
HAL Id: inria-00258785
https://hal.inria.fr/inria-00258785v2

Submitted on 28 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cross-layer enhancement of Web servers dedicated to
small devices

Simon Duquennoy, Gilles Grimaud, Jean-Jacques Vandewalle

To cite this version:
Simon Duquennoy, Gilles Grimaud, Jean-Jacques Vandewalle. Cross-layer enhancement of Web servers
dedicated to small devices. [Technical Report] RT-0349, INRIA. 2008, pp.27. �inria-00258785v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50281598?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00258785v2
https://hal.archives-ouvertes.fr

appor t
 t e ch n i qu e

IS
S

N
02

49
-0

80
3

IS
R

N
IN

R
IA

/R
T-

-0
34

9-
-F

R
+E

N
G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Cross-layer enhancement of Web servers dedicated to
small devices

Simon Duquennoy — Gilles Grimaud — Jean-Jacques Vandewalle

N° 0349

February 2008

Centre de recherche INRIA Lille – Nord Europe
Parc Scientifique de la Haute Borne

40, avenue Halley, 59650 Villeneuve d’Ascq
Téléphone : +33 3 59 57 78 00 — Télécopie : +33 3 59 57 78 50

Cross-layer enhancement of Web servers
dedicated to small devices

Simon Duquennoy∗, Gilles Grimaud∗ , Jean-Jacques Vandewalle†

Thème COM — Systèmes communicants
Équipes-Projets POPS

Rapport technique n° 0349 — February 2008 — 24 pages

Abstract: Nowadays, embedded systems are more and more present around
us, with an increasing accessibility need. Instead of using dedicated protocols,
involving dedicated client and server softwares, we claim that embedding a Web
server into these systems allows a great accessibility, interoperability, mainten-
ability and easiness of development. So anyone can access and configure a router,
a sensor or a domotic system from any computer or personal digital agent, using
only a standard Web browser. Using modern Web methodologies like AJAX,
interactive applications can be served.

However, this solution is technically hard to apply, because of the hardware
limitations of targeted embedded systems (often some MHz of CPU frequency
and only a few kilo-bytes of RAM), in contrast to the heaviness of usual Web
servers (and Web protocols).

In this report, we first present a cross-layer analysis of the TCP/IP protocols
when used for dynamic Web applications over HTTP. We test existing embedded
Web servers and we analyze theirs performances. Starting from these analysis,
we propose new solutions for an efficient and memory-lightweight Web server
conception. We implemented all our propositions, giving a new embedded Web
server, able to serve efficiently dynamic Web applications with a RAM usage of
less than one kilo-byte without any underlaying operating system.

Key-words: embedded systems, Web server, communication stack, TCP/IP,
AJAX

∗ IRCICA/LIFL, CNRS UMR 8022, Univ. Lille 1, INRIA Lille-Nord Europe, POPS re-
search group
† Gemalto Technology & Innovations, France

Amélioration transversale de serveurs Web
dédiés aux pérphériques très contraints

Résumé : De nos jours, les systèmes embarqués sont de plus en plus nombreux
et ont un besoin grandissant d’accessibilité. Au lieu d’utiliser des protocoles
dédiés, imposant l’utilisation de logiciels clients et serveurs, nous soutenons que
l’utilisation de serveurs Web sur ces cibles en augmente l’accessibilité ainsi que
la maintenabilité et facilite le développement. Ainsi, tout le monde peut accéder
et configurer un routeur, un capteur de terrain ou un système domotique depuis
n’importe quel ordinateur ou PDA, via un simple navigateur Web. En utilisant
les technologies modernes du Web telles qu’AJAX, des applications interactives
peuvent être servies.

Cependant, cette solution est techniquement difficile à mettre en oeuvre à
cause des limitations matérielles des systèmes embarqués ciblés (souvent un
CPU à quelques MHz et seulement quelques kilo-octets de RAM), comparées à
la lourdeur des serveurs Web classiques (et des protocoles du Web).

Dans ce rapport, nous présentons tout d’abord une analyse transversale des
protocoles TCP/IP lorsqu’utilisés pour servir des applications Web dynamiques.
Nous testons des serveurs Web embarqués existants et analysons leurs perfor-
mances. A partir de cette analyse, nous proposons de nouvelles solutions pour
concevoir des serveurs Web efficaces et peu consommateurs de mémoire. Nous
avons implémenté toutes nos propositions, engendrant un nouveau serveur Web
embarqué, capable de servir efficacement des applications Web dynamiques avec
une consommation en RAM de moins d’un kilo-octet, sans aucun système sous-
jacent.

Mots-clés : systèmes embarqués, serveur Web, pile de communication,
TCP/IP, AJAX

Cross-layer enhancement of Web servers dedicated to small devices 3

1 Motivation

1.1 Introduction

Embedded systems like routers, sensors or domotic systems are growing around
us. We need efficient ways to interact with them. This increasing interaction
need makes unadapted the classical solution consisting in the development of
dedicated client/server softwares. These specialized applications are efficient
but involve high development costs. Their evolution is difficult, they are heavy
to maintain, and they need to be deployed on every potential client machine.

An other approach consists in installing a Web server with a TCP/IP stack
in the embedded system. Server applications become regular Web applications,
easy and fast to develop (compared to a dedicated application). This solution
presents several advantages:

� The installation phase on the client side is avoided. Today, a majority of
workstation, PDA or cell phone run a Web browser.

� The Web applicative support is, thanks to the Internet, uniform and
widespread. This makes applications development easy. Moreover, Web
applications guarantees a good portability when accessed from heteroge-
neous clients.

� Deployment of new applications is simplified and it can be done directly
using an integrated upload Web interface.

� A Web application is easy to maintain and to update. Clients stay un-
changed. A new version may consist only in a new set of contents the Web
server will be able to send.

� TCP and IP protocols allow the Web server to be directly connected to
existing networks, as the Internet.

1.2 Context

Embedded systems like sensors, domotic elements or smart card are physically
constrained (often some MHz of CPU frequency, a few kilo-bytes of RAM and
hundreds of kilo-bytes of persistent memory, like EEPROM or Flash). Using
a general purpose Web server (e.g., Linux, Apache and JEE or Windows, IIS
and .net) onto this kind of hardware is hard because of the heaviness of HTTP
and TCP/IP, and of the memory footprint of these operating systems and soft-
wares (a typical workstation TCP/IP stack has a volatile memory usage of
hundreds of kilo-bytes [19]). The Web has initially been designed for powerfull
and memoryfull servers, using multi-threaded operating systems. However, in
our situation, the embedded Web server is not accessed simultaneously from
thousands of clients, like Web servers on the Internet. This makes possible a
lightweight implementation.

