
HAL Id: inria-00260938
https://hal.inria.fr/inria-00260938

Submitted on 5 Mar 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interactive Out-Of-Core Texturing
Tamy Boubekeur, Christophe Schlick

To cite this version:
Tamy Boubekeur, Christophe Schlick. Interactive Out-Of-Core Texturing. ACM SIGGRAPH Sketch
Program, Jul 2008, Boston, United States. �inria-00260938�

https://hal.inria.fr/inria-00260938
https://hal.archives-ouvertes.fr


SIGGRAPH 2006 Sketch : Interactive Out-Of-Core Texturing
Tamy Boubekeur Christophe Schlick

LaBRI - INRIA - CNRS - University of Bordeaux∗

(a) (b) (c) (d)
Figure 1: (a) General framework for interactive out-of-core texturing. (b) Initial untextured out-of-core mesh (8M polygons). (c) Interactive
texturing of an in-core point-sampled approximated geometry (150k samples). (d) Point-sampled texture applied on the initial full-size mesh.

1 Introduction
Interactive rendering of huge objects becomes available on com-
mon workstations thanks to highly optimized data-structures and
out-of-core frameworks for rendering. However, interactive edit-
ing, and in particular interactive texturing [Hanrahan and Haeberli
1990] of such objects, is still a challenging task, since the dynamic
information added during this editing step would break any highly-
optimized data-structures, such as GPU vertex buffers or specific
out-of-core representations of huge objects. We propose Point-
Sampled Textures (PST) for interactive texturing of large models
at various scales without requiring 2D parameterization (complex
and expensive for large models). This framework (see Figure 1(a))
allows the user to interactively set any appearance property of the
original object, from per-sample color to complex BRDFs.

2 Texturing Framework
Out-Of-Core Sampling By performing an adaptive out-of-core
point-sampling of the large object, we are able to represent arbitrary
topology from various kind of surface definitions (e.g. meshes,
point clouds), without dealing with any local structure-preserving
operator. We propose a constrained multi-grid (or m-grid) approach
combining the efficiency of regular grids with the adaptivity of oc-
trees for fast out-of-core sampling. During the first step, a coarse
grid is initialized and a streaming pass from the hard-drive is per-
formed in order to evaluate the density of the input model. All
points falling in a given cell are stored in its associated temporary
file, useful for speeding up future queries. Then, a local grid is
generated at each cell of the coarse one, whose resolution is set ac-
cording to the cell density and the target user-defined resolution.
Finally, a second streaming pass is performed through this m-grid,
and one sample point is kept for each intersected local cell. The re-
sulting Point-Based Surface (PBS) will be used as an intermediate
representation for interactive texturing.

Interactive multiresolution texturing The in-core PBS (Figure
1(c)) can now be interactively textured using usual point-based tex-
turing tools such as PointShop 3D [2002]. Multiresolution editing
is simply enabled by implementing two additional features: first,
user-controlled refinement scheme, that locally retrieves additional
points from the original huge object, in the areas where the user
wants to add some complex features, and second, an automatic
point-reduction scheme, that locally simplifies the PBS by storing
Least Recently Used local point sets on the hard-drive and replac-
ing them by single samples (useful when the in-core PBS grows and
becomes too large for interactive processing). These two operations
are performed on a per-coarse-cell basis (first level of the m-grid).
Each new point sample inserted in the active PBS is textured using
the same point-based texture definition than for final back textur-

∗e-mail:{boubek,schlick}@labri.fr

ing. Here, the point-based representation makes straightfoward this
local up-sampling/down-sampling in selected areas.

Back texturing Once textured, the in-core PBS is used to generate
a Point-Sampled Texture (PST) which is a 3D continuous vector-
field generated by using a quadratic weighted average of a local
neighborhood over the PBS. The feature-preserving filtering is in-
tuitively user-controlled by adjusting the size of local neighborhood
and the shape of the quadratic kernel. Finally, the PST is applied
on the original huge object in a streaming process.

This framework is easy to implement and provides a size-insensitive
multiresolution texturing tool for huge objects entirely based on
streaming processes (see Figure 1(d) and 2). It is particularly suit-
able when artists want to focus on the appearance of an automati-
cally acquired (laser range scanners) complex 3D geometry. Com-
pared to the widely used octree textures [Benson and Davis 2002],
PST offer a much better local control, and do not suffer from direc-
tional artefacts that are common with axis-aligned data structures.

(a) 500M polygons (b) 278k samples (c) 500M textured pol.

Figure 2: Recoloring the Michelangelo’s Atlas. (a) Original uncol-
ored large mesh. (b) Interactive multi-scale texturing with our sys-
tem, using several photos from the original statue and stone samples
textures. (c) Application of the PST to the original large model and
real-time out-of-core visualization.
References

BENSON, D., AND DAVIS, J. 2002. Octree textures. In SIGGRAPH ’02, 785–790.

HANRAHAN, P., AND HAEBERLI, P. 1990. Direct wysiwyg painting and texturing on
3d shapes. In SIGGRAPH ’90, 215–223.

ZWICKER, M., PAULY, M., KNOLL, O., AND GROSS, M. 2002. Pointshop 3d: An
interactive system for point-based surface editing. In SIGGRAPH ’02, 322–329.


