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Abstract: This work focuses on the decoding algorithm of the LDPC large block FEC codes for the packet
erasure channel, also called AL-FEC (Application-Level Forward Error Correction). More specifically this
work details the design and the performance of a hybrid decoding scheme, that starts with the Zyablov
iterative decoding algorithm, a rapid but suboptimal algorithm in terms of erasure recovery capabilities, and,
when required, continues with a Gaussian elimination algorithm. For practical reasons this work focuses on
two LDPC codes for the erasure channel, namely LDPC-staircase and LDPC-triangle codes. Nevertheless
the decoding scheme proposed can be used with other LDPC codes without any problem.

The performance experiments carried out show that the erasure recovery capabilities of LDPC-triangle
codes are now extremely close to that of an ideal code, even with small block sizes. This is all the more
true with small code rates: whereas the Zyablov iterative decoding scheme becomes unusable as the code
rate decreases, the Gaussian elimination makes the LDPC-triangle codes almost ideal. In all the tests, when
carefully implemented, the LDPC-triangle codec featuring the proposed decoding scheme is fast, and in
particular always significantly faster than the reference Reed-Solomon on GF(28) codec.

The erasure recovery capabilities of LDPC-staircase codes are also significantly improved, even if they
remain a little bit farther from an ideal code. Nevertheless, a great advantage is the fact that LDPC-staircase
codes remain significantly faster than LDPC-triangle codes, which, for instance, enables their use with larger
blocks.

All these results make these codes extremely attractive for many situations and contradict the common
belief that using Gaussian elimination is not usable because of a prohibitive processing load. Moreover the
proposed approach offers an important flexibility in practice, and depending on the situation, one can either
choose to favor erasure recovery capabilities or the processing time.

Key-words: FEC codes for the packet erasure channel, AL-FEC codes, LDPC codes, LDPC-staircase
codes, LDPC-triangle codes, Gaussian elimination, Zyablov iterative decoding
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Amélioration du Décodage de Codes LDPC pour le Canal à

Effacement de Paquets avec une Approche Hybride Décodage
Itératif de Zyablov/Pivot de Gauss

Résumé : Ce travail aborde les algorithmes de décodage des codes FEC de type grand bloc pour le
canal à effacement de paquets, aussi appelés AL-FEC (Application-Level Forward Error Correction). Plus
précisement, ce travail détaille la conception et les performances d’une approche de décodage hybride, qui
débute avec l’algorithme de décodage itératif de Zyablov, un algorithme rapide mais sous-optimal en terme
de capacités de correction d’erreurs, et se poursuit, lorsque ceci est nécessaire, avec un pivot de Gauss.
Pour des raisons pratiques ce travail considère deux codes AL-FEC pour le canal à effacement de paquets,
les codes LDPC-staircase et LDPC-triangle. Cependant le schéma de décodage proposé peut s’appliquer à
d’autres codes LDPC sans aucun problème.

Les tests éffectués montrent que les codes LDPC-triangle atteignent des performances en terme de capacité
de correction d’effacements extrêmement proches de celles d’un code idéal, ceci même avec de petites tailles
de blocs. Ceci est encore plus vrai avec de petits code rates: alors que le décodage itératif de Zyablov devient
inutilisable au fur et à mesure que le code rate diminue, le pivot de Gauss rend les codes LDPC-triangle
quasiment optimaux. Dans tous les tests, lorsqu’il est soigneusement implémenté, le codec LDPC-triangle
doté du schéma de décodage proposé est rapide, et en particulier toujours significativement plus rapide que
le codec Reed-Solomon sur GF(28) de référence.

Les capacités des correction d’effacements des codes LDPC-staircase sont également significativement
améliorées, même si elles restent un peu plus éloignées d’un code idéal. Cependant un gros avantage est le
fait que les codes LDPC-staircase sont significativement plus rapides que les codes LDPC-triangle, ce qui
permet, par exemple, de les utiliser avec des tailles de blocs plus importantes.