Thanks to the Internet, Web technologies evolution is very fast. In the recent
years, a new application development methodology appeared, named AJAX [9].
This methodology involves a workload deportation, from the Web server to the
Web browser. This is particularly interesting in our situation, where the Web
server often has less ressources than the Web client. The behavior of an AJAX
Web application can be separated into two phases:

RT n° 0349

4 Duquennoy, Grimaud & Vandewalle

1. The loading phase. The client starts by collecting several static files, con-
taining style (CSS), contents (HTML), and applicative code (JavaScript).

2. The running phase. The client executes the applicative code it downloaded
in the first phase, and it interacts with the server by sending asynchronous
requests. The server responses are often small generated contents, they
are interpreted then integrated by the client into the Web page.

The AJAX model allows to design highly interactive applications with a task
repartition between the client and the server. It also reduces Web traffic by
sending non-formatted data. Formatting rules are loaded once in the initializa-
tion phase, factorizing informations and reducing redundancies.

Before working on embedded Web servers design, it is important to analyze
the traffic they have to manage. This analysis allows to identify hot points
where the server needs to be efficient. Today, most of modern Internet Web
applications use the AJAX model.

0 64 128 256 512 1k 2k . . .
0

20

40

Lengths
(bytes)

Lengths distribution (%)

(a) Phase 1: initial application loading

0 64 128 256 512 1k 2k . . .
0

20

40

Lengths
(bytes)

Lengths distribution (%)

(b) Phase 2: application execution

Figure 1: Contents lengths distribution for sample AJAX applications

Figure 1 shows the repartition of HTTP content lengths returned when
browsing onto three popular AJAX applications (Gmail1, Google Calendar2

and Yahoo! mail3), during the two distinct AJAX phases. Results of this anal-
ysis show that during the first phase, numerous large-sized contents (mainly
static files) are served (average returned size around 8 KB). During the second
phase, small-sized contents (mainly generated by the server) are received by the
client (average returned size around 600 bytes). Note that these measurements
are done on workstation rich Web applications. In embedded systems context,
Web applications might send even smaller generated contents.

1Gmail: http://mail.google.com
2Google Calendar: http://www.google.com/calendar
3Yahoo! mail: http://mail.yahoo.com

INRIA

http://mail.google.com
http://www.google.com/calendar
http://mail.yahoo.com

Cross-layer enhancement of Web servers dedicated to small devices 5

Because the AJAX model seems to be well designed for embedded Web
applications, an embedded Web server must be efficient during the two AJAX
phases, i.e., when sending large-sized static files as well as small-sized generated
contents.

In Section 2, we present a state of the art of embedded TCP/IP stacks
and embedded Web servers. Section 3 analyzes TCP/IP performances when
used for HTTP. Section 4 makes a detailled analysis of the two embedded Web
servers we choose as references and identifies theirs strengths and weaknesses.
Based on our servers studies, we propose new solutions to improve dynamic
Web application service in Section 5. Possible future works are presented in
Section 6. We finally conclude in Section 7.

2 State of the art

This section presents a state of the art of existing works related to embed-
ded Web servers. We present works about TCP/IP protocols specialization for
embedded devices, about small-sized TCP/IP stack and about embedded Web
servers.

2.1 Adapting TCP/IP protocols to embedded systems
constraints

Numerous works have been done to specialize TCP/IP for embedded sys-
tems. Distributed caches usage [8] allows to reduce retransmissions costs, while
TCP/IP specific header compression [8, 20] reduces protocols overheads. The
main drawback of these methods is also their strength: they modify protocols,
making them non TCP/IP compliant. These works are not compatible with our
initial aims because they cannot be integrated into unmodified Web architec-
tures.

2.2 TCP/IP stacks for embedded systems

Both TCP and IP are described by RFCs [14, 15]. TCP includes a lot of complex
mechanisms (congestion avoidance, acknowledgments, transmission windows,
retransmissions, etc.), making it hard to use in embedded systems.

2.2.1 MIP

By implementing a subset of these RFCs, it has been shown [19] that commu-
nication with classical TCP/IP stack stays possible. The stack presented in
this work, called mIP, is functionally totally minimized (no congestion control,
retransmissions, etc.) and it is able to run an embedded Web server properly,
using around one kilo-byte of RAM. The source code of mIP is not provided by
the authors, and the performances of their implementation is not compared to
other existing works.

2.2.2 µIP and lwIP

Dunkels proposes two embedded TCP/IP stacks [5]. LwIP is fully RFCs-
compliant and it uses a layered protocol implementation. Its list of supported

RT n° 0349

6 Duquennoy, Grimaud & Vandewalle

protocols contains IP, TCP, UDP and ICMP and it can easily be extended.
Meanwhile, µIP implements a subset of TCP/IP with a monolithic approach,
and can only support a limited set of protocols (IP, TCP and ICMP). µIP is
smaller than lwIP in terms of memory usage. Implementations of theses stacks
are provided by the authors, as well as applications examples. Because of the
small size of µIP, and because it is publically available with a Web server, we
choose this embedded TCP/IP stack as one of our references for our experi-
ments.

2.3 Embedded Web servers

2.3.1 Hardware Web servers

Hardware Web severs have been proposed [10, 16], based on hardware-software
co-design. These works are out of the scope of our study, because they cannot
be used on any kind of hardware. Fully software-based embedded Web servers
have the big advantage to be portable to any hardware and used for any kind
of embedded systems.

2.3.2 Software Web servers

As opposed to general purpose Web servers, embedded ones are not constrained
in being executed in user-space over an operating system, using its provided
general-purpose socket interface. They often do not use any operating system,
using their own dedicated TCP/IP stack and directly accessing their own device
drivers. As a consequence, they can be optimized at every software level of the
system, unlike classical workstation Web servers.

Several works [1, 11, 4, 10] show that it is possible to embed a Web server
into constrained hardwares. They often detail the implementation, depending
on their targets architectures. They explain how Web pages are stored (in RAM,
in EEPROM) after having been pre-processed by a dedicated tool. Most of these
servers provide a simple (and often inextensible) way to integrate generated
contents: tags are included in HTML pages and substituted at run-time by
the server (e.g., by a sampled temperature, a hardware state information or a
statistic). Performances of these servers are not compared to others and their
source code is rarely published.

The proof-of-concept miniWeb server [6] particularly drawn our attention.
Its goal is to provide a memory minimal Web server, simply able to serve a
few static documents. It uses a monolithic implementation, i.e., with its own
dedicated TCP/IP stack, tightly coupled with the whole Web server. MiniWeb
source code is provided by the authors. Because of its extremely low mem-
ory consumption and its interesting design choices, we choose this server as a
reference for our study, as well as the µIP web server.

3 Analysis of TCP/IP used for HTTP

TCP is a general purpose protocol for connected communications. It uses com-
plex mechanisms (retransmissions and acknowledgments management, conges-
tion control, sliding window, etc.) to allow reliable communications. In this

INRIA

Cross-layer enhancement of Web servers dedicated to small devices 7

section, we present an analysis of TCP/IP traffics when HTTP is used as the
application layer protocol.

