We apply PSO tominimize the global metamodel using 60, 120 and 180 partiles. The exat CFD solutionis also evaluated on the predited minimum point and the results are shown in table (5).The good agreement between the ost funtion predited by the metamodel and atualost funtion as given by CFD indiates that the global metamodel is itself satisfatory forthe present optimization problem. This is not true in general sine for a funtion of manyvariables that has a omplex landsape, it is not easy to onstrut an aurate globalmetamodel. The di�erene in the minimum ost funtion using 120 and 180 partiles issmall indiating that 120 partiles are su�ient in PSO for this problem. INRIA



Metamodel-assisted PSO 23Funtion Range Attenuation fator Condition number
Cd 0.003939 - 0.011338 21203.64 5.64 × 1010

Cl -0.008715 - 0.044044 16727.44 1.78 × 1010Table 4: Global metamodel for drag and lift oe�ientsReferene values: Cl = 0.19542 × 10−1 and Cd = 0.410716× 10−2Partiles Cost (MM) 10Cl (CFD) 100Cd (CFD) Cost (CFD)60 0.9350 0.195825 0.382842 0.9321120 0.9227 0.195515 0.377299 0.9186180 0.9214 0.199762 0.377383 0.9188Table 5: PSO applied to global metamodel: The seond olumn gives the optimum ostfuntion obtained by applying PSO to the global metamodel and the remaining olumnsgive the CFD solution for the optimum shape.
ω0 = 1.2 initial inertia
h = 3 inertia redution riterion

α = 0.95 inertia redution rate
c1 = c2 = 2 trust oe�ients
pc = 0.05 raziness probability

vmax = (xmax
c − xmin

c )/4 maximum veloityTable 6: Parameters used in PSO7.3 Optimization using global metamodel and PSOPSO is applied to minimize the global metamodel; the parameters used in PSO are listedin table (6); more details on these parameters are available in [5℄.E�et of random numbers: Figures (6) show the onvergene of ost funtion using thesalar and vetor random numbers in the veloity update sheme for three di�erent start-ing seeds. We see that the salar sheme does not give onsistent results with a widesatter in the best ahieved ost funtions while the vetor sheme is more onsistent. Inorder to test the di�erene between the two shemes more rigorously, we perform a setof 50 optimization runs with di�erent starting seeds and ompute the statistis of theresults. Table (7) gives the minimum and maximum of the ahieved �tness, the average�tness and the standard deviation for the two shemes. The vetor sheme ahieves asmaller �tness and the spread of �tness values is also small, as indiated by the standarddeviation. We learly see that the vetor sheme is more robust and onsistent than thesalar sheme. In all subsequent tests we use the vetor sheme in the veloity update ofPSO.RR n° 6397



24 Praveen & DuvigneauVeloity sheme Minimum ost Maximum ost Average ost Standard deviationSalar 0.9137 0.9620 0.9368 0.00963Vetor 0.9191 0.9351 0.9269 0.00369Table 7: Statistis of optimization using salar and vetor random number in the veloityupdate rule. 50 optimization runs are performed using 120 partiles in PSO applied tothe global metamodel
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(b) Vetor random numbers r1, r2Figure 6: Di�erent veloity shemes: salar and vetor version of random numbers
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Figure 7: E�et of swarm size: PSO with 60, 120 and 180 partiles used to minimize theglobal metamodelE�et of number of partiles: The ability of PSO in loating the global minimum dependson su�ient exploration of the design spae espeially for multi-modal funtions as isommon in engineering. This requires using a su�iently large number of partiles in theswarm. However this number should not be so large as to inrease the omputational ost.We apply PSO to minimize the global metamodel using 60, 120 and 180 partiles and theresults are shown in �gure (7) and table (5), indiating that 120 partiles are su�ientto loate the minimum for this problem. In all subsequent tests we use 120 partiles inswarm.7.4 Optimization using global metamodel, PSO and IPEIn order to test the e�et of various parameters in IPE, we use the global metamodel asthe exat model. The parameters in an IPE approah are:� Type of metamodel, RBF, kriging, et.� Method of seleting the exat evaluations (pre-sreening)� Method of seleting the loal database for onstruting a loal metamodelIn this work we use radial basis funtions for onstruting the metamodel. We �rststudy the e�et of the pre-sreening riterion. As disussed in previous setion, we studytwo di�erent pre-sreening methods, based on best partiles and expeted improvementin ost funtion. The data for onstruting the loal metamodel is seleted based onproximity; the 40 losest points in the database are used. This is based on previousRR n° 6397



