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Abstract

Point-Based Surfaces, i.e. surfaces represented by discrete point sets which are either directly
obtained by current 3D acquisition devices or converted from other surface representations, are
well designed for multiresolution storage and transmission of complex objects. Unfortunately,
visualization of point-based surfaces requires to develop specific rendering techniques (e.g. splat-
ting) since point sets are not well adapted to existing graphics hardware which is optimized
for polygonal meshes. In this paper, we propose an efficient reconstruction and visualization
technique of point-based surfaces that takes full benefit from the entire optimized pipeline im-
plemented in graphics hardware. The basic idea is to generate a set of independent meshes using
a local 2D Delaunay triangulation of the point set. These meshes are then glued together to get
a “visual continuity” by using a subdivision process.

1 Introduction

A Point-Based Surface (PBS) is a surface representation where only the geometric component of
an object is considered without any explicit representation of the topology. We considere this
geometric component as a discrete point set, where the points may eventually be equipped with
normal vectors and other attributes. Many techniques to convert a PBS into a continuous surface
representation have been developed over the years: this process is called surface reconstruction.
Hoppe et al. [HDD+92] proposed the very first complete surface reconstruction pipeline, that was
based on a three-step algorithm: first an initial mesh is generated by contouring a distance function
built over the point set using local plane distance functions; then, the resulting mesh is optimized by
minimizing a global error while reducing the number of polygons [HDD+93]; finally, a subdivision
surface is fitted in order to represent arbitrary piecewise smooth surfaces [HDD+94]. Among the
diversity of reconstruction techniques which have been developed afterwards, a classification onto
two distinct families appeared: explicit and implicit surface reconstruction methods.

In the case of explicit reconstruction, the resulting surface can directly be enumerated, usually
described as a polygonal mesh or a spline surface. Actually, explicit reconstruction methods can
themselves be divided into two main categories. First, there are dynamic approaches, basically
derived from the principle of deformable models developed in the field of computer vision [BI98]
[KWT87] where an energy criterion [DYQS04] is minimized by surface deformation. For instance,
the Intelligent Balloons [DQ01] provide an interesting topological flexibility for high-genus surfaces.
Such dynamic approaches usually generate high-quality meshes, with in particular a semi-regular
mesh topology coming from subdivision steps applied during the dynamic fitting. However, the
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global error optimization computation makes them extremely slow and thus only applicable to
PBS with less than a few thousands of points. Then, there are combinatorial approaches, where
the surface reconstruction is cast as a topology enumeration problem. One of the key ingredients of
such methods is the Voronoi diagram which provides an optimal neighborhood information over the
point set. Its geometric dual, the Delaunay triangulation has been extensively used for generating
a triangular mesh over a point set [BC00, CSD02]. The Voronoi diagram offers several guarantees
when the density information is available for the input point set. In particular, the PowerCrust
algorithm [ACK01] as well as the Cocone algorithm [DGH01, DG03] are based on a 3D Delaunay
triangulation from which a set of triangle consistent with a 2-manifold interpolating the point set
is extracted when the γ-density is provided. Such methods are slow but their guaranti made them
interesting for automatic surface reconstruction. At the other extremum of the spectrum, Gopi et
al. [GKS00, GK00] proposed a lower dimensional reconstruction method, fast enough to be applied
to larger point sets, but without guarantees. Linsen et al. [LP03] have also explored the idea
of local triangulation by considering a simple topological structure, the k-neighborhood of each
sample, and quickly generating fan clouds. Combinatorial approaches differ from dynamic ones by
ensuring much more properties on the final surfaces obtained (interpolation, computation time)
but without semi-regular connectivity. They have been successfully applied to PBS of up to a few
millions of points in reasonable computation time (e.g. 1 hour for 1M points for the Cocone). All
explicit methods share limitations on their ability to robustly handle the noise and to fill large
holes, that may be present in the input point cloud.