This analysis is fully independent of the link layer protocol, because embed-
ded Web servers can use TCP/IP above various protocols (e.g., Ethernet, PPP,
SLIP) with their own properties and overheads.

3.1 TCP behavior

TCP can be used for any kind of applications, allowing bidirectional reliable
communications. In TCP, data can be sent by the two hosts in a random order.
TCP allows data piggybacking, i.e., sending a segment containing both data
and acknowledgment. This makes TCP void acknowledgments less frequent.

Figure 2 is a cross-layer view of HTTP traffic over TCP/IP, showing suc-
cessive GET requests and using the classical TCP MSS of 1460 bytes4 over a
single TCP connection (in case of multiple connections, each one follows the
same scheme). A GET request from a standard Web browser has a length of
hundreds of bytes, while HTTP 1.1 responses are arbitrary sized. We can see
that under these typical conditions, TCP has a particular and predictable be-
havior: the client sends a request then it waits for a response from the server.
At the HTTP level, only one of the two hosts is sending data at a given time.
As a consequence, on a given TCP connection, while the client or the server is
sending data (resp. a request or a response), it does not receive anything else
than TCP void acknowledgments.

Data piggybacking is rare in this situation. Void TCP acknowledgments are
numberred in Figure 2. Let ACKn be the nth acknowledgment of the drawing.
ACK1 is always sent without any data, because this policy is recommended
in the TCP RFC during the three way handshake of connection establishment.
Our observations on Internet traffics shows that HTTP responses are sometimes
piggybacked, acknowledging their requests. That is why the last occurrence of
ACK2 (who acknowledges the last segment of the request) is not always sent.
When a client receives the end of a HTTP response and needs to request the
server again, it may piggyback the next request, thus acknowledging the last
respone. As the ACK2 one, the last occurrence of ACK3 is optional. As soon
as a HTTP request or a response exceeds the TCP MSS, several occurrences
of ACK2 and ACK3 are sent without any piggybacking. ACK4 is always sent
alone because when receiving a TCP segment with a FIN flag, the client stack
acknowledges it before deciding to close the connection. ACK5 is obviously
always sent without any data, because it is the last connection packet.

This analysis shows that TCP rich behaviors are under-used when used
for HTTP. Data are always sent in an unidirectional way and are quite rarely
piggybacked.

3.2 Data overhead

Embedded systems network interfaces are often only half-duplex (e.g., sensor
with 802.15/ZigBee, smartcard with 7816-4/APDU, but also 803.3/Ethernet
and 802.11/Wifi). For this reason, in our study, we do not take into account

4The maximal TCP MSS usable over Ethernet is 1460 B, because Ethernet MTU is 1500 B.
That is why it is a classically used TCP MSS.

RT n° 0349

8 Duquennoy, Grimaud & Vandewalle

Client Server

TCP syn 28 B
SYN 48 B

TCP syn, ack 28 B

SYN/ACK 48 B

TCP ack 20 B
ACK 40 B

1

TCP push, ack 20 B
HTTP GET url ≤1460 B

GET ≤1500 B

TCP ack 20 B
ACK 40 B

2

TCP [push,] ack 20 B
HTTP HTTP/1.1 ≤1460 B

HTTP/1.1 ≤1500 B

TCP ack 20 B
ACK 40 B

3

TCP fin, ack 20 B

FIN/ACK 40 B

TCP ack 20 B
ACK 40 B

4

TCP fin, ack 20 B

FIN/ACK 40 B

TCP ack 20 B
ACK 40 B

5

Figure 2: HTTP over a TCP connection. Packets sizes include IP headers of 20
bytes. Dashed arrows and boxes indicates optional packets.

packets direction. We also consider point-to-point communications, where la-
tency are negligible5.

Both TCP and IP use a header of at least 20 bytes for every packet. When a
host is sending data, it regularly receives TCP acknowledgments. As mentioned
in Section 3.1 when HTTP is used, TCP acknowledgments are mainly TCP void
segments. Let α be the void acknowledgment reception frequency for every sent
segment. The TCP/IP data overhead is:

Data overhead =
(IP header size+ TCP header size

+ α× TCP ACK size)/TCP MSS

5For domotic applications or smartcards, this assertion is obvious. In case of multi-hop
sensor networks, the latency is highly dependent on the routing algorithm, what is out of the
scope of this paper.

INRIA

Cross-layer enhancement of Web servers dedicated to small devices 9

3.3 Applicative throughput

In order to decrease the amount of TCP acknowledgments sent by TCP, a well-
known algorithm called delayed ACKs has been proposed [3]. It is implemented
by most of workstation operating systems TCP/IP stacks. It consists in ac-
knowledging an incoming TCP segment only (i) when receiving a second TCP
segment or (ii) after waiting for 200 ms.

Let β be the frequency of delayed by 200 ms TCP acknowledgment. If the
sender sends data continuously, we have β = 0 and α = 0.5. If it waits every
segment to be acknowledged before sending the next segment, we have β = 1
and α = 1. The applicative throughput is:

Applicative throughput =
MSS/(β ×ACK delay+
(MTU + α×ACK size)/physical throughput)

200 600 1000 1400
0

20

40

60

80

100
Applicative throughput (%)

Mss (o)

α = 0.5,
β = 0

α = 1,
β = 1

Figure 3: Maximal applicative throughput on 14.4 KB/s line

Figure 3 shows the maximal applicative throughput (percentage of the phys-
icall throughput) that can be obtained when using HTTP over TCP/IP on a
14.4 KB/s line. It shows how much performances are degraded when α = 1 and
β = 1. In such situation, acknowledgments are always delayed, and packets are
sent only every 200 ms. Whatever the physical maximal throughput, no more
than 5 TCP segments are sent every second. If the TCP sender sends data con-
tinuously (thus having α = 0.5 and β = 0), its maximal applicative throughput
grows with the physical line throughput.

This figure also shows that the TCP MSS have an impact on applicative
throughput. A big MSS should be used when it is possible (because TCP and
IP headers have a constant size once the connection is established).

To allow the greatest applicative throughput for an embedded TCP/IP stack,
that last one must be able to use any MSS and to have several in-flight (i.e.,
sent but unacknowledged) TCP segments. Because of the TCP retransmission
mechanism, sent segments have to be stored until they are acknowledged. This
consumes a part of the limited RAM available in embedded targets.

RT n° 0349

10 Duquennoy, Grimaud & Vandewalle

4 Reference embedded Web servers study

In Section 2, we presented our two reference embedded Web servers: µIP server
(with rich functionalities) and miniWeb (extremely memory lightweight). To
evaluate their performances and to identifies their weakness, we ported these
two servers to a same reference target, whose characteristics are given in Ta-
ble 1. This section details these two servers. We identify their strengths and
weaknesses and measure their memory consumptions. The servers performance
is measured in Section 5.