26 Praveen & DuvigneauIter Seed = 17 Seed = 319 Seed = 574100% 300 0.9227/36000 0.9240/36000 0.9255/3600080% 300 0.9227/29040 0.9240/29040 0.9255/2904050% 300 0.9257/18600 0.9242/18600 0.9283/1860030% 400 0.9215/15240 0.9179/15240 0.9294/1524020% 500 0.9184/12960 0.9246/12960 0.9165/1296010% 500 0.9179/7080 0.9188/7080 0.9192/7080Adap 500 0.9188/5717 0.9217/6385 0.9203/6428Table 8: E�et of pre-sreening riterion: The entries show the best ost funtion ahievedand the number of exat funtion evaluations required.Exat 20 30 40 50 600.9227 0.9211 0.9234 0.9188 0.9229 0.9183Table 9: E�et of size of loal database: nearest neighbourstudies by Emmerih et al. [6℄ and our own studies disussed in the sueeding paragraphs.Figures (8) shows the evolution of the ost funtion for three di�erent realizations, as afuntion of the number of exat evaluations and table (8) shows the best ost funtionahieved and the number of funtion evaluations required. We notie that metamodel-assisted PSO also leads to same level of ost funtions as the ase of exat evaluations.As the number of exat evaluations inreases, we see that ost funtion ahieved is equalto the 100% ase. The ase of 10% best partile and adaptive evaluations give good ostfuntions at a very low omputational ost.We next study the e�et of the size of loal database used for onstruting the loal modelsin the IPE phase. Sine the dimension of the searh spae is 20, we test the optimizationwith 20, 30, 40, 50 and 60 points in the loal database and table (9) shows the best ostfuntion ahieved. It is seen that the dependene on the size of loal database is notvery strong. Figure (9) shows the error of metamodel for di�erent sizes of the database;it indiates that with 20 points the error is sometimes higher. A loal database of 40points gives good results both in terms of the error and the ahieved ost funtion. Thisorresponds to twie the size of the searh spae dimension whih is 20 in this problem.We next onsider a variation in the seletion of the loal database. When the data pointsare hosen using only proximity riterion, it may not lead to a good stenil for onstrutingthe metamodel. It also does not guarantee that all the omponents of design variables willhave non-zero variations. If the points in the loal database form a onvex hull aroundthe urrent evaluation point, it may lead to a better metamodel. However we do not tryto selet the points to satisfy the onvex hull riterion but use a more simpler riterionwhih leads to similar result. If x ∈ R
d is the urrent evaluation point, we selet atleastone point from the database so that the onditions yk

i < xi and ys
i > xi are satis�ed forINRIA
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Figure 9: Relative error of metamodel for di�erent size of loal database: nearest neigh-bour Exat 20 30 40 50 600.9227 - - 0.9238 0.9218 0.9206Table 10: E�et of size of loal database: onvex neighbourevery dimension i of the searh spae. Note that this requires atleast 2d points in theloal database. Table (10) and �gure (10) show the results of optimization using this typeof database. The ost funtion ahieved is omparable to the previous ase as shown intable (9) and the error of the metamodel is also of the same magnitude as before. Atleastfor this problem, the two methods of seleting the loal database do not seem to have anysigni�ant e�et on the results.7.5 Optimization using CFD, PSO and IPEThe tests in the previous setions used a global metamodel as the exat model. We nextperform the shape optimization using CFD as the exat model. The metamodel is usedwith 10%, 20%, 30% CFD evaluations and the adaptive pre-sreening riteria. The loaldatabase is onstruted with 40 nearest points from the database. When metamodels areused, more iterations are performed in PSO sine the total number of exat evaluations issmall. The results are given in table (11) and �gure (11). First of all we notie that theost funtion obtained after optimization are of the same order as those found with theglobal metamodel. This shows that in this ase, the global metamodel itself was of veryINRIA
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Figure 10: Relative error of metamodel for di�erent size of loal database: onvex neigh-bour Cost CFD evaluations 100Cd 10Cl IterInitial 1.0 - 0.410716 0.195429 -100% CFD 0.9212 25920 0.378380 0.196545 21630% CFD 0.9227 9480 0.378998 0.195732 24820% CFD 0.9148 12960 0.375746 0.197580 50010% CFD 0.9097 7080 0.373638 0.196345 500Adaptive 0.9183 6002 0.377173 0.195799 500Table 11: Results of PSO for supersoni business jetgood auray. With the use of metamodel and IPE the same level of ost funtion as withfull CFD evaluations, is obtained. Both the pre-sreening riteria give similar level of ostfuntions but the 10% evaluations and adaptive riterion are most e�ient. Figure (11)shows the evolution of the ost funtion as a funtion of the number of CFD evaluations.Figure (11-b) shows the average error of the metamodel while �gure (11-b) shows thenumber of CFD evaluations as a funtion of the PSO iterations. These results are againomparable to those obtained with the global metamodel. Finally, �gure (12) showsthe shapes for initial on�guration, CFD-optimized on�guration and CFD+metamodeloptimized on�guration. It an be seen that the optimized shapes obtained using CFDalone and with metamodels are similar indiating that the use of metamodel leads tosimilar results.RR n° 6397
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Figure 12: Wing shapes for supersoni business jet at di�erent spanwise stationsRR n° 6397