In the case of implicit reconstruction, the resulting surface is defined implicitly as the zero-set
of a function f : IR

3 → IR. Smoothness, volumetric description, natural hole filling and denoising
are examples of the advantages of implicit surface fitting, just to name a few. Here again, most
of the existing techniques fall into two main categories, both borrowed from the scattered data
fitting literature [FN80]. In the first one, an implicit surface that interpolates the point set is
computed as a linear combination of Radial Basis Functions (RBF). Initially limited to small point
clouds [SPOK95, TO02], this approach has been extended to very large ones by using two different
improvements: compactly supported basis functions [OBS04] and hierarchical partitioning combined
with Partition of Unity methods [OBA+03] [TRS06, Wen02, LM02]. In the second one, implicit
reconstruction approaches are based on the Moving Least Squares (MLS) approximation [Lev98],
which allows one to reconstruct a piecewise polynomial function that approximates an unorganized
point set. MLS can be used either as a projection operator [ABCO+01] or as an implicit fitting
technique for polygon soups [SOS04]. Recent advances have extended their application to sharp
feature detection [FCOS05] and fitting [RJT+05] as well as adaptive meshing of noisy point clouds
[SFS05]. The main advantage of implicit reconstruction techniques is their robustness against non-
uniformly sampled PBS. Their main drawback, as usual with implicit surfaces, is that they cannot
be directly rendered with existing graphics hardware since they cannot be easily enumerated and
thus require an additional conversion [LC87, Blo88, Blo94, KBSS01, OB02]).

Discussion

Recently, most of the approaches have focused on implicit surface reconstruction of PBS. The main
reason for this is that the principle of Partition of Unity makes it possible to achieve a purely local
reconstruction, which results in a O(n) complexity, where n is the size of the point set. To our
knowledge, this is currently not possible with an explicit reconstruction, which offers a O(n log n)
complexity at best. So for very large point sets, implicit reconstruction techniques should definitely
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be faster than explicit ones. But as stated above, implicit surfaces have to be tessellated before
being rendered by the graphics hardware. As the existing work has shown, this tessellation is not
that straightforward. So the pros and cons of both approaches are not that easy to balance.

The work presented in this paper is based on the following postulate: as the reconstruction of
a PBS that guarantees geometric continuity cannot be achieved in linear complexity, loosening the
constraints and seeking only for a “visual continuity”, may reach such a linear complexity.

It should be noted that point-based splatting techniques [RL00, ZPBG01, BSK05] offer such a
visual continuity by working in image-space. Unfortunately, splatting techniques require a specific
modification of the graphics hardware pipeline to be efficient. Even if this modification is relatively
easy with recent hardware (by using vertex or fragment shaders), splatting is still limited in terms
of appearance and its performance quickly decreases when the resolution of the images is increased.
We believe that object-space explicit reconstruction would definitely offer a better quality vs. cost
tradeoff.

The approach that may be most closely related to ours is the patch generation proposed in
[ABCO+01] for the visualization of MLS surfaces. Their algorithm generates a collection of patches
which are projected onto the MLS surface. Unfortunately, their process produces strong visible
artefacts as the patches are restricted to a grid topology, and the boundaries do not blend correctly
in overlapping zones.

The remainder of this paper is organized as follows: Section 2 presents a general overview of
our algorithm, Sections 3 to 6 focus more precisely on the different steps involved (reconstruction,
partitioning, subdivision, rendering). Section 7 presents some experimental results and Section 8
concludes by proposing some future research directions.

2 Overview of the Algorithm

Figure 1: Overview of the algorithm.

As stated above, we are seeking for an explicit object-space surface reconstruction that should
offer convincing visual continuity in linear time. One of the central ideas of our approach is to
clearly separate the global topological extraction and the local geometric reconstruction of the
surface. An overview of the algorithm is illustrated in Figure 1: after having space-partitioned an
unstructured PBS, a local reconstruction, done at each cell of the partition, provides a set of disjoint
2-manifolds with boundaries, all of genus 0. Finally a visually continuous surface is obtained by an
aggregation of these 2-manifolds.

Note that our current implementation requires a PBS where the points are all equipped with a
normal vector. This is quite a usual assumption when working with PBS. When this normal vector
information is not available, it is possible to generate it at each point by a principal component
analysis of the neighborhood [HDD+92, GKS00].
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In order to be able to account for large point clouds, a totally localized approach is chosen: all
testing, sorting or selecting operations involved in the process will only be done on a reduced set
of points. This principle would enable several extensions that we are currently studying: massively
parallel implementation of the algorithm, out-of-core reconstruction [Sil03] or lazy reconstruction
based on different criteria (see Section 6). Our algorithm can be decomposed in three steps:

1. Partitioning of the PBS with an octree (Section 4).

2. Local piecewise mesh reconstruction of each partition (Section 3), temporarily extended to
points of its neighborhood. The goal is to discard holes by creating overlapping zones between
neighboring surfaces.