Tous ces résultats rendent ces codes extrêmement attractifs pour de nombreuses situations et contredisent
une idée largement répendue selon laquelle le pivot de Gauss ne serait pas utilisable du fait de coûts de calcul
prohibitifs. De plus l’approche proposée offre une très grande flexibilité à l’usage, et suivant la situation, on
pourra choisir de privilégier soit les capacités de correction, soit le temps de calcul.

Mots-clés : Codes FEC pour canaux à effacement de paquets, codes AL-FEC, codes LDPC, codes LDPC-
staircase, codes LDPC-triangle, Pivot de Gauss, décodage itératif de Zyablov
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4 Cunche & Roca

1 Introduction

This work focuses on the decoding algorithm of the LDPC large block FEC codes for the packet erasure
channel. These codes usually operate within the transport or application layer (hence their name, AL-FEC),
and sometimes within the MAC layer (e.g., in the MPE-FEC layer of DVB-H systems).

One benefit is that AL-FEC codes are easily implemented in software codecs, which provides a lot of
flexibility: they can operate on very large blocks, whereas physical layer FEC codes are often limited by the
available chipset memory; they can be tailored to the application constraints by dynamically varying the size
of the encoded block, the amount of redundancy added, or even by providing several layer of protections.

Codes for this type of channel are becoming increasingly important since they are the cornerstone of many
content delivery protocols (CDP) and systems. For instance, AL-FEC codes are a key building block of the
FLUTE/ALC protocol stack integrated in the DVB-H/SH IP Datacasting service for reliable file delivery.
For the same reasons, the Reliable Multicast Transport (RMT) working group of the IETF is standardizing
several such AL-FEC codes, including Reed-Solomon codes, Raptor codes, and the LDPC-staircase and
LDPC-triangle codes, two LDPC codes that will be considered in this work.

The performance of LDPC AL-FEC codes, both in terms of erasure recovery capabilities and decoding
speed, is largely dependent on the decoding algorithm used. A commonly used decoding scheme has been
described by Zyablov and Pinsker in 1974 in [11] (see Section 3.2). If this algorithm features a very high
decoding speed, it remains sub-optimal in terms of erasure recovery capabilities.

The goal of the present work is to go beyond this decoding algorithm and to analyze the performance of the
two LDPC variants mentioned above with a hybrid Zyablov Iterative decoding/Gaussian elimination scheme.
The contributions of this work are twofold: (1) it proves that very simple LDPC codes feature very good
performance in terms of erasure recovery capabilities, sometimes very close to that of an ideal code, and (2)
it shows that, when carefully implemented, the proposed decoding scheme is rather fast. In particular the
two LDPC codes are always significantly faster than the software reference Reed-Solomon codec working on
GF(28).

The remaining of this paper is organized as follows. We first describe related works. Then we give more
information on the two LDPC codes considered and the Zyablov iterative decoding algorithm in Section 3.
We detail our proposal in Section 4. We introduce and discuss performance analyzes in Section 5. Finally
we conclude.

2 Related Works

An improved approach for decoding Raptor codes (that are a certain form of LDPC codes) is presented in the
following patent description [9] and a similar one for LDPC codes in [1]. More precisely, the two methods aim
to reduce the complexity of the decoding by reducing the size of the system on which the Gaussian elimination
is applied. Let us consider an LDPC code of length n and dimension k and its parity check matrix H of
dimension L × n, and a BEC of loss probability δ. In order to recover all the symbols of the transmitted
codeword Y we have to solve a linear system with δn variables and L equations. Thanks to a procedure
called symbol deactivation in [9] and reference variables declaration in [1], all the δn unknown symbols are
expressed as a function of a subset of αn unknown symbols. The symbol deactivation (respectively reference
variables declaration) procedure translates the original system involving δn variables into a smaller system
involving only αn reference variables. The smaller system can now easily be solved by Gaussian elimination.
Finally the remaining unknown symbols are deduced by a substitution of the values of the reference variables.
Several methods for choosing the reference variables are presented in [1] and the authors claim an overall
computation gain of at least (δ/α)2. [9] introduces a specific code construction scheme that improves the
efficiency of the inactivation decoder of Raptor codes.