Microcontroller ARM7, 16.78 MHz
Bus 32 bits
IWRAM 32 KB
SRAM 256 KB
EEPROM 8 MB

Table 1: Reference target characteristics

4.1 µIP Web server analysis

4.1.1 Server presentation

µIP Web server is able to serve static files as well as dynamically generated
contents. Files are pre-compiled then embedded with the server in the compila-
tion phase. Dynamic contents generation is provided with JSP/ASP/PhP-like
methodology: dedicated markers embedded in HTML files are substituted at
runtime by the server.

µIP is implemented using protothreads [7], allowing low-cost (in term of
memory) multi-threading.

4.1.2 Traffic analysis

As referred in Section 3.3, TCP retransmissions require to store every in-flight
segment until it becomes acknowledged. For memory consumption reasons, µIP
discards every packet just after having sent them. In case of a packet loss, the
stack asks the application to re-generate the last packet before retransmitting
it. This choice does not allow to have more than one in-flight packet, decreasing
significantly the maximal application throughput (see Section 3.3).

µIP Web server is not able to handle HTTP persistent connections. This
choice has been done for two reasons: (i) because it allows to free TCP connec-
tions after each HTTP response, realizing memory savings and (ii) because it
reduces considerably HTTP management complexity (no need to wait for new
connections and for data from an existing connection at the same time). With
non-persistent connections, TCP connections have to be established and closed
for each HTTP request, involving huge traffic overheads. This is particularly
perceptible when sending small-sized data.

INRIA

Cross-layer enhancement of Web servers dedicated to small devices 11

4.1.3 Memory consumption

µIP drivers interface need to read/write data from/into a global buffer, which
size must be at least equals to the maximal MSS plus TCP and IP header size.
To allow data reception while the TCP/IP stack is running, a second driver-
level buffer of the same size is needed. Classical TCP MSS is of 1460 bytes. As
shown in Section 3.3, the applicative maximal throughput of a TC/IP stack is
highly dependent on the MSS used. As a consequence, when embedding µIP, a
choice has to be made between memory-consumption and efficiency.

The port of µIP we did to our reference target (c.f. Table 1 allows us to
precisely measure its Web server total memory-consumption (including server,
TCP/IP stack and device drivers).

µIP memory footprint in persistent memory is of 16.6 KB (15.3 KB of code,
1.3 KB of read-only data).

Global variables need from 1 KB to 3.6 KB, depending on the maximal sup-
ported MSS (from 200 to 1460 bytes, the classical TCP MSS bounds). To know
the memory space needed for local variables and procedure calls, we initialize
the whole stack with a particular value. After executing µIP Web server, we
scan the stack to know the maximal stack size used. We measured a maximal
stack consumption of 204 bytes.

µIP presents several drawbacks: it is limited to one in-flight packet and it
sees its memory consumption growing with the used MSS. We talk about µIP
other benefits and drawbacks in the next sections.

4.2 MiniWeb analysis

4.2.1 Server presentation

MiniWeb is a functionally minimal embedded Web server, including its own
dedicated TCP/IP stack. Like µIP server, it cannot handle HTTP persistent
connections. It also does not support simultaneous TCP connections. When
receiving a GET request, miniWeb does not read any byte of its contents but it
selects a Web page to be served depending only on the TCP host port. MiniWeb
is unable to send dynamically generated contents, making it unusable as a Web
application sever.

We however choose miniWeb as one of our reference Web servers because its
memory consumption is really small, and because of its interesting implemen-
tation choices.

4.2.2 Pre-calculations

As µIP Web server, miniWeb embeds Web pages thanks to a pre-compilation
phase. More than a simple content-integration tool, the pre-compiler makes a
lot of off-line pre-calculations. IP packets are fully pre-generated, including IP,
TCP and HTTP headers. For each file to serve, a set of packets is ready to be
sent in the proper order, including TCP connection establishment and closing.
This allows huge simplifications in the TCP/IP stack, where the TCP state
machine does not have to be taken into account anymore.

Optimizations are also proposed for TCP/IP checksums calculations, a crit-
ical aspect of TCP/IP stack in term of computation time [12]. While the IP
checksum is computed on the IP header, the TCP checksum is computed on

RT n° 0349

12 Duquennoy, Grimaud & Vandewalle

a part of the IP header, on the TCP header, and on the whole TCP segment.
TCP checksums are placed in the packet header, imposing to compute on every
data of the packet before starting to send them (thus reading every data twice).

When packets are off-line pre-generated, Both TCP and IP checksums are
calculated and included. Only a few parts of them are unknown at compile-
time (IP destination address, TCP destination port, TCP sequence number,
etc.), and completed at run-time by miniWeb.

This packets pre-calculations method however has a drawback: it imposes to
choose a static MSS at compile-time. A TCP host must be able to handle any
MSS size proposed by a client (during the TCP connection establishment, the
smallest MSS proposed by the two hosts is chosen). This point forces miniWeb
to always use the smallest TCP MSS authorized, which is of 200 bytes. As
shown in Section 3.3, this involves a significant throughput degradation.

4.2.3 Retransmissions

Like µIP, miniWeb does not store unacknowledged sent packets. MiniWeb
TCP/IP stack has the huge advantage to be specialized for HTTP. This al-
lows to have no limitation but that the receiver window on in-flight packets:
when a packet is lost, miniWeb can easily find and send it again thanks to
its sequence number (because every packet is off-line pre-calculated, including
TCP sequence numbers). In miniWeb, TCP retransmission involves no memory
overhead nor any limitation on output in-flight packets.

4.2.4 Memory consumption

MiniWeb drivers interface allows to read and write data with a granularity of
a single byte. Its device drivers can work without any buffer, or with a MSS-
independent sized buffer, thus saving a lot of memory. When used without any
buffer, incoming bytes are computed and discarded by miniWeb as soon as they
are received.

This point helps to reduce miniWeb global variables usage to 88 bytes of
memory. Only 268 bytes of stack are used by local variables and procedure calls.
MiniWeb persistent memory footprint is of 7.1 KB (6.4 KB of code, 0.6 KB of
read-only data). As we presented it, miniWeb is a memory lightweight Web
server. We use it as our low bound reference, for its small memory usage as well
as for its reduced functionalities.

5 Propositions and measurements

As shown in Section 1.2, an embedded Web server used for Web applications
service has to be efficient when serving large static contents as well as small
dynamic contents. In this section, we present and we evaluate new proposi-
tions to avoid µIP server and miniWeb weaknesses. We implemented all our
propositions in our own embedded Web server, called dynaWeb. DynaWeb,
as miniWeb, is a monolithic embedded Web server, using its own dedicated
TCP/IP stack. Performances and ressources consumptions are compared be-

INRIA

Cross-layer enhancement of Web servers dedicated to small devices 13

tween µIP server, miniWeb and dynaWeb, in various conditions. To make our
experiments reproducible, we have made dynaWeb source code available 6.

