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Key-words: Online data processing, Bayesian estimation, regularized particle filters,
stochastic volatility model

∗ Department of Economics, University of Brescia
† INRIA Futurs, Projet select, Université Paris-Sud



Traitement de données en temps réel : comparaison de

filtres particulaires bayésiens régularisés

Résumé : L’objectif de ce travail est de comparer trois filtres particulaires régularisés pour
le traitement de données en temps réel. Les trois filtres sont évalués pour leurs capacités
à reconstituer les états latents du système et à estimer les paramètres du modèle. Nous
considérons le paradigme bayésien et le modèle à volatilité stochastique. Nous montrons
que les performances du filtre particulaire auxiliaire sont meilleures que celles des filtres
particulaires classiques d’échantillonnage préférentiel séquentiel.

Mots-clés : Traitement de données en temps réel, estimation bayésienne, filtres particu-
laires régularisés, modèle à volatilité stochastique



Comparison of Bayesian regularized particle filters 3

1 Introduction

The analysis of phenomena, which evolve over time is a common problem to many fields like
engineering, physics, biology, statistics, economics and finance. A time varying system can
be represented through a dynamic model, which is constituted by an observable component
and an unobservable internal state. The hidden states (or latent variables) represent the
informations we want to extrapolate from the observations.

In time series analysis, many approaches have been used for the estimation of dynamics
models. The seminal works of Kalman (1960) and Kalman and Bucy (1960) introduce filter-
ing techniques (the Kalman-Bucy filter) for continuous valued, linear and Gaussian dynamic
systems. Maybeck (1982) motivates the use of stochastic dynamic systems in engineering
and examines the estimation problems for state space models, in both a continuous and a
discrete time framework. In economics, Harvey (1989) studies the state space representation
of dynamic structural models and uses Kalman filter for hidden states filtering. Hamilton
(1989) analyzes nonlinear time series models and introduces a filter (Hamilton-Kitagawa
filter) for discrete time and discrete valued dynamic systems with a finite number of states.

In this paper, the online data processing problem is considered. In these situations, as
pointed out by Liu and Chen (1998), Markov Chain Monte Carlo (MCMC) samplers are too
much time demanding. To overcome this difficulty, some sequential Monte Carlo techniques
have been recently developed. Doucet et al. (2001) provide the state of the art on these
methods. They discuss both applications and theoretical convergence of the algorithms.

The contribution of this work is the comparison of three types of regularized particle
filters - the regularized Sequential Importance Sampling (SIS), the regularized Sampling
Importance Resampling (SIR) and the regularized Auxiliary Particle Filter (APF) - when
the model parameters are unknown. The online estimation of model parameters is a dif-
ficult task (Kitagawa (1998); Storvik (2002); Berzuini and Gilks (2001); Fearnhead (2002);
Djuric et al. (2002); Storvik (2002); Andrieu and Doucet (2003); Doucet and Tadic (2003);
Polson et al. (2002)). We consider here the Bayesian paradigm and the regularization (see
Chen and Haykin (2002)) approach of Oudjane (2000); Liu and West (2001); Musso et al.
(2001); Rossi (2004) based on a kernel approximation in the parameter-augmented state
space. We also discuss the initialization of the filtering procedure.

This work is structured as follow. Section 2 introduces the general representation of a
Bayesian dynamic model and presents the stochastic volatility model. Section 3 reviews
some regularized particle filters. Finally, Section 4 presents the results.

2 Bayesian Dynamic Models

We introduce the general formulation of a Bayesian dynamic model and show some funda-
mental relations for Bayesian inference on it. Our definition of dynamic model is general
enough to include the models analyzed in Kalman (1960), Hamilton (1994), Carter and Kohn
(1994), Harrison and West (1989) and in Doucet et al. (2001). Throughout this work, we use
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4 Casarin & Marin

a notation similar to that one commonly used in particle filters literature (see Doucet et al.
(2001)).

We denote by {xt; t ∈ N}, xt ∈ X ⊆ R
nx , the hidden states of the system, by {yt; t ∈

N0}, yt ∈ Y ⊆ R
ny , the observable variables and by {θt; t ∈ N}, θt ∈ Θ ⊆ R

nθ , the
parameters of the model. We denote by x0:t = (x0, . . . ,xt) the collection of hidden states
up to time t and with x−t = (x0, . . . ,xt−1,xt+1, . . . ,xT ) the collection of all hidden states
without the t-th element. We use the same notations for the observable variables and
parameters.