Our proposal differs from these two approaches, since we restrict ourselves to using two known techniques
for decoding a system of linear equations, rather than proposing a new one. Thanks to this choice our proposal
does not infringe the patent [9] which is a great practical asset. We will see in the remaining of this paper

INRIA



Improving the Decoding of LDPC Codes with a Zyablov Iterative Decoding/Gaussian Elimination Scheme 5

that for reasonable object sizes, our proposal, applied to the two LDPC variants chosen, yields excellent
results.

In [2] a scheme called In-place algorithm is presented, which uses a Gaussian elimination for decoding
LDPC codes and other binary linear block codes on the Binary Erasure Channel (BEC). As in our scheme
the Gaussian elimination procedure is applied on a simplified parity check matrix and the operation are
limited to the rows. The performance of this scheme is evaluated and compared with other decoding scheme
on LDPC, BCH, and quadratic residue codes of small length (n ≤ 341). A limitation of the work is that it
does not provide any complexity evaluation of the presented scheme nor decoding time analysis. Our work is
therefore very similar to this one but focuses on different LDPC variants, and aims at providing an extensive
performance analysis, using on on-the-shelf, high performance, codecs.

3 LDPC-staircase and LDPC-triangle Codes and the Zyablov It-

erative Decoding Scheme

3.1 Introduction to LDPC-staircase and LDPC-triangle AL-FEC Codes

The LDPC-staircase [4] and LDPC-triangle codes are variants of the well known LDPC codes introduced
by Gallager in the 60s [3]. Thanks to an appropriate parity check matrix structure, the LDPC-staircase
and LDPC-triangle codes feature a very high encoding and decoding speed. These codes therefore belong to
the class of large block codes, which means they can easily operate on blocks that are composed of a huge
number of source symbols (up to several 100,000s). If each symbol is 1 kilobyte long, then a file of several
hundreds of megabytes can be encoded in a single pass. This is a great advantage over so called small-block
FEC codes, like the popular Reed-Solomon codes over GF(28) for the erasure channel [5].

The parity check matrix H of each LDPC variant considered, of size n − k rows (i.e., the equations or
constraints) for n columns (i.e., the source and repair symbols), is built as follows. H is the concatenation
of sub-matrix H1, of size n − k rows for k columns (i.e., the source symbols), and of sub-matrix H2, of size
n− k rows for n− k columns (i.e., the repair symbols). For both LDPC variants, the H1 sub-matrix is filled
in a fully regular way, with three ”1s” per columns and at least two ”1s” per row. The variants only differ
by their H2 sub-matrix, which has either a ”staircase” (also called double diagonal) or a ”lower triangle”
structure. In the latter case, the triangle is filled-in thanks to a dedicated algorithm. The interested reader
is invited to refer to [7][8] for further details.

The remaining of this work is based on the LDPC-staircase and LDPC-triangle AL-FEC codes. No
other LDPC codes will be considered, because these codes are already known to yield good performances
[7], because an on-the-shelf, high performance, open source codec is available [6], and because these codes
are currently being standardized at IETF [8].

3.2 Decoding with the Zyablov Iterative Decoding Algorithm

Decoding follows a trivial iterative decoding algorithm, described by Zyablov and Pinsker in [11]: given a set
of linear equations, if one of them has only one remaining unknown variable, then the value of this variable
is that of the constant term. So, replace this variable by its value in all the remaining linear equations and
reiterate. The value of several variables can therefore be found recursively.