3. Subdivision of the piecewise meshes that are locally aggregated to increase the visual quality
(Section 5).

Before detailing these steps more precisely in the next three sections, let us summarize the notations
used in the remainder of the paper:

P the set of input points

Pi the ith partition of this set (
⋃

i Pi = P )

Ci the space-partitioning cell associated to the partition Pi

ri the radius of the cell Ci

ki the number of points in the cell Ci

Si the locally reconstructed surface on Pi

Vi the set of points lying in neighboring cells of Ci

pij the jth point of the partition Pi

nij the normal vector of the point pij

ci the centroid of the partition Pi

ni the average normal vector of the partition Pi

u.v the scalar product between two vectors u and v

3 Reconstruction

3.1 Local Surface Reconstruction

Figure 2: Local surface reconstruction. From left to right: the initial partition Pi, the projection
onto Πi, the 2D reconstruction by Delaunay triangulation, the 3D projection of the set of generated
triangles, the reconstructed surface Si before subdivision and the smooth surface obtained by
subdivision of Si.

The kernel step of our algorithm is the local reconstruction process in the cells of the octree.
For the safe of clarity, the initial partitioning step will only be explained in Section 4, because it
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strongly relies on the way the local reconstruction is done. The goals that we seek for this local
reconstruction are the following:

• The process should take a small unorganized point set Pi and produce a triangular mesh Si;

• This reconstructed mesh Si should interpolate Pi or, at least, be a good approximation;

• As Si will be used as a coarse mesh for subdivision, it should fulfil usual quality criteria for
subdivision (namely constraints on vertice degrees [ZS00]).

The generation of the triangular mesh is based on the Delaunay triangulation, which has mainly be
chosen for its nice properties (e.g., maximization of the minimal angle between two edges). In the
case of a 3D data set, one of the main criticism usually made against Delaunay triangulation is its
computational cost: indeed, after having generated a 3-manifold made of tetrahedrons interpolating
the data set (i.e. Delaunay tetrahedrization), a 3D Delaunay triangulation requires to select only
the triangles that are localized on the surface. This selection is not only difficult, but also implies
to reject most of the data computed during the first step.

Actually, as our data set is a PBS, we know that all points lie on a given surface: in other words,
if we are sufficiently close to the surface, the problem can be considered as a 2D reconstruction one.
In a reasonably small neighborhood, the surface can be considered as a local height map: each point
{x, y, z} can be expressed as a height function z = f(x, y) according to some local average plane.
If this assumption is fulfilled (see below), we can indeed use a 2D triangulation to reconstruct the
topology between points. This will generate a 2-manifold made of triangles, interpolating the point
cloud.

So all we need is a predicate κ that ensures us that the local point set Pi can be expressed as a
height map. We consider that κ(Pi) is true when:

∀j ∈ [0, ki − 1], nij .ni > δa, δa ∈ [0, 1] and
|(pij − ci).ni|

maxk(||pik − ci||)
< δd, δd ∈ [0, 1]

The parameter δa represents the maximal deviation angle that the normal of a point can make
according to the average normal of its current cell, and must be greater than 0 for a height map
(i.e., no folding). Our experiments show that δa = 0.2 provides good results in general. Similarly,
the parameter δd (the distance between a point and its projection onto the local average plane
defined by ci and ni) helps to perform the partitioning according to the geometric properties of
the PBS and can range from 0 (all the points are in the same plane) to 1. We have set δd to 0.2
in our experiments. This value can also be seen as the approximation precision that is imposed to
the average plane of a partition.

Both δa and δd are intuitive enough for being interactively set by the user who can quickly tune
the partitioning (see Section 4) according to the specific characteristics of the PBS. Note that this
approach is only sub-optimal, because Pi is only determined by the partitioning step and thus does
not maximize the area of height surfaces. We mainly choose this formulation for its speed and low
implementation cost. One of the main advantages to have a double criteria, acting simultaneously
on point distribution and normal distribution, is that a whole set of “difficult” cases are correctly
detected (see Section 7).