The Bayesian state space representation of a dynamic model is given by:

yt ∼ p(yt|xt, θt,y1:t−1) measurement density ,

(xt, θt) ∼ p(xt, θt|x0:t−1, θ0:t−1,y1:t−1) transition density ,

x0 ∼ p(x0|θ0) initial density ,

θ0 ∼ π(θ0) prior density ,

for t = 1, . . . , T .
We suppose that p(xt, θt|x0:t−1, θ0:t−1,y1:t−1) = p(xt, θt|xt−1, θt−1,y1:t−1). We also

assume that the parameters are constant over time: the transition density of the parameters
is then δθt−1

(θt) with initial value θ0 = θ, δx(y) denotes the Dirac’s mass centered in x.
In that case, the joint transition of hidden states and parameters is:

p(xt, θt|xt−1, θt−1,y1:t−1) = p(xt|xt−1, θt,y1:t−1)δθt−1
(θt) .

Let us denote by zt = (xt, θt) the parameter-augmented state vector and by Z the
corresponding augmented state space. For such models, we are interested in the prediction,
filtering and smoothing densities which are given by:

p(zt+1|y1:t) =

∫

Z

p(xt+1|xt, θt+1,y1:t)δθt
(θt+1)p(zt|y1:t)dzt , (1)

p(yt+1|y1:t) =

∫

Z

p(yt+1|zt+1,y1:t)p(zt+1|y1:t)dzt+1 ,

p(zt+1|y1:t+1) =
p(yt+1|zt+1,y1:t)p(zt+1|y1:t)

p(yt+1|y1:t)
, (2)

p(zs|y1:t) = p(zs|y1:s)

∫

Z

p(zs+1|zs,y1:s)p(zs+1|y1:t)

p(zs+1|y1:s)
dzs+1, s < t .

Due to the high number of integrals that must be solved, previous densities may be difficult
to evaluate with general dynamics. Some Monte Carlo simulation methods, such as particle
filters, allow us to overcome these difficulties.

As an example, let us consider the stochastic volatility model. Two of the main features
of the financial time series are time varying volatility and clustering phenomena in volatility.
Stochastic volatility models widely used in finance have been introduced, in order to account

INRIA
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Figure 1: Simulation paths for xt (grey line) and yt (black line). Upper plot: daily dataset
(α = 0, φ = 0.99 and σ2 = 0.01). Bottom plot: weekly dataset (α = 0, φ = 0.9 and
σ2 = 0.1).

for these features. Let yt be the observable variable with time varying volatility and xt the
stochastic log-volatility process. An example of stochastic volatility model is:

yt|xt ∼ N (0, ext)

xt|xt−1, θ ∼ N
(

α + φxt−1, σ
2
)

x0|θ ∼ N
(

0, σ2/(1 − φ2)
)

θ ∼ π(θ)

where θ = (α, log((1+φ)/(1−φ)), log(σ2)). The choice of π(θ) will be discussed in Section
4. Fig. 1 shows two simulated paths of yt and xt.

In the next section, we deal with the problem of parameters and states joint estimation
in a kernel-regularized sequential Monte Carlo framework.

RR n° 6153



6 Casarin & Marin

3 Regularized particular filters

For making inference on the Bayesian dynamic model given in Section 2 in an online data
processing context, MCMC algorithms are too much time demanding. Sequential impor-
tance sampling and more advanced sequential Monte Carlo algorithms called Particle Filters
(Doucet et al., 2001) represent a promising alternative. The main advantage in using par-
ticle filters is that they can deal with nonlinear models and non-Gaussian innovations. In
contrast to Hidden Markov Model filters, which work on a state space discretized to a fixed
grid, particle filters focus sequentially on the higher density regions of the state space. This
feature is common to one of the early sequential methods, the Adaptive Importance Sam-
pling algorithm due to West (1992, 1993).

Different particle filters exist in the literature and different simulation approaches like
rejection sampling, MCMC and importance sampling, can be used for the construction of
a particle filter. In this work, we present some kernel-regularized particle filters, which
combine the importance sampling reasoning with a suitable modification of the importance
weights. The regularization approach we use is the same than the one of Liu and West
(2001) and Musso et al. (2001). This approach relies upon a kernel-based reconstruction
of the empirical filtering densities which produces a systematic modification of the true
importance weights.