32 Praveen & Duvigneau8 Test ase 2: Transoni wing optimizationThe test-ase onsidered here orresponds to the optimization of the shape of the wing ofa business airraft (ourtesy of Piaggio Aero Ind.), for a transoni regime. The test-aseis desribed in depth in [1℄. The overall wing shape an be seen in �gure (13). Thefree-stream Mah number is M∞ = 0.83 and the inidene α = 2◦. Initially, the wingsetion is supposed to orrespond to the NACA 0012 airfoil.

Figure 13: Initial wing shape (blue) and mesh in the symmetry plane (red).The goal of the optimization is to redue the drag oe�ient Cd subjet to the onstraintthat the lift oe�ient Cl should not derease more than 0.1%. The onstraint is takeninto aount using a penalization approah. Then, the resulting ost funtion is :
J =

Cd

Cdo

+ 104 max(0, 0.999 −
Cl

Clo

) + 103 max(0, Vo − V ) (23)
Cdo and Clo are respetively the drag and lift oe�ients orresponding to the initial shape(NACA 0012 setion) and Vo is the wing volume. For the CFD omputations, an unstru-tured mesh, omposed of 31124 nodes and 173 445 tetrahedral elements, is generatedaround the wing, inluding a re�ned area in the viinity of the shok (�gure (13)).8.1 FFD parameterizationThe FFD lattie is built around the wing with ξ, η and ζ in the hordwise, spanwiseand thikness diretions respetively. The lattie is hosen in order to �t the planformof the wing (see �gure 4). Then, the leading and trailing edges are kept �xed during theoptimization by freezing the ontrol points that orrespond to i = 0 and i = ni. Moreover,INRIA