Applied to LDPC codes working on an erasure channel, the parity check matrix defines a set of linear
equations whose variables are the source symbols and repair symbols. Receiving or decoding a symbol is
equivalent to having the value of a variable. Since there are initially n−k linear equations of n variables (i.e.,
source and repair symbols), this system cannot be solved and we need to receive symbols from the network.
Each received symbol contains the value of the associated variable, so we replace this variable in all linear
equations in which it appears. We then apply the above algorithm and see if decoding can progress by one
or more steps. As we approach the end of decoding, received symbols tend to trigger the decoding of several
symbols, until all of the k source symbols have been recovered.
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6 Cunche & Roca

In a previous work [7] we have shown, for instance, that for a code rate 2/3, the Zyablov iterative decoding
applied to LDPC-staircase and LDPC-triangle codes requires on average respectively 6.8% and 5.5% symbols
in addition to k, whereas k symbols are sufficient with an ideal code.

4 Our Proposal: a Hybrid Zyablov Iterative Decoding/Gaussian
Elimination Scheme

4.1 Principles

(a) Zyablov-only iterative decoding. (b) Hybrid Zyablov/Gaussian elimination decoding.

Figure 1: Comparison of the two decoding schemes.

Our proposal works as follows. The receiver collects source and repair symbols (e.g., from the network)
and submits them to the Zyablov iterative decoding scheme as they arrive. If the object can be decoded,
i.e., if a sufficiently high number of symbols is available for the decoding to finish, the receiver marks the
corresponding block as decoded. If the object cannot be decoded, and if the receiver knows he will no longer
receive any additional symbol for this block, then he switches to the Gaussian elimination scheme. The
system of linear equations upon which the Gaussian elimination works is the simplified system that results
from the partial decoding with the iterative scheme. This simplified system can be significantly smaller than
the initial system, i.e., it can be composed of a number of equations and variables that are significantly
smaller than respectively n − k and n. If we detect that the system cannot be solved with a Gaussian
elimination, typically because there is a insufficient number of equations W.R.T. the number of variables,
the decoder immediately stops. Otherwise a Gaussian elimination is tried and, if successful, the block is
marked as being decoded.

The two flow charts of Figure 1 compare the decoding process with a Zyablov decoding scheme only (on
the left) and the hybrid decoding process that couples the two decoding schemes (on the right).

Decoding with the Gaussian Elimination Algorithm: Let us detail how decoding can be finished
with a Gaussian elimination, after several steps of the iterative Zyablov algorithm. Let X be the vector
containing the set of n source and repair symbols and H be the parity matrix. Decoding is equivalent to
solving the system:

HX = 0

INRIA



Improving the Decoding of LDPC Codes with a Zyablov Iterative Decoding/Gaussian Elimination Scheme 7

As explained in Section 3.2 the linear system is simplified as the symbols are received or rebuilt. Suppose
that after t decoding steps, nt

r
symbols have been received and nt

b
symbols have been rebuilt, and that among

the received symbols, nt
u

have been ignored because they have been already rebuilt (nt
u
≤ nt

b
). We have:

nt
r

+ nt

b
− nt

u
= t. So t variables and nt

b
equations have been removed from the initial system. The linear

system now has (n − k) − nt

b
equations and n − t variables:

HtXt = Yt

where: Ht is a sub-matrix of the initial H matrix, with (n − k) − nt

b
rows and n − t columns; Xt is the

variable vector of size n − t representing the unknown symbols; and Yt is the (no longer null) vector of size
(n − k) − nt

b
containing the sum of the already known symbols for each equation. Of course, if t = 0, we

have Ht = H, Xt = X and Yt = 0.
Let us assume that the decoder switches to the Gaussian elimination scheme after decoding step T . If

HT has a higher (or equal) number of rows than columns, that is to say if (n − k) − nT

b
≥ n − T , then the

system may be solvable. Note that the previous condition can be fulfilled only if nt
r
≥ k, and therefore the

maximum size of this system is (n−k)× (n−k). In that case, a Gaussian elimination is applied. In order to
keep the correspondence between the coordinates of the variable vector XT and the values of the symbols,
the Gaussian elimination operates only on the rows. If HT has a full rank, then the following system is
obtained:

(

Id
0

)

XT = Y ′

T

and the unknown symbols contained in XT are immediately found.
A key point that enabled us to achieve good results is the following: during all the Zyablov iterative

decoding, the sparse parity check matrix H is stored using a sparse representation, where each ”1” entry in H
is associated to pointers to the next (respectively previous) ”1” in the row/column. Yet, during the Gaussian
elimination, the resulting system is no longer sparse. Therefore, before beginning the Gaussian elimination,
the sparse representation of the parity check matrix is converted to a dense representation, where each row is
associated to a bit field of the appropriate size. Because of the algorithmic simplifications this dense matrix
enables (e.g., when XORing two rows), this conversion helped us to greatly reduce the decoding time.

4.2 When and How Should the Hybrid Decoding Scheme Be Used?

As we will see in Section 5, the processing load of a Gaussian elimination is not necessarily prohibitive. For
instance the LDPC codec featuring an hybrid decoding scheme remains significantly faster than a software
Reed-Solomon codec working over GF(28). However a Gaussian elimination decoding has an intrinsic cost
that should perhaps be avoided in some situations. This is what we now discuss.

Two transmission scenarios must be considered since they will deeply impact the strategy a receiver
should follow:

- transmissions within a carousel of the encoding object(s), over a period that largely exceeds the
minimum time required to download and decode the object(s);

- single transmission of the encoded object(s);

The first case is typical of a file transmission scenario within, e.g., a DVB-H/SH IP Datacasting session,
using FLUTE/ALC as the transmission protocol. Here a popular content is broadcast to a large set of users
during, lets say, a few days. A user can select and download the content during this whole period. Once
selected, the terminal receives a continuous set of symbols for this object. As long as new packets arrive, a
good strategy can be to use only the Zyablov iterative decoding scheme.

The second case is typical of many transmission scenarios where a receiver has only one opportunity
to download a content since the source and repair symbols are sent once. Depending on the context, this
content might be a file (e.g., with FLUTE/ALC) or a block of bits or bytes in a transmission channel (e.g.,
in the DVB-H/SH MAC layer). Here, as soon as the receiver detects that the sender will no longer transmit
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8 Cunche & Roca

additional symbols for this block, if the Zyablov iterative decoding scheme did not succeed, then he switches
to the Gaussian elimination scheme.

The receiver may also have additional strategies. For instance a receiver might decide that a Gaussian
elimination will only be used if the simplified system resulting from the Zyablov iterative decoding scheme has
a size inferior to a certain threshold. This threshold can be defined after taking into account the processing
capabilities of the terminal, or the remaining battery capacity, or the estimated decoding time.

A receiver might also decide that once the number of (non duplicated) symbols received exceeds a certain
threshold (e.g., 1.02 ∗ k with LDPC-triangle codes), then he switches to a Gaussian elimination scheme in
order to deliver the object to the application in a timely manner, even if additional symbols for this block
may still be received in the future.

We see that thanks to its high flexibility, the hybrid decoding scheme proposed can easily be tailored to the
use-case needs and the current situation.

5 Performance Evaluation

This section first describes the experimental setup and then gives an account of the various tests carried out
to assess the performances achieved with the proposed decoding scheme, both in terms of erasure recovery
capabilities and in terms of decoding time.

5.1 Experimental Setup

5.1.1 Software Codecs

The LDPC tests use the high performance, open-source, LDPC C++ codec, version 2.1 [6], for which we
added a Gaussian elimination scheme in addition to the existing Zyablov iterative decoding.

The Reed-Solomon tests rely on the excellent open-source C codec [5] designed by L. Rizzo, which has
been widely used in the community during the last ten years. This codec will serve as a reference during
our tests.

The erasure recovery capability tests also refer to an ideal code, i.e., an MDS code which has no restriction
on the maximum source block size or encoded block size (i.e., k and n can be chosen arbitrarily large). Of
course, no codec is associated to ideal codes, the results are purely theoretical.