3.1 Regularized SIS

Let us start from the non-regularized SIS. We assume that at iteration t > 0 a properly
weighted particle set {xi

t, θ
i
t, γ

i
t}

N
i=1, approximating the filtering density p(xt, θt|y1:t), is

available. The empirical distribution corresponding to this approximation is:

pN(xt, θt|y1:t) =

N
∑

i=1

γi
tδ(xi

t,θ
i
t)

(xt, θt) . (3)

The particles set, {xi
t, θ

i
t, γ

i
t}

N
i=1, can be viewed as a random discretisation of the state

space X × Θ with associated probability weights {γi
t}

N
i=1. Thanks to this discretisation, it

is possible to approximate the prediction and filtering densities given in (1) and (2):

pN (xt+1, θt+1|y1:t) =

N
∑

i=1

γi
tp(xt+1|x

i
t, θt+1,y1:t)δθi

t
(θt+1) ,

pN (xt+1, θt+1|y1:t+1) ∝
N
∑

i=1

γi
tp(yt+1|xt+1, θt+1,y1:t)p(xt+1|x

i
t, θt+1,y1:t)δθi

t
(θt+1) .

The goal is now to obtain N particles {xi
t+1, θ

i
t+1, γ

i
t+1}

N
i=1 from the filtering den-

sity in (2). It is proposed to sample (xi
t+1, θ

i
t+1) according to the importance density

q(·|xi
t, θ

i
t,y1:t+1). The importance weight of particle (xi

t+1, θ
i
t+1) is then calculated using

INRIA



Comparison of Bayesian regularized particle filters 7

the recursive formula:

γi
t+1 ∝ γi

t

p(yt+1|x
i
t+1, θ

i
t+1,y1:t)p(xi

t+1|x
i
t, θ

i
t+1,y1:t)δθi

t
(θi

t+1)

q(xi
t+1, θ

i
t+1|x

i
t, θ

i
t,y1:t+1)

. (4)

The choice of an optimal importance density q(·|xi
t, θ

i
t,y1:t+1), that is, a density which min-

imizes the variance of the importance weights is discussed in Pitt and Shephard (1999) and
Crisan and Doucet (2000). In many cases, it is not possible to use this optimal importance
density as the weight updating associated to the this density does not admit a closed-form
expression. In that case, the transition density of the parameter-augmented state vector
represents a natural alternative for the importance density. Indeed, the transition density
represents a sort of prior at time t for the parameter-augmented state vector (xi

t+1, θ
i
t+1).

In our case, due to the presence of the Dirac point mass at the numerator of the weights
it is impossible to modify over the filtering iterations the particle values for the parameters.
In practice due to the loss of particle diversity in the parameter space, the weights will
tend to zeros and of course stay zero for ever, so we are facing a problem of degeneracy
of the empirical filtering distribution. This scenario motivates particle filtering methods
known as regularized particle filters. In order to avoid the degeneracy problem and to
force the exploration of the parameter space toward regions which are not covered by the
prior distribution, Liu and West (2001) and Musso et al. (2001) propose to use a regularized
version of the filtering density. This approach results in the modification of the weights in
(4) and the definition of a new set of weights:

ωi
t+1 ∝ ωi

t

p(yt+1|xi
t+1, θ

i
t+1,y1:t)p(xi

t+1|x
i
t, θ

i
t+1,y1:t)Kh(θi

t+1 − θ
i
t)

q(xi
t+1, θ

i
t+1|x

i
t, θ

i
t,y1:t+1)

where Kh(y) = h−dK(y/h) is a regularization kernel, K being a positive function defined
on R

nθ and h a positive smoothing factor (bandwidth).
The modification of the importance weights defined in (4) results from two steps. The

first one is the regularization of the empirical density in (3) by a kernel estimator:

pR
N (xt, θt|y1:t) =

N
∑

i=1

ωi
tδxi

t
(xt)Kh(θt − θ

i
t) .

The second one is the application of an importance sampling argument to the approximated
filtering density:

pR
N (xt+1, θt+1|y1:t+1) =

N
∑

i=1

ωi
tp(yt+1|xt+1, θt+1,y1:t)p(xt+1|x

i
t, θt+1,y1:t)Kh(θt+1 − θ

i
t) .