5.1 Static contents service

5.1.1 Retransmissions management

TCP retransmission mechanism forces a TCP sender to be able to retransmit
unacknowledged segments. However, storing every in-flight segments involves a
huge memory overhead.

As said in Section 4, µIP does not store unacknowledged packets but it is
limited to one in-flight packet. MiniWeb makes the same memory saving without
any limitation on in-flight packets, because its TCP/IP stack is specialized for
HTTP. DynaWeb uses the same strategy as miniWeb (because it TCP/IP stack
is also dedicated to HTTP), having no need to store outgoing packets nor any
limitation on its maximal in-flight packets number.

5.1.2 Problematic

It is has been shown [2] that checksum calculation is a critical part of TCP/IP
stacks in terms of processing, because it involves every data to be accessed twice.
Moreover, as mentioned in Section 1.2, Web applications often send large static
contents, thus increasing checksum calculation cost.

Nothing is proposed in µIP to accelerate TCP checksum calculation. Mini-
Web uses fully pre-calculated TCP/IP packets, drastically reducing checksum
calculation time. Figure 4 shows µIP server and miniWeb maximal applicative
throughput on a 14.4 KB/s line. MiniWeb is constrained in always using a
MSS of 200 bytes, while µIP has no more than one in-flight packets, thus hav-
ing α = 1 and β = 1. Because of theirs respective choices, these Web servers
implementations for small embedded devices use TCP/IP in an suboptimal way

5.1.3 Proposition

Our proposition consists in pre-calculating checksum by constant-sized chunks
of data (let CS be this size). Packets are not fully pre-generated, allowing to
handle any MSS proposed by a client. To be as efficient as possible, a common
TCP/IP header is partially pre-generated (containing all common and fixed
header fields), including partially-calculated checksums. HTTP header are also
off-line generated and checksummed.

The pre-generated HTTP header and the file contents are placed contigu-
ously in a persistent memory, as well as the files chunks checksums. This method
involves a persistent memory overhead of:

chunks checksums size = 2×
⌈
file size

CS

⌉
When file contents have to be send, the total packet checksum is calculated

by summing successive chunks checksums. The output size is always a multiple
of the chunks size:

maximal output size = CS ×
⌈
MSS

CS

⌉
6DynaWeb source code: http://www2.lifl.fr/~duquenno/Research/DynaWeb

RT n° 0349

http://www2.lifl.fr/~duquenno/Research/DynaWeb

14 Duquennoy, Grimaud & Vandewalle

The chunks size have to be chosen big enough to reduce the computation
time, but little enough to allow an efficient MSS adaptation. It is quite obvious
that the total checksum computation time decreases logarithmically while the
chunks size grows, allowing a great efficiency even when using relatively small
chunks sizes.

Figure 4 shows how our server, dynaWeb, have a better maximal theoretical
applicative throughput than µIP and miniWeb, because it can handle any MSS
and have several in-flight packets.

200 600 1000 1400
0

20

40

60

80

100
Applicative throughput (%)

Mss (o)

α = 0.5,
β = 0

α = 1,
β = 1

Legend:
miniWeb

µIP dynaWeb

Figure 4: Maximal applicative throughput on a 14.4 KB/s line for µIP server,
miniWeb and dynaWeb

5.1.4 Performances evaluation

Checksum pre-calculation performances We measured the time spent by
dynaWeb (used on reference target presented in Table 1) in different phases when
sending TCP data to evaluate the checksum calculation impact on performances.
Measurement are done without checksums pre-calculation.

Table 2 shows the time spent in four phases: IP and TCP headers calcula-
tion and sending, TCP segment checksum calculation and TCP segment data
sending. The size of the TCP segment is 1408 bytes (a multiple of 128 bytes,
to allow comparison in same conditions when a chunks size up to 128 bytes
is used). These measurements only show the pure processing time, indepen-
dently of the device drivers and network constraints. Network driver functions
calls have been substituted by void function calls, thus taking into account calls
overheads in measurements7.

Checksum calculation represents 30 % of the total computation time. The
two most important phases consist in TCP segment checksum calculation and
TCP segment data sending. Even without calling the device drivers, the data
sending phase is quite heavy, because it needs to call the driver function (here, a

7In case of byte-oriented device drivers, procedure calls are done for each byte to send.
Buffer-oriented drivers does not need these calls, making even more important checksum
calculation time in ratio.

INRIA

Cross-layer enhancement of Web servers dedicated to small devices 15

Processing phase Time
IP header 0.3 ms
TCP header 0.4 ms
Segment checksum 3.82 ms
Data sending 8.05 ms
Total time 12.5 ms

Table 2: CPU Time spent in different dynaWeb sending phases, without any
checksum pre-calculation

void function) for each data byte. The checksum calculation is done by accessing
and summing every data by chunk of two bytes.

Table 3 shows the benefits of using our checksum pre-calculation method.
For each chunks size (from 4 to 128 bytes), we measured the time needed for
checksumming the TCP segment of 1408 bytes. These measurements are com-
pared to our reference performances (see Table 2), obtained without any check-
sum optimization.

Chunk size Memory cost CPU time Time saved Total time saved
- 0 B 3.82 ms 0 % 0 %

4 B 704 B 1.48 ms 61 % 19 %
8 B 352 B 0.78 ms 80 % 24 %

16 B 176 B 0.39 ms 90 % 27 %
32 B 88 B 0.23 ms 94 % 29 %
64 B 44 B 0.16 ms 96 % 29 %

128 B 22 B 0.11 ms 97 % 29 %

Table 3: Checksum pre-calculation impact. Memory cost is the amount of
persistent memory needed to store pre-calculated checksums. Time saved is
relative to the unoptimized checksum processing time, while total time saved is
relative to the unoptimized total sending processing time.

Checksum calculation time as well as persistent memory overhead decrease
logarithmically when chunks sizes are growing. With a chunks size of 128 bytes,
only 0.11 ms are spent for checksum calculation, saving 97 % of the checksum
processing time. In this situation, total processing time spent in the send-
ing phase is of 8.91 ms (saving 29 % of the total time without checksum pre-
calculation).

Servers comparison We have ported µIP, miniWeb and dynaWeb to our
reference target. We use its integrated serial line to its maximal throughput:
14.4 KB/s, using SLIP as link layer protocol.

For our experiments, we used a workstation using Windows XP as operating
system, and Internet Explorer 6 as Web browser, the very commonly used con-
figuration used by clients for Internet Web accesses [21, 22]. It is important to
note that Windows TCP/IP stack implements the TCP delayed ACKs strategy.
Because our workstation is directly connected to the serial line, the network
physical latency is negligible.

RT n° 0349

16 Duquennoy, Grimaud & Vandewalle

To evaluate the 3 servers performances on large static files service, we mea-
sured the time they need to send a 55.9 KB file. Different MSS sizes are tested,
from the smallest authorized (i.e., 200 bytes) to 1460 bytes (the most common
TCP MSS). Figure 5 shows our measurements for all our MSS and servers.
DynaWeb uses pre-calculated checksums with a chunks size of 32 bytes.