When κ(Pi) is true for all i, the reconstruction can be totally achieved in 2D, and a piecewise 2D
Delaunay triangulation will generate a collection of 2D manifolds. Note that Gopi et al. [GKS00]
have explored a similar idea of lower dimensional reconstruction, but they considered only isolated
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points. We propose a more general approach working in a whole local cell Ci provided by the par-
titioning step. In other words, our projection-based method is purely driven by the local geometry
of the input PBS, while Gopi’s approach is constrained by the approximate topology imposed by a
given k-neighborhood. Here is the algorithm used for each cell Ci:

1. Compute the average plane Πi defined by the centroid ci of Pi and the average normal vector
ni

2. Project each point of Pi onto Πi;

3. Compute a 2D Delaunay triangulation on Πi;

4. Re-project the generated triangles in the 3D space by the inverse transformation of Step 2.

Figure 2 shows the different steps of this algorithm, including the final subdivision step that will
be discussed in Section 5. The reconstructed mesh interpolates Pi in each cell Ci and offers a good
distribution of nice looking triangles, thanks to the properties of the 2D Delaunay triangulation.
The number of extraordinary vertices is low, and no strong singularities will be developed after
the application of some subdivision passes. Of course, some deformations will occur during the 3D
reprojection step, but our intensive testing has shown that the algorithm behaves robustly for a
large variety of models (see Section 7).

Let us give some additional comments about this algorithm. First, the computation of the
average plane is extremely fast when all points are equipped with normal vectors. As said above,
if the normal vector information is missing, it can be retrieved at a reasonable cost by performing
a principal component analysis on Pi, see [HDD+92] for more details. Second, our projection
is similar to the one proposed by Gopi et al. [GKS00], but we consider a common local plane
for the whole partition Pi that belongs to the cell Ci, which is much more efficient. Finally, we
choose to implement an incremental Delaunay triangulation. This is not the optimal choice (in
general, the Fortune’s algorithm would be better) but as the local sets Pi are small, there is no
strong difference. On the other hand, incremental Delaunay is interesting as we aim to deal with
progressive transmission of PBS, such as raw data coming from the 3D range scanner.

3.2 Overlapping

To ensure a visual continuity, we propose to create an overlapping between neighboring surfaces.
This can simply be done by applying the local reconstruction algorithm on partitions that are
temporarily enlarged to their neighborhood (see Figure 4). More precisely, each cell is enlarged by
a factor β to include points belonging to neighboring cells. The value of β can be set interactively
by the user or can be deduced from the overall density of the PBS. If the PBS has a known γ-
density (i.e. γ is the maximal value such that each ball of radius γ, centered at each point of Pi

contains no other point), we just have to enlarge the support with β = 2γ
ri

+ 1 for ensuring a right
overlapping. Unfortunately, this density information is not always available. In that case, we may
use the following value of β on the cell size: in each cell Ci, the local reconstruction operator is
applied to Qi = Pi ∪ Ri where Ri is the set defined by: p ∈ Ri ⇐⇒ p ∈ Vi and ||p − ci|| < β.ri.
Experimental results have shown that β = 1.3 offers good results on our whole set of various models.
Note that we need to preserve the height map property during the enlargement process, and thus
we have to test the validity of the predicate κ(Qi).
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Figure 3: Reconstruction in each cell. Left: the initial point-based surface. Center: the cells of
the space partition (in our case, the leaves of an octree). Right: a piecewise mesh independently
reconstructed in each cell.

The local reconstruction operator is interpolating which means that the local meshes recon-
structed in neighboring cells share the points that belong to the overlapping zone. As the Delaunay
triangulation always generates a locally optimal triangulation, very often the overlapping zone
shared by two neighboring cells is triangulated exactly in the same way for both cells, which offers
a perfect correspondence of the generated triangles. Sometimes, the overlapping is only approximate
(e.g., very high curvature over density ratio) but even in that case, there is no strong degeneration
which means that a visually continuous feeling is always provided during the rendering, even under
a strong close-up (see Figure 5).

3.3 Study of the Complexity

The cell enlarging mechanism used by our algorithm implies that the total number of points n
used for the triangulation is higher than the number of input points (about 25%). The memory

complexity of the Delaunay triangulation in dimension d is Θ(n⌈ d

2
⌉), whereas it is Θ(n1.8) for point

surfaces [AB01]. In our case, as the problem is solved in 2D, the memory complexity is linear with
respect to the number of points.