The convergences results associated with this type of approximation are recalled in
Musso et al. (2001) and Oudjane (2000). Under some usual conditions on the kernel, when

RR n° 6153



8 Casarin & Marin

the number of particles increases to infinity, the regularized empirical density converges to
the right one for various criteria. For instance, we have pR

N −→L2 p.
Thanks to this approximation, the regularization kernel becomes the natural choice for

the parameters proposal distribution. Thus, we sample (xi
t+1, θ

i
t+1) according to:

q(xt+1|x
i
t, θt+1,y1:t+1)Kh(θt+1 − θ

i
t) .

In that case, we have:

ωi
t+1 ∝ ωi

t

p(yt+1|x
i
t+1, θ

i
t+1,y1:t)p(xi

t+1|x
i
t, θ

i
t+1,y1:t)

q(xi
t+1|x

i
t, θ

i
t+1,y1:t+1)

.

In Algorithm 1, we give a pseudo-code representation of this method.

Algorithm 1 - Regularized SIS Particle Filter -
· At time t = 0, for i = 1, . . . , N , simulate zi

0 ∼ p(z0) and set ωi
0 = 1/N

· At time t > 0, given {xi
t, θ

i
t, ω

i
t}

N
i=1, for i = 1, . . . , N :

1. Simulate θ
i
t+1 ∼ Kh(θt+1 − θ

i
t)

2. Simulate xi
t+1 ∼ q(xt+1|xi

t, θ
i
t+1,y1:t+1)

3. Update the weights: ωi
t+1 ∝ ωi

t

p(yt+1|x
i
t+1, θ

i
t+1,y1:t)p(xi

t+1|x
i
t, θ

i
t+1,y1:t)

q(xi
t+1|x

i
t, θ

i
t+1,y1:t+1)

.

3.2 Regularized SIR

As it is well known in the literature (see for example Arulampalam et al. (2001)), basic
SIS algorithms have a degeneracy problem. After some iterations the empirical distribution
degenerates into a Dirac’s mass on a single particle. This due to the fact that the variance
of the importance weights is non-decreasing over time (see Doucet et al. (2000)). In order
to solve this degeneracy problem, Gordon et al. (1993) introduce the SIR algorithm. This
algorithm belongs to a wider class of bootstrap filters. At each iteration, a resampling step
is used to generate a new set of particles. After this resampling step, the weights of the
resampled particles are uniformly distributed over the particle set.

In the initial SIR, the resampling step is done at each iteration of the algorithm. This
systematic resampling can introduce extra Monte Carlo variations, see Liu and Chen (1998).
This can be reduced be doing resampling only when the Effective Sample Size (ESS) is small.
The ESS measures the overall efficiency of an importance sampling algorithm. The ESS is a
function of the coefficient of variation of the importance weights. At iteration t, the empirical

INRIA



Comparison of Bayesian regularized particle filters 9

EES is

ESSt =
N

1 + N
N
∑

i=1

(

ωi
t − N−1

N
∑

i=1

ωi
t

)2
/

(

N
∑

i=1

ωi
t

)2 .

In Algorithm 2, we give a pseudo-code representation of this method.

Algorithm 2 - Regularized SIR Particle Filter -
· At time t = 0, for i = 1, . . . , N , simulate zi

0 ∼ p(z0) and set ωi
0 = 1/N

· At time t > 0, given {xi
t, θ

i
t, ω

i
t}

N
i=1, for i = 1, . . . , N :

1. Simulate θ
i
t+1 ∼ Kh(θt+1 − θ

i
t)

2. Simulate xi
t+1 ∼ q(xt+1|x

i
t, θ̃

i

t+1,y1:t+1)

3. Update the weights: ωi
t+1 ∝ ωt

i

p(yt+1|x̃i
t+1, θ̃

i

t+1,y1:t)p(x̃i
t+1|x

i
t, θ̃

i

t+1,y1:t)

q(x̃i
t+1|x

i
t, θ̃

i

t+1,y1:t+1)

4. If ESSt+1 < κ, simulate {xi
t+1, θ

i
t+1}

N
i=1 from {xi

t+1, θ
i
t+1, ω

i
t+1}

N
i=1 (Multinomial

resampling) and set ωi
t+1 = 1/N .