5.1.2 Performance Analysis Application

We designed a dedicated performance analysis application on top of these codecs, derived from eperf_tool

([6]). Given an object and a code rate, the application first performs FEC encoding: to k source symbols
of a block, the codec produces n − k = k( 1

code rate
− 1) repair symbols. The size of the source and repair

symbols is set to 1024 bytes for all the tests.
Once encoding has been performed, the source and repair symbols are transmitted in a fully random

order. A loss probability is then applied, leading to the removal (i.e., erasure) of a certain number of
symbols. The receiving application submits each received symbol to the decoder. This application stops
either when the decoding finishes or when all symbols have been received and submitted to the decoder.
The decoding status (success or failure) is then determined.

Note that there is no explicit loss model (e.g., random or per burst erasures) because shuffled transmissions
are not affected by this model. The loss probability (for a given code rate) is the only parameter that needs
to be considered.

5.1.3 Block Partitioning of the Object with Reed-Solomon and LDPC codes

Because of the intrinsic limitations of a Reed-Solomon codec working on GF(28), a large object has to
be partitioned into several blocks such that: k ≤ n ≤ max n = 255. Determining the block structure
of an object requires two things. The first key parameter is the maximum source block size possible,
max k = max n ∗ code rate = 255 ∗ code rate. The second key feature is the block partitioning algorithm.

INRIA



Improving the Decoding of LDPC Codes with a Zyablov Iterative Decoding/Gaussian Elimination Scheme 9

We chose the one specified by the IETF [10], which is used in current standards, like FLUTE/ALC in
DVB-H. With this algorithm, all blocks are either of size A large symbols or A large − 1 symbols, with
A large ≤ max k. Taking care of these two aspects is of high importance for reliably comparing the
performances of the Reed-Solomon and LDPC codes.

Using Reed-Solomon codes over GF(216) is another possibility. Indeed, this Galois Field removes the
above constraint on the maximum block size, since now: k ≤ n ≤ max n = 65535. All the objects of size
inferior to this threshold will be encoded in a single pass, within a single block as it is the case with the
LDPC codes considered. However the price to pay for that is much higher decoding times, whereas the
decoding time is already a limitation with GF(28) as we will see in Section 5.4. Therefore we deliberately
chose to restrict ourselves to Reed-Solomon codes over GF(28).

With the two LDPC variants considered, the object is always encoded as a single block in the following
tests. If practical limits exist, they are beyond the object sizes considered in this work, that amount to at
most 10,000 symbols.

5.2 Evaluation of the System Simplification Made Possible the Zyablov Itera-
tive Decoding

We first start by analyzing the efficiency of the Zyablov iterative decoding scheme as a way to simplify the
system of linear equations before applying a Gaussian elimination.
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(b) LDPC-triangle.

Figure 2: Simplification ratio of the system as a function of the loss ratio (object size=1,000 symbols and
code rate=2/3).

Figure 2 shows the simplification ratio of the system as a function of the loss probability. This simplifica-
tion ratio is defined as the ratio between the simplified system size to the initial system size (i.e., if Zyablov
iterative decoding is not used). The closer to zero this ratio is, the better. We see that with small loss prob-
abilities, the average system simplification ratio is almost null, meaning that the Zyablov iterative decoding
succeeds. Then as the loss probability increases, the average ratio increases too, meaning that the Zyablov
iterative decoding is less and less efficient in its role of simplifying the system. This phenomenon is more
visible with LDPC-triangle codes than it is with LDPC-staircase codes. In other words, with LDPC-staircase
codes, even if the object cannot be fully decoded, a significant subset of it is nonetheless rebuilt.

5.3 Evaluation of the Erasure Recovery Capabilities

The erasure recovery capabilities of the codes are the main performance criteria. This feature is measured
with the inefficiency ratio metric, which is defined as the ratio of the number of symbols that must be
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10 Cunche & Roca

received in order to decode the object (or all blocks of the object in case of Reed-Solomon) to the source
block size. Of course, an ideal code has an inefficiency ratio always equal to 1.0.