MSS (B)

Time (s)

200 600 1000 1400
0

6

12

18

24

30

dynaWeb
miniWeb

µIP

Figure 5: Time needed to send a 55.9 KB file on a 14.4 KB/s serial line for our
three servers

The most obvious observation is that µIP server is significantly slower than
the two other servers. This can be explained by its limitation to one in-flight
packet: µIP cannot send more than 5 packets by second to a TCP/IP stack
implementing the delayed ACKs strategy. When a small MSS is used, the total
amount of packets to send is the bigger, and µIP needs around 60 seconds to
send the whole file. With an MSS of 1460 bytes, the file is served in 13.3 seconds.
It is important to keep in mind that in this situation, µIP has a bigger memory
consumption (Section 4) because it uses two MSS-sized buffers.

MiniWeb is significantly faster than µIP, and its performances are fully in-
dependent on the MSS used. It serves the file in around 8.8 seconds.

DynaWeb has the greatest performances, it is able to serve the file in 7.2
seconds (18% faster than miniWeb). With the very smallest MSS (200 bytes),
miniWeb is only 2% faster than dynaWeb (which needs 9 seconds to serve the
file). That shows that the overhead of dynaWeb MSS adaptability is small.

Measurements presented in Figure 5 are in adequacy with theoretical ap-
plicative throughputs shown in Figure 4.

5.2 Dynamic contents service

Web applications often ask their Web server to dynamically generate and send
data. We mentioned in Section 1.2 that an embedded Web server has to be
efficient particularly when sending small-sized dynamic contents.

INRIA

Cross-layer enhancement of Web servers dedicated to small devices 17

5.2.1 MiniWeb and µIP server approaches

MiniWeb is simple and functionally minimal. Actually, the URL requested by
the a HTTP GET is not processed and the TCP port (default 80 for HTTP) is
used to select the response (port 80 serves page1.html, port 81 replies page2.html
...). Nothing is available to serve dynamic content.

In another hand, µIP server, used on its general purpose embedded TCP/IP
stack, is able to generate contents dynamically. It uses dedicated markers in
HTML files, associated to generation functions. These functions have to be
directly implemented in the server source code.

µIP applications must be developed using protothreads. This choice makes
applications hard to write (local variables are not allowed, as well as switch-case
control structures). Dynamic contents generation functions also suffer of this
limitation.

For memory saving reasons, µIP Web server uses a very simple approach
for sending generated contents: instead of building a whole HTTP response, it
sends a first part of the response containing the HTTP return code, followed by
a second packet containing the content-type, followed by the HTTP generated
contents.

5.2.2 Our approach

Client OS Web Server Initial loading
(ms)

Service time (ms)

Windows, µIP server 1728 736
IE 6 dynaWeb 709 62
Linux, µIP server 866 183
Firefox 2 dynaWeb 694 64

Table 4: Servers performances on the AJAX test application (MSS: 1460 B)

When a Web server has to return a response of a few bits, protocols constant
overheads ratios becomes huge. We propose to reduce these overheads in two
ways:

Checksums We pre-generate offline HTTP headers for dynamic contents, with
their pre-computed checksums. At runtime, generated contents have to
be checksummed, but IP, TCP and HTTP headers and their checksums
are statically available.

TCP control We allow to use HTTP persistent connections, avoiding TCP
connections establishment and closing each time we have to send small
data. Embedded Web servers often do not use persistent connection for
memory saving reasons (only one TCP connection is used at a given time).
In dynaWeb, a TCP connection needs only 36 bytes of memory because
data buffers and common informations (e.g., TCP source port, IP source
address, etc.) are shared by all connections.

Our contents generation model simply consists in URLs mapped to native
functions instead of static contents. This approach is more adapted to small

RT n° 0349

18 Duquennoy, Grimaud & Vandewalle

contents service than the HTML markers approach. AJAX Web applications can
easily integrate small HTTP contents into complete Web pages. The generation
function simply has to write data into a global buffer, using a write procedure.
Two situations are possible:

Small-sized data When generated data can be contained into the global buffer
(which maximal size is the TCP MSS), we use HTTP persistent connec-
tion, including the content-length field in the header. In this case, gener-
ated contents transmission is very efficient.

Large-sized data When the global buffer is full, and the contents generation
has not ended, the HTTP contents length is unknown. One can send
the beginning of the HTTP response, without the content-length field.
In this situation, a persistent connection cannot be used. The end of
the response is identified by a TCP connection close. To enable eventual
retransmissions, the stack is limited in this case to one in-flight packet,
because a single global buffer is used. Each time an acknowledgment is
received, the buffer is written again by the contents generation function,
allowing a new transmission. This involves huge overheads, but large-sized
generated contents are quite infrequent in AJAX Web applications.

In dynaWeb, dynamic contents generators are independent source code files,
compiled separately and linked with the server before being embedded. A tool
generates a table associating URLs to static (files data and chunks checksums)
or dynamic (functions references) contents. A Web application is fully contained
in a directory, including static files and content generation source codes.

5.2.3 Performances evaluation

We measured µIP and dynaWeb performances on a simple AJAX application.
MiniWeb does not appear in these experiments, because of its incapacity to
serve generated contents.

The Web application is a simple Web page sending periodically asynchronous
HTTP requests to the server. The server is embedded into a portable console
which characteristics have been presented in Table 1. A generator function is
used to return the console buttons state. The application displays and update
continuously the console buttons state, thanks to AJAX requests.

The application consists in a HTML file of 1.9 KB and JavaScript file of
1.7 KB. The generated contents containing buttons state is periodically served
in two bytes.

We tested the two servers when accessed from different kind of clients. The
first client configuration consists in a workstation using Windows XP as OS and
Internet Explorer 6 as Web browser. The second client uses a Linux kernel and
Mozilla Firefox 2 as Web browser. It is important to note that Linux TCP/IP
stack does not use the TCP delayed ACKs strategy for the firsts exchanged
segments of TCP connections. Table 4 shows the measured performances (using
a 14.4 KB/s serial line).

The client OS does not significantly impact on dynaWeb performances, be-
cause it sends more than one in-flight packet. All the results are in favor of
dynaWeb.

INRIA

Cross-layer enhancement of Web servers dedicated to small devices 19

With a client using Windows, µIP is extremely slow, because of its in-flight
packets limitation. It needs more than 700 ms to send the two generated bytes
for two reasons: (i) it sends at least three TCP segments for each HTTP response
and (ii) it uses non-persistent HTTP connections.

With a client using Linux TCP/IP stack (without delayed ACKs on these
short connections), dynaWeb is three times faster than µIP for sending the two
generated bytes. This is because dynaWeb uses persistent HTTP connections,
it sends its response in only one TCP segment, and because its IP, TCP and
HTTP headers are generated and checksummed offline.