The value of κ < N is calibrated depending on the problem.

3.3 Regularized APF

Due to the resampling step, the basic SIR algorithm produces a progressive impoverish-
ment (loss of diversity) of the information contained in the particle set. To overcome this
difficulty, many solutions have been proposed in the literature. We refer to the APF due
to Pitt and Shephard (1999) and to the regularized APF algorithm due to Liu and West
(2001). In order to avoid the resampling step, the APFs use the particle index (auxiliary
variable) to select most representative particles in the proposal of the new particles. The
regularized joint distribution of parameter-augmented state vector and the particle index is:

pR
N (xt+1, θt+1, i|y1:t+1) ∝ p(yt+1|xt+1, θt+1,y1:t)p(xt+1|x

i
t, θ

i
t,y1:t)Kh(θt+1 − θ

i
t)ω

i
t .

A sample approximating that distribution can be obtained by using the proposal:

q(xi
t+1, θ

i
t+1, j

i|y1:t+1) = p(xi
t+1|x

ji

t , θi
t+1,y1:t)Kh(θi

t+1 − θ
ji

t )q(ji|y1:t+1)

where
q(ji|y1:t+1) ∝ p(yt+1|µ

ji

t+1, m
ji

t+1,y1:t)w
ji

t ,

RR n° 6153



10 Casarin & Marin

µji

t+1 and mji

t+1 are evaluated using the initial particle set. Therefore, the importance weight

of particle (xi
t+1, θ

i
t+1, j

i) is:

ωi
t+1 ∝

p(yt+1|x
i
t+1, θ

i
t+1,y1:t)

p(yt+1|µ
ji

t+1, m
ji

t+1,y1:t)
.

In Algorithm 3 we give a pseudo-code representation of the regularized APF.

Algorithm 3 - Regularized Auxiliary Particle Filter -
· At time t = 0, for i = 1, . . . , N , simulate zi

0 ∼ p(z0) and set ωi
0 = 1/N

· At time t > 0, given {xi
t, θ

i
t, ω

i
t}

N
i=1, for i = 1, . . . , N :

1. Simulate ji ∼ q(j|y1:t+1) with j ∈ {1, . . . , N} (Multinomial sampling) where
µj

t+1 = E(xt+1|x
j
t , θ

j
t ) and mj

t+1 = E(θt+1|θ
j
t )

2. Simulate θ
i
t+1 ∼ Kh(θt+1 − θ

ji

t )

3. Simulate xi
t+1 ∼ p(xt+1|x

ji

t , θi
t+1,y1:t)

4. Update particles weights: ωi
t+1 ∝

p(yt+1|xi
t+1, θ

i
t+1,y1:t)

p(yt+1|µ
ji

t+1, m
ji

t+1,y1:t)
.

We can say that, in the APF, the selection step is done before simulating the hidden
states. This selection depends on the current value of the observable. Therefore,� the APF is a standard way to construct a proposal distribution for the hidden states

that depends on the current of the particle;� as we will see after, to use this selection step and the transition distribution as proposal
distribution for the hidden states, results in a good proposal distribution.

In the next section, we compare the performances of some regularized SIS, SIR and APF
for the stochastic volatility model.

4 Application to the stochastic volatility model and com-

parison

In this section, we apply the three regularized particle filters to the stochastic volatility
model presented in Section 2. We assume that the initial value of the SV process follows
the stationary distribution:

x0 ∼ N (0, σ2/(1 − φ2)) .

INRIA



Comparison of Bayesian regularized particle filters 11

For the parameters β, σ and φ, we assume the prior

p(β2, φ, σ2) = 1/(σβ)I(−1,1)(φ) ,

where β = eα. We constrain the parameter φ to take values in the open interval (−1, 1)
in order to impose the usual stationarity condition. As we use an improper prior, it is not
possible to use the prior distribution for initializing the three particle filters. We need to
start with a proper weighted sample {xi

0, θ
i
0, ω

i
0}

N
i=1. We propose to:

1) start the sequential filtering procedure at least at the value n of t, such that the
posterior distribution of the parameters given all the observations up to time n is well
defined: for the considered SV model, this corresponds to set n ≥ 2;

2) use a Markov Chain Monte Carlo (MCMC) algorithm to create a sample with uniform
weights.