We conducted three kinds of tests:

- fixed code rate and different object sizes: the code rate is set to 2/3 and the object size is progressively
increased. The goal is to evaluate the asymptotic behavior of the codes, as well as their behavior with
small objects where LDPC codes traditionally perform badly;

- fixed object size and different code rates: the object size is set to 1,000 symbols (≈1 MBytes) and the
code rate is progressively decreased. The goal is to evaluate the behavior of the two LDPC codes as
they approach rateless codes.

- fixed object size and code rate, different loss probability: The goal is to evaluate the detailed behavior
of the codes as the loss probability approaches the maximum supportable loss rate made possible by
the code rate.

With the first two kinds of tests the methodology is the following. For a given {object size; code rate}
tuple, we chose a loss probability (or symbol erasure probability) and perform 1,000 tests, determining each
time whether decoding succeeds or not. Then we reiterate with a different loss probability. Finally, from
the whole set of tests for a given {block size; code rate} tuple, we derive the inefficiency ratio and the
corresponding 99% confidence intervals for the values lower (respectively higher) than this average.

5.3.1 Fixed Code Rate and Different Object Sizes
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Figure 3: Inefficiency ratio of Reed-Solomon, LDPC-staircase and LDPC-triangle codes as a function of the
object size, for a code rate=2/3.

Object size 100 500 1,000 2,000 5,000 10,000
LDPC-Staircase Gauss 6.10% 4.59% 4.17% 3.97% 3.89% 3.84%
LDPC-Triangle Gauss 3.82% 1.62% 1.28% 1.14% 1.06% 1.03%

Reed-Solomon 0% 3.58% 5.35% 6.95% 8.65% 9.79%

Table 1: Average inefficiency ratio as a function of the object size, for a code rate=2/3.

Figure 3 and Table 1 show the performance of the codes for various object sizes and a code rate set
to 2/3. We see that the average inefficiency ratio of LDPC-triangle codes falls below 1.6% very quickly,
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Improving the Decoding of LDPC Codes with a Zyablov Iterative Decoding/Gaussian Elimination Scheme11

for objects of size 500 symbols and then stabilizes around 1.0%. On the opposite, with a Zyablov iterative
decoding scheme, LDPC-triangle codes have an inefficiency ratio that asymptotically stabilizes around 5.5%.
Not only does the Gaussian elimination scheme enable to reach lower inefficiency ratios with LDPC-triangle
codes, but it does it more quickly and with a better confidence interval than the Zyablov iterative decoding
scheme.

The benefits of the Gaussian elimination are also significant with LDPC-staircase codes, but do not
enable to reach as good inefficiency ratios as with LDPC-triangle codes. The average inefficiency ratio
quickly achieves a value around 4.0% when Gaussian elimination is used, to be compared to the asymptotic
value of 6.8% with a Zyablov iterative decoding scheme.

Finally, we see that Reed-Solomon code are only interesting for very small objects, respectively below 750
symbols with LDPC-staircase codes and 255 symbols with LDPC-triangle codes. Above these values, the
two LDPC variants featuring a Gaussian elimination are always more efficient in terms of erasure recovery
capabilities.

Let us remind that the bad behavior of Reed-Solomon codes over GF(28) is related to the so-called
”coupon collector problem”: when several blocks are needed, the probability that a repair symbol chosen
randomly be useful to recover from an erasure is inversely proportional to the number of blocks. As the
object size increases, this ”coupon collector problem” becomes more and more significant, as can be seen in
the figures.

5.3.2 Fixed Object Size and Different Code Rates
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Figure 4: Inefficiency ratio of Reed-Solomon, LDPC-staircase and LDPC-triangle codes as a function of the
code rate, for an object size=1,000 symbols.