5.2.4 Discussion on dynamic contents service

Embedded Web servers application often need to generate contents. Informa-
tions returned by this way may have different persistence properties, changing
the optimal TCP retransmission management in case of a loss:

� The generation function has side effects. In case of retransmission, the
TCP/IP stack must not re-generate the contents to send. The generation
function must be called only once and its result has to be stored while data
are not fully sent and acknowledged. A typical example of this situation
is a function that updates client account values.

� The generation function is idempotent (deterministic and without side
effects). In this case, the TCP/IP stack can equally re-generate the con-
tents. Depending on its priority (memory saving or efficiency), the stack
can choose by itself between two policies: (i) calling only once the gen-
eration function and storing its results or (ii) re-calling the function in
case of retransmission. As an example, a function that encrypts a data
transmitted in the request may be idempotent.

� The generation function has no side effects and generated contents have to
be as recent as possible. In this case, when a retransmission is needed, the
best choice consists in re-generating the contents (a significant amount
of time can be spent between the first send and a retransmission need
notification). A function that returns a sample from a sensor is a good
example of such a situation.

The choice to cache or not the generated contents has an impact on process-
ing time and memory consumption, and furthermore on the TCP traffic. Indeed,
cases allowing to discard generated contents after having sent them permids to
send large generated contents without waiting for incoming acknowledgments,
thus having several in-flight packets (as explained in Section 5.2.2).

Proposing a new API or API extensions allowing the Web application pro-
grammer to give information about its generated contents persistence should be
a big improvement for dynamic contents management in embedded Web servers.
Indeed, in this context, choices between memory saving and efficiency have a
crucial impact (more than in classical workstation context).

RT n° 0349

20 Duquennoy, Grimaud & Vandewalle

5.3 DynaWeb global analysis

5.3.1 Functionalities summary

DynaWeb uses a similar device drivers interface to miniWeb: it can handle
incoming packets byte per byte, without any input buffer or with a MSS-
independent sized buffer. Its implementation is monolithic, i.e., including its
own dedicated TCP/IP stack. Table 5 summarizes the three servers function-
alities.

Functionality µIP miniWeb dynaWeb

UDP – – –
ICMP

√
– –

IP options – – –
IP reassembly

√
– –

TCP options
√

– –
TCP urgent data

√
– –

TCP RTT estimation
√

– –

POST requests – – –
URL readding

√
–

√

TCP MSS adaptation
√

–
√

Multiple TCP conn.
√

–
√

Multiple in-flight packets –
√ √

HTTP persistent conn. – –
√

Contents generation
√

–
√

Checksum pre-calculation –
√ √

Table 5: µIP server, miniWeb and dynaWeb functionalities summary

Server
Volatile memory (B) Persistent memory (B)

Globals Stack Total Code RO data Total

µIP (MSS:
200 B)

1 k 204 1.2 k 15.3 k 1.3 k 16.6 k

µIP (MSS:
1460 B)

3.6 k ” 3.8 k ” ” 16.6 k

miniWeb
(any MSS)

88 268 356 6.5 k 648 7.1 k

dynaWeb
(any MSS)

152 92 244 8.9 k 304 9.2 k

Table 6: Servers minimal memory consumptions

µIP has a better support of TCP/IP than miniWeb and dynaWeb TCP/IP
stacks. Indeed, the last two have been specialized for their specific usage. As
examples, ICMP or TCP urgent data have no need to be supported by an
embedded Web server.

IP reassembly has not been implemented in dynaWeb (nor miniWeb) be-
cause it is quite infrequent [18] and its management involves a big memory
consumption. DynaWeb is unable to handle other TCP options than the MSS
negotiation, and it does not estimate the connection RTT (Round Time Trip).

INRIA

Cross-layer enhancement of Web servers dedicated to small devices 21

TCP RTT estimation allows to use a suitable retransmission timeout for a con-
nection. DynaWeb uses an empirically-chosen constant timeout.

DynaWeb supports critical HTTP points. It is able to handle multiple con-
nections, several MSS sizes, HTTP persistent connection and contents genera-
tion while managing multiple in-flight packets and pre-calculating its TCP and
IP checksums. Such HTTP support allows dynaWeb to have the best perfor-
mances, keeping its memory consumption extremely low (see Section 5.3.2).

The three servers does not support HTTP POST request. Including this
support in dynaWeb should be intersting, allowing a user to easily upload new
applications or large-sized data onto the server.

5.3.2 Memory consumption

As µIP and miniWeb, dynaWeb main priority consists in memory saving. Ta-
ble 6 presents the minimal memory consumptions of the three embedded Web
servers, including theirs TCP/IP stack and device drivers. MiniWeb and dy-
naWeb use an input buffer of only one byte. µIP uses its smaller input buffer
size, 240 bytes, fixing the TCP MSS to 200 bytes. µIP and dynaWeb maxi-
mal connection number is set to one (note that miniWeb always suffer of this
limitation).

µIP Web server needs more memory than the two monolithic Web servers,
miniWeb and dynaWeb. Its minimal volatile memory consumption of 1.2 KB
forces it to use a TCP MSS of 200 bytes, involving extremely poor performances
(see Section 5.1.4). Its persistent memory footprint is also significantly higher
than miniWeb and dynaWeb ones.

MiniWeb and dynaWeb have comparable memory consumptions: they need
a few hundreds of bytes of volatile memory, and a few kilo-bytes of persistent
memory.

µIP Web server presents the worst performances and the higher memory
footprint. This is the illustration of the overheads involved when using a gen-
eral purpose TCP/IP stack with a layered implementation. Most of this server
limitations (in-flight packets limitation, non-persistent HTTP connections, dy-
namic contents cutting before sending, etc) are compromises done to limit the
memory usage.

It is important to remember that miniWeb is unable to send generated con-
tents, to handle multiple TCP connection and to read HTTP requests contents.
DynaWeb, with its very small memory footprint (less than 300 bytes of RAM),
is able to serve dynamic Web applications as described in Section 1.2 (multiple
and persistent TCP connections, contents generation, etc.).

6 Future works

In a near future, we would like to treat various topics related to embedded Web
servers.

Large-sized dynamic contents service We would like to evaluate the costs
and benefits of different strategies allowing large contents generation and service
in dynaWeb. A strategy we think relevant has been described in Section 5.2.2.

RT n° 0349

22 Duquennoy, Grimaud & Vandewalle

Nevertheless this strategy has to be discussed and other solutions must also be
evaluated.

Non point-to-point communications We would like to extend our work to
remote communications. This situation involves new constraints (higher latency,
more packet losses) and can be used for example in the case of sensor networks
(allowing samples consultation from a Web browser).

TCP connection establishment Allowing our server to establish an (even-
tually secured) TCP connection to another host should also be relevant, for
example for mashup applications (where served informations are merged from
different sources).