For the prior given above, the full conditional distributions are

β2| · · · ∼ IG

(

n
∑

t=1

y2
t exp(−xt)/2, (n− 1)/2

)

,

σ2| · · · ∼ IG

(

n
∑

t=2

(xt − φxt−1)
2/2 + x2

1(1 − φ2), (n − 1)/2

)

,

π(φ| · · · ) ∝ (1 − φ2)1/2 exp

(

−φ2
n−1
∑

t=2

x2
t − 2φ

n
∑

t=2

xtxt−1

)

/2σ2
I(−1,+1)(φ) ,

π(xt| · · · ) ∝ exp

{

−
1

2σ2

(

(xt − α − φxt−1)
2 − (xt+1 − α − φxt)

2
)

−
1

2

(

xt + y2
t exp(−xt)

)

}

.

The full conditional distributions of φ and xt are not conventional and the standard Gibbs
does not apply. We propose to use the Metropolis-Hastings within Gibbs algorithm studied
in Celeux et al. (2006). A detailed description of the proposal distributions for φ and xt can
be found in Celeux et al. (2006). In that paper, the authors compare this MCMC scheme
to an iterated importance sampling one. Note that one could alternatively use this iterated
importance sampling algorithm to create a first weighted sample.

Given the initial weighted random sample
{

xi
t, θ

i
t, ω

i
t

}N

i=1
, where θt = (αt, log((1 +

φt)/(1−φt)), log(σ2
t )), if we use the transition density as proposal distribution for the hidden

states, the regularized SIS performs the following steps:
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Figure 2: Daily (left column) and weekly (right column) true (black line) and filtered (grey
line) log-volatility.

For n ≤ t ≤ T − 1 and for i = 1, . . . , N:

(i) Simulate θ
i
t+1 ∼ N

(

aθ
i
t + (1 − a)θ̄t, b

2Vt

)

where Vt and θ̄t are the empirical

covariance matrix and the empirical mean respectively, a ∈ [0, 1] and

b2 = (1 − a2),

(ii) Simulate xi
t+1 ∼ N

(

αi
t+1 + φi

t+1x
i
t,
(

σ2
)i

t+1

)

,

(iii) Update the weights as follow

wi
t+1 ∝ wi

t exp

{

−
1

2

[

y2
t+1 exp

(

−xi
t+1

)

+ xi
t+1

]

}

.

In the following, we call the previous scheme SIS. Instead of the transition density, we can use
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Comparison of Bayesian regularized particle filters 13

a proposal distribution which depends on the current value of the observable. For instance,
we can resort to the proposal distribution used for the hidden states, in the MCMC initial-
ization step. This proposal has been introduced by Shephard and Pitt (1997). It is based
on a quadratic Taylor expansion of exp(xt), more details can be found in Shephard and Pitt
(1997) or Celeux et al. (2006). It defines a new SIS which is called SIS-p in the following.
The results of a typical run of the regularized SIS on the synthetic dataset in Fig. 1,
with N = 10, 000 particles and n = 100 for the Gibbs initialization, are given in Fig.
from 2 to 6. We can see (last row in Fig. 2) that after a few iterations the filtered log-
volatility does not fit well to the true log-volatility. We measure sequentially the filtering
performance of the regularized SIS by evaluating the cumulated Root Mean Square Error
(RMSE). It measures the distance between the true and the filtered states and is defined

as: RMSEt = { 1
t

∑t
u=1(ẑu − zu)2}

1
2 , where ẑt is the filtered state, which includes also

the parameter sequential estimate. The RMSEs cumulate rapidly over time in both daily
and weekly datasets (see upper and bottom plots in Fig. 3). The poor performance of the
regularized SIS is due to the fact that the empirical posterior of the states and parameters
degenerates into a Dirac’s mass after a few iterations. The ESSs in Fig. 4 show that the
regularized SIS degenerates after 30 iterations in both the daily and weekly datasets. We
give some results on SIS-p in the following.