Each point added to the triangulation needs to be tested toward the whole set of generated
triangles. Thanks to a randomized incremental triangulation, the computational complexity can

Figure 4: Hole filling through overlapping. In yellow, the overlapping zone between the two neigh-
boring surfaces.
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Figure 5: From left to right: the original point-based surface, the aggregation of generated surfaces
respectively without and with overlapping. Even under a strong close-up, the visual continuity is
maintained.

be reduced to Θ(n log n) when inserting n points into the triangulation. In our approach, the n
points of the initial point set are distributed on m octree leaves with m << n. If we raise the number
of cell points to an arbitrary constant value k, the total number of leaves will be m = ⌈n/k⌉ cells.
The computational complexity for a cell can then be bounded by Θ(k log k), which is a constant.
So the complexity of the complete triangulation is about mΘ(k log k), which is equivalent to Θ(n).
To be exhaustive, we also have to include the complexity of projection and re-projection operators,
but both of them are also linear. So, as expected by our initial postulate, the global complexity
of our reconstruction technique is linear in the number of points, both for the storage and the
computation. Note that the partitioning time, in Θ(n log n), has no strong influence in pratical
cases (see Table 1).

Figure 6: The Stanford Dragon with 100 251 points. We can see a topological error in its parti-
tioning in the red circle. On the right, by increasing the maximal depth, the topology is correctly
retrieved (the corresponding octree is homeomorphic to the sampled object).
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4 Partitioning

4.1 Partitioning structure

Our local approach imposes a partitioning structure that approximates the global topology to allow
the enlarging process of the partitions for the overlapping. Among possible candidates, we have
chosen the octree for its hierarchical multiresolution structure with cells of regular shapes, and for
the geometrically adaptive approximation that it provides for the topology of the point cloud. In
particular, the genus of the surface will be easily retrieved (see Figure 6), which simplifies the local
reconstruction step. Moreover, as we will see, one drawback usually pointed out with the octree,
that is the affine dependance of the generated partitioning (i.e. the partition is different according
to the position and the orientation of the initial bounding box) can be dramatically reduced in our
case (see below).

Figure 7: A 2D example of partitioning (i.e. quadtree instead of octree) according to the height
map criterion κ. From left to right: the original shape, the corresponding point cloud with normals
and successive refinement steps; each cell Ci whose associated point cloud Pi does not satisfy κ is
subdivided.

4.2 Partitioning by octree

With the help of the κ(P ) predicate defined in Section 3.1, the partitioning step becomes straight-
forward. We begin with C, the bounding cube of P . If κ(P ) is false, then we cut C in 8 cells (8
equal cubes). The initial point set P is split according to the cell boundaries, and we run again the
partitioning algorithm on each cell. The Figure 7 illustrates this principle in 2 dimensions.

In order to preserve a good balance between the computational cost of all the local triangula-
tions, a cell Ci that satisfies κ will nevertheless be subdivided if ki exceeds a given threshold value
k (we use k = 40 in our implementation). In addition to balancing the computational cost, we have
noted that a small maximum number of points by cell also decreases the affine dependance of the
partitioning as it also balances the size of the leaves (see Figure 8).

4.3 Discrete topology

In order to achieve an overlapping between locally reconstructed surfaces that respects the global
topology of the object, we use the volumetric neighborhood provided by the octree. As the leaves
of the octree are exclusively made of cubes, the neighborhood searching can be done with a very
simple algorithm:

Let A and B be two cells of the octree O, let rA and uA (respectively rB and uB) be the edge
length and the center of A (respectively B). Let rmin be the edge length of the smallest cell of O
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Figure 8: Partitioning criteria. Left: the piecewise mesh generated with a partitioning step only
based on the κ criterion. Right: here, we have also included a maximum number of points by cell
criterion.

and ζX(u) be the Euclidean norm of the projection of u onto the axis X, ie. the absolute value of
its X-coordinate. Then, A ∈ VB if and only if:

max(ζX(uB − uA), ζY (uB − uA), ζZ(uB − uA)) − rmin <
rA + rB

2
.