Metamodel-assisted PSO 33Cost CFD evaluations 10Cd Cl IterInitial 1.0 - 0.263386 0.319024 -100% CFD 0.4987 25800 0.131355 0.319350 21510% CFD 0.4730 7080 0.124604 0.319020 500Adaptive 0.5018 2511 0.132184 0.319987 500Table 12: Optimization of a transoni wingontrol points are only moved vertially. The parameterization orresponds to ni = 6,
nj = 1 and nk = 1 and ounts (7 − 2) × 2 × 2 = 20 degrees of freedom. The range of allthe ontrol points is restrited to [−200, +200] during the optimization.
8.2 Optimization resultsThe optimization is performed using PSO with 120 partiles and the same set of parame-ters as in setion 7.3. The loal metamodels are onstruted using 40 nearest neighboursfrom the database. In the ase of metamodel assisted PSO 500 iterations are performed.Table (12) shows the results of optimization. The metamodel assisted PSO is found toyield a ost funtion similar to the full CFD ase while the number of CFD evaluationsis signi�antly small. Figure (14-a) shows the evolution of the ost funtion with numberof CFD evaluations while Figure (14-b) shows the growth of the average error of meta-model with the PSO iterations. Unlike the previous test ase, we notie large errors inthe metamodel in this test ase. In most ases when the error is high, it is found that themaximum error is lose to one. This is probably beause of violation in lift onstraint;the metamodel predits that the lift onstraint is satis�ed but the CFD evaluation revealsthat it is not. Sine the lift penalty term is disontinuous there is a large error in theost funtion. However the error in the metamodel does not degrade its ability to loatea good optimum solution.Figure (14-) shows the variation of number of CFD evaluations with the iteration number.As in the ase of SSBJ, the CFD evaluation ount for the adaptive ase grows very slowlyand asymptotes to a nearly onstant value indiating that the number of CFD evaluationsgoes to zero as the PSO iterations inrease. Finally, �gure (15) shows a omparison ofthe airfoil shapes at di�erent spanwise loations. The shapes obtained with metamodelassisted PSO are quite lose to those obtained with 100% CFD evaluations. Partiularly,the shape of the upper surfae is more ritial sine the shok is found on this side of theairfoil. We notie that metamodel-assisted optimization leads to very similar shapes onthe upper surfae.RR n° 6397
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()Figure 14: Optimization of transoni wing INRIA
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Figure 15: Wing shapes for transoni wing at di�erent spanwise stations
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36 Praveen & Duvigneau9 Summary and onlusionsA partile swarm optimization algorithm ombined with inexat pre-evaluation strategyis proposed. The novel idea is a pre-sreening riterion spei� to PSO; it is based on thepredited improvement in the loal memory of individual partiles after the IPE phase.No upper or lower limit is spei�ed for the number of exat evaluations, whih is allowedto be automatially determined by the sreening riterion. The loal metamodels areonstruted using radial basis funtions in whih the shape parameter is optimized to yieldaurate approximations. The new strategy is applied to solve two aerodynami shapeoptimization problems. The proposed sreening strategy is found to onsiderably reduethe number of required CFD omputations while yielding optimal shapes omparable tothe full exat CFD ase.Between the two pre-sreening riteria tested in this work, no de�nite onlusion as to thesuperiority of either one an be made, though both of them yield aeptable solutions athighly redued omputational ost. The best partiles riterion (using 10% exat evalua-tions) seems to be apable of yielding slightly better solutions due to greater explorationof the searh spae. The proposed strategy is very promising and must be applied to moretest ases to demonstrate its robustness. Other metamodels like kriging whih providean estimate of variane an be utilized in the present strategy, allowing the use of otherpre-sreening riteria.10 AknowledgmentsThe authors gratefully aknowledge the sienti� ommittee of IDRIS (Projet 72906)and CINES (Projet SOP2703) for the attribution of CPU time. This study has beensupported by the �OMD� projet (Multi-Disiplinary Optimization) granted by ANR-RNTL.Referenes[1℄ M. Andreoli, A. Janka, and J.-A. Desideri. Free-form deformation parameterizationfor multilevel 3d shape optimization in aerodynamis. Tehnial Report 5019, INRIA,November 2003.[2℄ D. Bühe, N. N. Shraudolph, and P. Koumoutsakos. Aelerating evolutionaryalgorithms with gaussian proess �tness funtion models. IEEE Tran. on Systems,Man, and Cybernetis - Part C: Appliations and Reviews, 35(2), 2005.[3℄ T. Chen and R. Chen. Approximation apability to funtions of several variables,nonlinear funtionals, and operators by radial basis funtion neural networks. IEEETransations on Neural Networks, 6(5), 1995. INRIA



Metamodel-assisted PSO 37[4℄ A. Dervieux and J. A. Desideri. Compressible �ow solvers using unstrutured grids.Researh Report 1732, INRIA, June 1992.[5℄ R. Duvigneau, B. Chaigne, and J.-A. Desideri. Multi-level parameterization for shapeoptimization in aerodynamis and eletromagnetis using partile swarm optimiza-tion. Researh Report RR-6003, INRIA, Sophia Antipolis, 2006.[6℄ M. Emmerih, K. Giannakoglou, and B. Naujoks. Single- and multi-objetive evo-lutionary optimization assisted by gaussian random �eld metamodels. IEEE Trans.Evol. Comput., 10(4):421�439, 2006.[7℄ G. Farin. Curves and surfaes for omputer-aided geometri design. Aademi Press,1989.[8℄ B. Fornberg and G. Wright. Stable omputation of multi-quadri interpolants forall values of the shape parameter. Computers and Mathematis with Appliations,48:853�867, 2004.[9℄ K. C. Giannakoglou. Design of optimal aerodynami shapes using stohasti opti-mization methods and omputational intelligene. Prog. Aero. Si., 38:43�76, 2002.[10℄ K. C. Giannakoglou, A. P. Giotis, and M. K. Karakasis. Low-ost geneti optimizationbased on inexat pre-evaluations and the sensitivity analysis of design parameters.J. of Inverse Prob. in Engg., 9(4):389�412, 2001.[11℄ K. C. Giannakoglou and M. K. Karakasis. Hierarhial and distributed metamodel-assisted evolutionary algorithms. In VKI Leture Series 2006-03. Marh 2006.[12℄ K. C. Giannakoglou, D. I. Papadimitriou, and I. C. Kampolis. Aerodynami shapedesign using evolutionary algorithms and new gradient-enhaned metamodels. Com-put. Methods Appl. Meh. Engrg., 195:6312�6329, 2006.[13℄ R. L. Hardy. Multiquadri equations of topography and other irregular surfaes. J.Geophys. Res., 76:1905�1915, 1971.[14℄ Y. Jin. A omprehensive survey of �tness approximation in evolutionary omputa-tion. Soft Computing, 9(1), 2005.[15℄ A. J. Keane and P. B. Nair. Computational Approahes for Aerospae Design. Wiley,2005.[16℄ J. Kennedy and R. Eberhart. Partile swarm optimization. In IEEE InternationalConferene on Neural Networks, Perth, Australia, 1995.[17℄ E. Larsson and B. Fornberg. Theoretial and omputational aspets of multivariateinterpolation with inreasingly �at radial basis funtions. Computers and Mathemat-is with Appliations, 49:103�130, 2005.RR n° 6397