If we use the transition density as proposal distribution for the hidden states, the regu-
larized SIR performs the following step:

For n ≤ t ≤ T − 1 and for i = 1, . . . , N:

(i) Simulate θ
i
t+1∼N

(

aθ
i
t + (1 − a)θ̄t, b

2Vt

)

where Vt and θ̄t are the empirical

covariance matrix and the empirical mean respectively and a ∈ [0, 1] and

b2 = (1 − a2),

(ii) Simulate xi
t+1 ∼ N

(

αi
t+1 + φi

t+1x
i
t,
(

σ2
)i

t+1

)

,

(iii) Update the weights

wi
t+1 ∝ wi

t exp

{

−
1

2

[

y2
t+1 exp{−xi

t+1} + xi
t+1

]

}

,

(v) If ESSt+1 < κ, simulate zi
t+1 ∼

∑N
j=1 wj

t+1δzj

t+1

(zt+1) and set wi
t+1 = 1/N.

If κ = N , the resampling step is done all the time. In that case, we call SIR the previ-
ous scheme. After some numerical experiments, we have found that a good value for κ is
κ = 0.9×N . In that case, the resampling step is done at regular time intervals and we called
SIR-r the resulting algorithm. Moreover, as for the SIS, we can resort to the proposal of
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Figure 3: Daily (upper plot) and weekly (bottom plot) Root Mean Square Errors for the
regularized APF (solid line), SIR-r-p (dashed line) and SIS (dotted line) over iterations.
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Figure 4: Daily (left column) and weekly (right column) Effective Sample Sizes over itera-
tions.
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Figure 5: Evolution on daily dataset of the empirical posterior distributions of α, φ and σ2.
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SIR-r-p for α SIR-r-p for φ SIR-r-p σ2

Figure 6: Evolution on weekly dataset of the empirical posterior distributions of α, φ and
σ2.
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Shephard and Pitt (1997) for the hidden states. In that case, with κ = N , the corresponding
algorithm called SIR-p. With κ = 0.9 × N the corresponding algorithm is called SIR-r-p.

The regularized APF performs the following steps:

For n ≤ t ≤ T − 1 and for i = 1, . . . , N:

(i) Simulate ji ∼ q(j) ∝
∑N

k=1 wk
t N (yt+1|µk

t+1)δk(j) where µk
t+1 = φk

t xk
t + αk

t ,

(ii) Simulate θ
i
t+1∼N

(

aθ
ji

t + (1 − a)θ̄t, b
2Vt

)

where Vt and θ̄t are the empirical

variance matrix and the empirical mean respectively and a ∈ [0, 1] and

b2 = (1 − a2),

(iii) Simulate xi
t+1 ∼ N

(

xt+1|αi
t+1 + φi

t+1x
ji

t ,
(

σ2
)i

t+1

)

,

(iv) Update the weights

wi
t+1 ∝ exp

{

−
1

2

[

y2
t+1

(

exp{−xi
t+1} − exp{−µji

t+1}
)

+ xi
t+1 − µji

t+1

]

}

.

Note that, following Pitt and Shephard (1999), one could alternatively use in the selection
step a value of µk

t+1 based on the Taylor expansion of the likelihood at time t + 1. For the
three regularized particle filters, we have used a Gaussian kernel where the parameter a is
fixed following the usual optimal criterion.

We apply the regularized SIR-r-p and APF with N = 10, 000 and n = 100 to the weekly
and daily datasets of Fig. 1 and obtain the results given in Fig. from 2 to 6. The regularized
SIR-r-p and APF outperform the regularized SIS in terms of ESSs and cumulated RMSEs.
The ESSs can detect the degeneracy in the particle weights, but is not useful to determine
the presence of another form of degeneracy, that is the absence of diversity in the particle
values. The histogram of the empirical filtering distribution allows us to detect this second
form of degeneracy.

As our work deals with the sequential estimation of the parameters, we choose to show
the histogram of the parameters posterior. Fig. 5 and 6 exhibit the evolution over the filters
iterations of the posterior of the parameters α, φ and σ2. In both the daily and the weekly
datasets, after a few iterations the empirical posterior of the regularized SIR-r-p degenerates
into a Dirac’s mass.