In words, it means that the surface is localized in the volumetric layer approximated by the
leaves of the octree, this layer represents a good approximation of the neighborhood onto the
surface. By using this algorithm, computing the neighborhood of the whole set of cells for a point
cloud made of 450 000 points needs less than a second on a standard workstation. Such a speed
allows the user to interactively tune the partitioning parameters if the topology does not seem to
be correctly retrieved.

5 Subdivision

After the partitioning (Section 4) and the local triangulation (Section 3), we have a collection of
2-manifolds that are disjoint but do overlap. Each manifold is defined by a triangular mesh made

Figure 9: Subdivision on the collection of surfaces. Left: initial point-based surface. Center: after
a local overlapping reconstruction. Right: after two passes of Loop subdivision.
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of about 40 triangles. The next step of our algorithm is the application of a subdivision scheme on
each surface Si. After having tested several classical schemes, it appeared that the Loop subdivision
scheme [Loo87, ZS00] achieves the best results for our purpose: it ensures a limit surface that is C2

almost everywhere (C1 only at extraordinary vertices) which offers a nice noise filtering feature, it
is able to reproduce sharp edges if required [HDD+94, BLZ00].

In our algorithm, the interest of using subdivision is double. First, a few subdivision passes
applied on the set of overlapping surfaces Si will increase the final visual quality by converging all
Si to a smooth surface (see Figure 9). Second, the subdivision step makes it possible to better
glue together overlapping surfaces Si. Let us detail this process: Si is constructed as a good local
approximation of the underlying surface in the cell Ci, but not necessarily in its neighborhood Vi

(i.e. in the overlapping zones between Si and its neighboring surfaces). Let SR
i be the part of Si

localized outside of Ci (overlapping zones). To glue SR
i on Sj , we simply propose to project each

point pjk of SR
i generated during the subdivision on the surface Sj .

An efficient projection is to compute the intersection between Sj and the ray starting from pjk

along its normal vector njk. This solution does not guarantee to find an intersection for each point
pjk but is sufficient in practice. A more robust projection operator could be developed, based for
instance on the MLS surface defined by the points of an overlapping zone, but it will obviously be
much slower.

6 Rendering

6.1 Hardware Rendering

Figure 10: Different rendering of our surfaces. Left: Realtime rendering with OpenGL. Center:
A raytraced image with a reflexion shader. Right: Direct use of Cube Mapping in OpenGL, an
example of the immediate benefit of our technique.

Like all explicit reconstruction techniques, our algorithm generates polygonal surfaces which can
be directly handled by the graphics hardware pipeline. Moreover, the octree partitioning provided
for the resulting surface aggregate can be used to speed up the rendering by improving occlusion
detection algorithms [Dur00]. Our current implementation is based on the OpenGL API and offers
an interactive visualization of point-based surfaces that takes full benefit from the whole optimized
pipeline implemented in graphics hardware. Figure 10 (left) shows an interactive rendering of the
Stanford dragon using a conventional Gouraud shading with 3 colored point light sources. Figure
10 (center) shows a bottle rendered with hardware environment mapping. Note that even if the
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bottle is very non-uniformly sampled, the reconstruction is very smooth and does not show any
artefact in the specular reflection.

6.2 Ray-Tracing

Ray-tracing is another common way to obtain high-quality rendering. A straightforward approach
could be to perform the surface reconstruction with our algorithm, and then to submit the resulting
object to the ray-tracing engine. However, there is no doubt that for an image, or even an animated
sequence, a large part of the surface is likely to stay hidden, so reconstructing these hidden parts
is of no use. We propose here to perform a lazy reconstruction that takes benefit from our local
approach. The idea is to achieve a tree pruning and to reconstruct the surface only in the leaves of
the octree that are actually intersected by the rays. With such a lazy reconstruction, the smaller
the leaves, the better the pruning, so the optimization is particulary efficient for large point-based
surfaces. Our current implementation provides a plugin to the well-known Povray ray-tracing
engine [Pov04]. Figure 10 (right) shows the Stanford Dragon rendered with that plugin.