38 Praveen & Duvigneau[18℄ M. D. MKay, W. J. Conover, and R. J. Bekman. A omparison of three methodsfor seleting values of input variables in the analysis of output from a omputer ode.Tehnometris, 21:239�245, 1979.[19℄ P. Miller. Swarm behaviour. National Geographi, July 2007. available online athttp://www7.nationalgeographi.om/ngm/0707/feature5/.[20℄ Y. S. Ong, P. B. Nair, A. J. Keane, and K. W. Wong. Surrogate-assisted evolutionaryoptimization frameworks for high-�delity engineering design problems. In Y. Jin,editor, Knowledge Inorporation in Evolutionary Computation, Studies in Fuzzinessand Soft Computing. Springer Verlag, 2004.[21℄ S. Rippa. An algorithm for seleting a good value for the parameter c in radial basisfuntion interpolation. Adv. Comp. Math., 11, 1999.[22℄ J. Samareh. A survey of shape parameterization tehniques for high �delity multi-disiplinary shape optimization. AIAA Journal, 39(5):877�884, 2001.[23℄ R. Shabak. Reonstrution of multivariate funtions from sat-tered data. available on the internet at http://www.num.math.uni-goettingen.de/shabak/teahing/texte/rbfbook.ps.[24℄ T. Sederberg and S. Parry. Free-form deformation of solid geometri models. Com-puter Graphis, 20(4):151�160, 1986.[25℄ D. N. Wilke. Analysis of the partile swarm optimization algorithm. Master's thesis,Department of Mehanial and Aeronautial Engineering, University of Pretoria,2005.[26℄ Z. M. Wu and R. Shabak. Loal error estimates for radial basis funtion interpo-lation of sattered data. IMA J. Num. Anal., 13(1):13�27, 1993.[27℄ Z. Zhou, Y. S. Ong, P. B. Nair, A. J. Keane, and K. Y. Lum. Combining globaland loal surrogate models to aelerate evolutionary optimization. IEEE Tran. onSystems, Man, and Cybernetis - Part C: Appliations and Reviews.

INRIA



Metamodel-assisted PSO 39Contents1 Introdution 32 Radial basis funtion models 52.1 E�et of attenuation fator . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.2 Optimization of attenuation fator . . . . . . . . . . . . . . . . . . . . . . 92.3 E�ient implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.4 Some pratial issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Partile swarm optimization 134 Metamodel assisted PSO with IPE 155 Parameterization using the Free-Form Deformation approah 176 Aerodynami �tness evaluation using CFD 197 Test ase 1: Supersoni Business Jet Optimization 207.1 FFD parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227.2 Global metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227.3 Optimization using global metamodel and PSO . . . . . . . . . . . . . . . 237.4 Optimization using global metamodel, PSO and IPE . . . . . . . . . . . . 257.5 Optimization using CFD, PSO and IPE . . . . . . . . . . . . . . . . . . . 288 Test ase 2: Transoni wing optimization 328.1 FFD parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328.2 Optimization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 Summary and onlusions 3610 Aknowledgments 36
RR n° 6397



Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université- ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau- Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399