To confirm the previous results, we have done ten independent runs of the seven algo-
rithms: SIS, SIS-p, SIR, SIR-p, SIR-r, SIR-r-p and APF. The weekly and daily datasets
vary across the 10 experiments. Our simulation study confirms the results of the single-run
experiment. Fig. 7 and 8 show a comparison between the regularized schemes in terms of
RMSEs. The RMSEs are estimated over the 10 independent runs of the algorithms. The
regularized SIR-r-p and APF outperform the others algorithms in both the daily and the
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Daily Data
θ SIS SIS-p SIR SIR-p SIR-r SIR-r-p APF
α 0.00719 0.00945 0.00885 0.00925 0.00315 0.00912 0.00065
φ 0.66767 0.83264 0.12433 0.13355 0.15252 0.13456 0.00855
σ2 0.89327 0.87910 0.00676 0.00670 0.00643 0.00654 0.00506

Table 1: Mean Square Errors of the estimators of α, φ and σ2. The Mean Square Errors are
estimated using the last iteration of the 10 independent runs of the filters.

Weekly Data
θ SIS SIS-p SIR SIR-p SIR-r SIR-r-p APF
α 0.00534 0.00487 0.00589 0.00442 0.00380 0.00431 0.00016
φ 0.51290 0.55648 0.05292 0.03754 0.04885 0.03687 0.00029
σ2 0.70540 0.71242 0.00010 0.00009 0.00009 0.00009 0.00008

Table 2: Mean Square Errors of the estimators of α, φ and σ2. The Mean Square Errors are
estimated using the last iteration of the 10 independent runs of the filters.

weekly datasets. The estimated Mean Square Errors for the parameters α, φ and σ2 (see
Table 1 and 2), based on 10 independent runs of the filters, show that the regularized APF
outperforms all the others schemes in term of parameters estimation.

Fig. 9 and 10 show a comparison of the filters in terms of ESS. As one could expect,
in all the independent runs the regularized SIS and SIS-p weights degenerate after a few
iterations. We also observe that the ESSs of the regularized SIR, SIR-r and APF are
substantially equivalent. On the other hand, the average ESSs of the SIR-p and SIR-r-p are
lower than the ones of the SIR, SIR-r and APF.

5 Conclusion

In this work we bring into action the kernel regularization technique for particle filters and
deal with the online parameter estimation problem. While the regularized APF has been
already used for the parameter estimation, the regularized versions of SIS and SIR have not
been considered to that aim. We focus on the joint estimation of the states and parame-
ters and compare some algorithms on a Bayesian nonlinear model: the Bayesian stochastic
volatility model. As we expected, we find evidence of the degeneracy of two different regu-
larized SIS. Finally, we find that, in terms of parameters estimation, the regularized APF
outperforms all the others schemes.
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Agronomique de Montpellier.

INRIA



Comparison of Bayesian regularized particle filters 21

Shephard, N. and Pitt, M. (1997). Likelihood Analysis of Non-Gaussian Measurement Time
Series. Biometrika, 84:653–667.

Storvik, G. (2002). Particle filters for state space models with the presence of unknown
static parameters. IEEE Transactions on Signal Processing, 50:281–289.

West, M. (1992). Mixture models, Monte Carlo, Bayesian updating and dynamic models.
Computer Science and Statistics, 24:325–333.

West, M. (1993). Approximating posterior distribution by mixtures. Journal of Royal
Statistical Society, B, 55:409–442.

RR n° 6153



22 Casarin & Marin

200 400 600 800 1000

0.
0

1.
5 SIS

200 400 600 800 1000

0.
0

1.
5 SIS−p

200 400 600 800 1000

0.
0

1.
5 SIR

200 400 600 800 1000

0.
0

1.
5 SIR−p

200 400 600 800 1000

0.
0

1.
5 SIR−r

200 400 600 800 1000

0.
0

1.
5 SIR−r−p

200 400 600 800 1000

0.
0

1.
5 APF

Figure 7: Comparison on daily datasets of average cumulative Root Mean Square Errors
between the true and the filtered log-volatility (black line). We represent the area between
maximum and minimum cumulative Root Mean Square Errors (grey area).
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Figure 8: Comparison on weekly datasets of average cumulative RMSEs between the true
and the filtered log-volatility (black line). We represent the area between maximum and
minimum cumulative Root Mean Square Errors (grey area).
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Figure 9: Comparison on daily datasets of average Effective Sample Sizes (black line). We
represent the area between maximum and minimum Effective Sample Sizes (grey area).
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Figure 10: Comparison on weekly datasets of average Effective Sample Sizes (black line).
We represent the area between maximum and minimum Effective Sample Size (grey area).
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