7 Results

Table 1 summarizes the reconstruction times obtained for a various set of Point-Based Surfaces,
with sizes varying from 3k to 530k points. The corresponding pictures can be found in Figure 12.
The visual quality of the rendering is totally equivalent to the quality obtained by existing explicit

Model name Model size Partitioning Reconstruction

Torso 2 941 pts 0.01 sec 0.237 sec

Bottle 42 736 pts 0.02 sec 2.13 sec

AdamKraft 70 073 pts 0.45 sec 4.12 sec

Pipe 71 481 pts 0.09 sec 3.51 sec

Dragon 100 251 pts 0.20 sec 4.83 sec

Elefant 148 689 pts 0.16 sec 7.63 sec

Buddha 144 648 pts 0.22 sec 8.64 sec

Dragon 437 646 pts 0.91 sec 23.47 sec

Buddha 530 000 pts 1.01 sec 24.01 sec

Table 1: Timing (in seconds) for partitioning and reconstruction of several PBS models (Intel P4,
3.4GHz, 1.5Go RAM)

or implicit reconstruction techniques, but the computation times are reduced by one or two orders
of magnitude according to the experimental results given by the different authors. We have done
an exhaustive comparison with the implicit reconstruction technique proposed in [OBA+03], which
is known to be one of the fastest and for which the source code can be downloaded on the web.
Compared to their technique, we observe an acceleration factor from 2 to 10, depending on the
model, for an equivalent visualization.

As expected, the main problem generated by our method may occur in the overlapping zones.
It is vital for the sampling to be dense enough in high curvature zones (actually, this is more a
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Figure 11: Left: Computation time (in milliseconds) for the reconstruction of the Stanford dragon
at different resolutions. Right: Variation of the computation time (in milliseconds) for the Stanford
dragon with 437 646 points, according to the threshold value k (i.e. maximum number of points
allowed per cell). An optimum can be seen at k = 20 but the performances are very close for
k ∈ [5, 40[.

sampling problem than a reconstruction one) because the projection operator used for the 2D tri-
angulation may degenerate. Fortunately, the problem can often be solved by allowing an additional
subdivision of the octree cell. As mentioned above, our partitioning is fast enough to tune the
intuitive parameters of the partitioning according to the features of the object.

Figure 11 shows the evolution of computation time according to the number of points. We used
the Stanford dragon at different resolutions that were obtained by down-sampling the original high
resolution model. As expected, the curve presents a linear behavior when the size of the model is
increased. We have also tested the variation of the computation time, according to the threshold
value k (i.e. maximum number of points allowed per cell) used during the partitioning step. The
Figure 11 shows also that a good performance is maintained, between 5 and 40 points by cell. This
test has been done with the Stanford dragon model with 437 646 points.

Figure 12: Reconstruction and rendering of various point clouds (times present in the Table 1).

13



8 Conclusion and Future Work

The presented approach has enlightened several aspects of Point-Based Surface reconstruction:

• An explicit object-space reconstruction technique with linear complexity, both in storage and
computation time, can be developed by using a totally local approach.

• Ensuring a unique 2-manifold for the whole surface is not necessary when dealing only with
rendering purposes: a surface may offer a visual continuity (even under a strong close-up on
the surface) while there is no true geometric continuity.

• Subdivision techniques can help to obtain such a visual continuity by smoothly gluing together
independent overlapping meshes.

The technique proposed here should be considered as a complement to other reconstruction tech-
niques that offer guaranteed geometric continuity at the price of much longer computation times.
Due to its linear complexity, our algorithm is particulary well-adapted to large point clouds. More-
over, the performance of our system allows the user to interactively tune the parameters in some
difficult cases, but we have noted that the automatic setting offered by our current implementation
works well for an extremely large set of models. One nice property of explicit reconstruction is that
it avoids any modification of the standard hardware pipeline which is not the case with surface
splatting approaches. The main weakness of our technique is the difficulty to resolve the topology
for very non-uniformly sampled point-based surfaces. In such a case, implicit approaches definitely
provide better results.

The results provided by our first implementation are encouraging and offer some interesting
directions for future work:

• Use of multiresolution: Modification of the algorithm to account for progressive transmis-
sion of PBS.

• Use of locality: Modification of the algorithm to allow out-of-core reconstruction for very
huge point sets, this may later lead to an automatically load-balanced implementation on a
PC cluster.

• Up-sampling/Down-sampling: Modification of the local reconstruction to enable auto-
matic down-sampling during triangulation and automatic up-sampling during sudivision.

• Improved subdivision scheme: Convert the subdivision gluing phase into a true single
manifold fitting.

Acknowledgements: We would like to thank the Stanford Computer Graphics Laboratory
and Polygon Technology for providing the models used in this article.
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