Reverse AJAX integration A work on reverse AJAX with embedded con-
straints should also be interesting. This application model [17] allows the Web
server to push data to the client instead of being polled, but it is very memory
consuming (numerous TCP connections have to be stored simultaneously). Re-
verse AJAX dedicated APIs have already been proposed for classical (heavy)
servers, and bring some scalability issues [13].

Dedicated API Finally, we would like to work on Web applications concep-
tion, providing, as an example, new APIs dedicated to embedded Web servers
constraints. In Section 5.2.4, it is mentioned that informations about generated
contents persistence should be exploited by an embedded Web server.

7 Conclusions

We presented an analysis of embedded Web servers performances for dynamic
Web application service. We shown that this kind of application mainly serves
two types of contents: (i) large static files and (ii) small generated contents. To
provide an efficient Web application service, embedded Web servers have to be
particularly efficient when sending these two kind of contents.

Our study identifies factors that have a big impact on embedded Web servers
performances: correct TCP MSS handling, multiple in-flight packets manage-
ment in front of delayed ACKs policies, checksum and headers pre-calculations,
multiple and persistent TCP connections handling. Our measurements on ex-
isting embedded Web servers confirm by experimentation the importance of the
factors.

We show that tightly coupled protocols implementation permits numerous
optimizations, in term of memory footprint as well as in computation time and
network efficiency. A monolithic implementation and cross-layer approach al-
lows to consider new solutions. Our implementation, dynaWeb, is compared to
other existing Web servers. DynaWeb shows by experiment that our propos-
als improve significantly Web server performances, keeping an extremely low
memory consumption and optimal functionalities for dynamic Web application
service.

INRIA

Cross-layer enhancement of Web servers dedicated to small devices 23

References

[1] I. Agranat. Engineering web technologies for embedded applications. In-
ternet Computing, IEEE, 2(3):40–45, May-June 1998.

[2] M. Allman, V. Paxson, and W. Stevens. RFC 2581: TCP congestion con-
trol, 1999.

[3] R. Braden. Rfc 1122: Requirements for internet hosts - communication
layers, 1989.

[4] M. Domingues. A simple architecture for embedded web servers. ICCA’03,
2003.

[5] A. Dunkels. Full tcp/ip for 8-bit architectures. In MobiSys ’03: Proceedings
of the 1st international conference on Mobile systems, applications and
services, pages 85–98, New York, NY, USA, 2003. ACM Press.

[6] A. Dunkels. The proof-of-concept miniweb tcp/ip stack, 2005. http://
www.sics.se/~adam/miniweb/.

[7] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali. Protothreads: simplifying
event-driven programming of memory-constrained embedded systems. In
SenSys ’06: Proceedings of the 4th international conference on Embedded
networked sensor systems, pages 29–42, New York, NY, USA, 2006. ACM
Press.

[8] A. Dunkels, T. Voigt, and J. Alonso. Making tcp/ip viable for wireless sen-
sor networks. In Proceedings of the First European Workshop on Wireless
Sensor Networks (EWSN 2004), work-in-progress session, Berlin, Germany,
Jan. 2004.

[9] J. J. Garrett. Ajax: A new approach to web applications. Adaptivepath,
2005.

[10] G.-j. Han, H. Zhao, J.-d. Wang, T. Lin, and J.-y. Wang. Webit: a mini-
mum and efficient internet server for non-pc devices. In Global Telecom-
munications Conference, 2003. GLOBECOM ’03. IEEE, volume 5, pages
2928–2931 vol.5, 2003.

[11] H.-T. Ju, M.-J. Choi, and J. W. Hong. An efficient and lightweight embed-
ded web server for web-based network element management. Int. J. Netw.
Manag., 10(5):261–275, 2000.

[12] J. Kay and J. Pasquale. The importance of non-data touching processing
overheads in tcp/ip. In SIGCOMM ’93: Conference proceedings on Com-
munications architectures, protocols and applications, pages 259–268, New
York, NY, USA, 1993. ACM.

[13] E. B. A. Mesbah and A. van Deursen. A comparison of push and pull
techniques for ajax. In S. uang and M. D. Penta, editors, Proceedings
of the 9th IEEE International Symposium on Web Site Evolution (WSE),
pages 15–22. IEEE Computer Society, 2007.

[14] J. Postel. Rfc 791: Internet protocol, Sept. 1981.

RT n° 0349

http://www.sics.se/~adam/miniweb/
http://www.sics.se/~adam/miniweb/

24 Duquennoy, Grimaud & Vandewalle

[15] J. Postel. Rfc 793: Transmission control protocol, Sept. 1981.

[16] J. Riihijarvi, P. Mahonen, M. Saaranen, J. Roivainen, and J.-P. Soininen.
Providing network connectivity for small appliances: a functionally mini-
mized embedded web server. Communications Magazine, IEEE, 39(10):74–
79, Oct. 2001.

[17] A. Russell. Comet: Low latency data for the browser. Dojo Toolkit, 2006.

[18] C. Shannon, D. Moore, and K. C. Claffy. Beyond folklore: observations
on fragmented traffic. IEEE/ACM Trans. Netw., 10(6):709–720, December
2002.

[19] S. Shon. Protocol implementations for web based control systems. Inter-
national Journal of Control, Automation, and Systems, 3:122–129, March
2005.

[20] R. Sridharan, R. Sridhar, and S. Mishra. Poster: A robust header compres-
sion technique for wireless ad hoc networks. SIGMOBILE Mob. Comput.
Commun. Rev., 7(3):23–24, 2003.

[21] W3Schools. World wide web browsers statistics. http://www.w3schools.
com/browsers/browsers_os.asp.

[22] W3Schools. World wide web clients os statistics. http://www.w3schools.
com/browsers/browsers_stats.asp.

INRIA

http://www.w3schools.com/browsers/browsers_os.asp
http://www.w3schools.com/browsers/browsers_os.asp
http://www.w3schools.com/browsers/browsers_stats.asp
http://www.w3schools.com/browsers/browsers_stats.asp

Centre de recherche INRIA Lille – Nord Europe
Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex

Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-0803

	Motivation
	Introduction
	Context

	State of the art
	Adapting TCP/IP protocols to embedded systems constraints
	TCP/IP stacks for embedded systems
	MIP
	IP and lwIP

	Embedded Web servers
	Hardware Web servers
	Software Web servers

	Analysis of TCP/IP used for HTTP
	TCP behavior
	Data overhead
	Applicative throughput

	Reference embedded Web servers study
	IP Web server analysis
	Server presentation
	Traffic analysis
	Memory consumption

	MiniWeb analysis
	Server presentation
	Pre-calculations
	Retransmissions
	Memory consumption

	Propositions and measurements
	Static contents service
	Retransmissions management
	Problematic
	Proposition
	Performances evaluation

	Dynamic contents service
	MiniWeb and IP server approaches
	Our approach
	Performances evaluation
	Discussion on dynamic contents service

	DynaWeb global analysis
	Functionalities summary
	Memory consumption

	Future works
	Conclusions

