
HAL Id: inria-00260944
https://hal.inria.fr/inria-00260944

Submitted on 5 Mar 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approximation of Subdivision Surfaces for Interactive
Applications

Tamy Boubekeur, Christophe Schlick

To cite this version:
Tamy Boubekeur, Christophe Schlick. Approximation of Subdivision Surfaces for Interactive Appli-
cations. ACM SIGGRAPH Sketch Program, Aug 2007, San Diego, United States. �inria-00260944�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50280338?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00260944
https://hal.archives-ouvertes.fr


ACM SIGGRAPH 2007 Sketch Program

Approximation of Subdivision Surfaces for Interactive Applications
Tamy Boubekeur∗ Christophe Schlick†

LaBRI - INRIA - University of Bordeaux

(a) Coarse triangle, enriched hexagon and final smooth patch (b) 546 to 500k Triangles - 527 FPS (c) 703 to 620k Triangles - 499 FPS
Figure 1: (a) Approximation principle. (b) Coarse mesh, approximated subdivision and true subdivision (depth 5). (c) Adaptive rendering.

1 Introduction
Subdivision surfaces are undoubtedly the most flexible smooth ge-
ometric representation. By only manipulating a carefully designed
low-resolution mesh, an high-resolution smooth version is automat-
ically generated using a set of local recursive rules applied on each
coarse polygon. However, while being intensively used in CAD
and SFX industries, they have not yet gained a significant interest
for interactive and real-time applications. In fact, their recursive
definition imposes a non-trivial CPU overhead, difficult to hide in
interactive applications. We propose a new efficient approximation
of subdivision surfaces which offers a very close appearance com-
pared to the true subdivision surface while being at least one order
of magnitude faster than true subdivision rendering. Our technique
uses enriched polygons, equipped with edge vertices, and replaces
them on-the-fly with low degree polynomials for interpolating po-
sitions and normals. By systematically projecting the vertices of
input mesh at their limit position on the subdivision surface, the
visual quality of the approximation is good enough for imposing
only a single subdivision step on the CPU, allowing real-time per-
formances even for million polygons output. Additionally, the para-
metric nature of the approximation allows an efficient adaptive sam-
pling for both adaptive rendering and displacement mapping.

2 Approximated Subdivision
The very first subdivision step provides a crucial information, par-
ticularly when usinglimit rules: it indicates in which direction the
surface will converge for all its edges. We propose to use this initial
guess of the first subdivision step performed on the CPU to com-
pute a local quadratic Bezier approximation on the GPU. Instead of
using an empirical estimation [Vlachos et al. 2001] of the Bezier
coefficients, we fit two Bezier patches on the limit positions (resp.
normals) provided by the single subdivision step with projection on
the limit surface.

CPU Support The algorithm starts by applying a single subdi-
vision step using limit masks. Each triangleT is thus split in
4 sub-triangles, with vertices on the limit surface. These sub-
triangles share 6 vertices (Figure 1(a)) and the sub-mesh can thus
be organized in an hexagonal shapeH = {v0,v1,v2,ve

0,v
e
1,v

e
2} with

vi = {pi,ni} being the limit positions and normals at this location.
This structure is adapted to recent hardware including a geometry
shader stage, which allows to transmit edge neighbors with prim-
itives: here we transmit edge vertices inserted by the subdivision
pass instead. Note that we use the Loop scheme for producing
approximating subdivision. Alternatively, the Modified Butterfly
scheme can be used for interpolating the input vertices.

GPU Polynomial Approximation Once transmitted to the GPU, a
shader (either vertex shader on old devices or geometry shader on
recent ones) automatically fits 2 Bézier patches toH: P(u,v) for
positions andN(u,v) for normals. Both patches are defined by:

Q(u,v,w) = ∑
i+ j+k=2

b2
i jk(u,v,w)ci jk with b2

i jk =
2!

i! j!k!
uiv jwi and w = 1−u− v

∗e-mail: Tamy.Boubekeur@labri.fr
†e-mail: Christophe.Schlick@labri.fr

In practice,ci jk is replaced bypi jk or ni jk (see Figure 1(a)). We
use quadratic patches as they provide a good trade-off between cur-
vature reproduction and computation cost. Such patches require 6
coefficients, organized as an hexagon. Three of them correspond
to the original vertices{v0,v1,v2} projected at the limit and are
naturally interpolated by Bezier patches, while the three others cor-
respond to edge vertices{ve

0,v
e
1,v

e
2} and are not interpolated. So,

we need to define them such asP (resp. N) interpolates the edge
positions (resp. normals). Actually, a linear collocation is possible
in this case. For instance, considering the first edge vertexpe

0, we
have to solve:

P(
1
2

,
1
2

) =
1
4

(p0 + p1 +2p110) = pe
0 ⇒ p110 =

1
2

(4pe
0− p0− p1)

Other edge coefficients are obtained by symmetry, and the same
principle is used for computing the Bézier patch for normals.

Adaptive Rendering Substituing patches to recursive rules allows
direct evaluation at arbitrary parameter value. So not only uniform
tessellation is done without recursion, but adaptive refinement is
also made easier. This adaptivity can be performed by setting a per-
vertex depth, either on CPU or GPU, using for instance a simple
camera distance or curvature metric. Then, adaptive tessellation
can be performed by directly using the geometry shader for low
depth and using the adaptive refinement kernel of [Boubekeur and
Schlick 2007] for higher up-sampling ratio.

3 Results
While being geometrically onlyC0, the resulting surface has an
appearance almost indistinguishable from the true subdivision sur-
face. This is due to the separate normal fitting, which ensures both
a smooth shading and reproduces the surface inflexions sampled by
edge limits normals. Considering performances, our approach out-
performs existing solutions [Shiue et al. 2005] for three reasons: we
only perform a single subdivision pass on CPU, we use a single ren-
dering pass on GPU whatever the depth and there is no geometry-
to-texture conversion such as [Shiue et al. 2005]. Note also that the
mesh is synthesized on the fly, without storing the topology of the
high resolution mesh. As a result we obtain real-time performance
(> 100 FPS) for objects composed of thousand coarse polygons,
subdivided at depth 5 (2M tessellated triangles). Performances de-
grades linearly with the number of triangles created and transmitted
at CPU level. As a limitation, note that the higher the vertex valence
is, the less accurate becomes our fast approximation. This can be
prevented by remeshing. Last, the direct adaptive rendering allowed
by our method, combined with its low CPU overhead makes this ap-
proximation particularly suitable for interactive applications, with
much better results than purely empirical smoothing methods.

References
BOUBEKEUR, T., AND SCHLICK , C. 2007. GPU Gems 3. NVidia, ch. Generic

Adaptive Mesh Refinement.

SHIUE, L.-J., JONES, I., AND PETERS, J. 2005. A realtime gpu subdivision kernel.
ACM SIGGRAPH.

VLACHOS, A., PETERS, J., BOYD, C., AND M ITCHELL , J. 2001. Curved PN trian-
gles.ACM I3D.