Code Rate 1/10 1/9 1/8 1/7 1/6 1/5 1/4
LDPC-Staircase Gauss 0.28% 0.32% 0.40% 0.50% 0.70% 1.14% 2.18%
LDPC-Triangle Gauss 0.17% 0.16% 0.15% 0.17% 0.16% 0.16% 0.20%

Code Rate 1/3 2/5 1/2 2/3 4/5 10/11
LDPC-Staircase Gauss 5.35% 10.01% 7.42% 4.15% 2.28% 1.08%
LDPC-Triangle Gauss 0.23% 0.58% 0.86% 1.28% 1.25% 0.88%

Table 2: Average inefficiency ratio as a function of the code rate, for an object size=1,000 symbols.

Figure 4 and Table 2 show the performance of the codes for various code rates and an object of size 1,000
symbols. We see here the exceptional behavior of LDPC-triangle codes that are extremely close to an ideal
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12 Cunche & Roca

code. For instance, with a code rate of 1/3 or lower, the average inefficiency ratio of LDPC-triangle codes
remains below 0.23% thanks to the Gaussian elimination scheme. On the opposite, the Zyablov iterative
decoding scheme performs very badly as the code rate decreases, and becomes almost unusable below a code
rate 0.4.

The benefits of the Gaussian elimination with LDPC-staircase codes becomes really significant essen-
tially below code rate 0.4. Below this code rate, the performance of LDPC-staircase codes asymptotically
approaches the erasure recovery capabilities of LDPC-triangle codes. Here also the Zyablov iterative decod-
ing scheme performs very badly as the code rate decreases, and becomes almost unusable below code rate
0.33.

Finally, with such a small object (1,000 symbols), we see that LDPC codes need to use a Gaussian
elimination to be more efficient than Reed-Solomon codes, and this is all the more true as we approach
rateless codes.

The LDPC-staircase curves highlight a potential issue in the design of these codes, since there is an
inflection at code rate 2/5. This value corresponds to the point where there are exactly three ”1”s per
column and two ”1”s per row in the left parity check sub-matrix. Since the goal of the present work is
to assess the performances of the decoding algorithm on existing LDPC codes, we will not discuss this
phenomenon in this paper. Nevertheless we believe that there is potentially here a possibility to further
optimize LDPC-staircase codes, for instance by making the density of ”1”s in this left sub-matrix dependent
on the code rate.

5.3.3 Fixed Object Size/Code Rate and Different Loss Probabilities

Figure 5 exhibits the decoding success probability W.R.T. the erasure probability of LDPC codes with/without
Gaussian elimination, Reed-Solomon codes over GF(28), and an ideal code. The object size is set to 1,000
symbols, and the code rate is set either to 2/3 or 1/3. This code rate also defines an upper bound on the
loss probability above which decoding becomes totally impossible.

The closer to the rectangular curve of an ideal code, the better. We see from this point of view the
excellent performance of both LDPC codes with code rate 1/3. In particular, the LDPC-triangle codes curve
is almost impossible to distinguish from that of an ideal curve, which is a major achievement. The fact that
the slope of the curves of all LDPC codes using Gaussian elimination be closer to a vertical than the curves
of LDPC codes using Zyablov iterative decoding only and the curves of Reed-Solomon codes is also excellent.
It shows that once Gaussian elimination starts, the success probability is rather high.

5.4 Evaluation of the Decoding Time

We have seen so far that the two LDPC codes considered feature very good performances in terms of erasure
recovery capabilities. The next question is naturally: what is the price to pay for that? Does the Gaussian
elimination scheme lead to prohibitive processing load or not?

We carried out several experiments meant to analyze the performance of the codec in terms of decoding
time. These experiments have been performed on a Linux PC using a 2.6.18-6/64 bit Debian operating
system and featuring a Dual Core Intel Xeon 5120/1.86GHz (1066MHz) processor. While this machine is
not (yet?) representative of portable terminals, these tests enable us to compare the decoding speed of both
LDPC variants with that of the Reed-Solomon software codec that serves as a reference point.

Two kinds of experiments are carried out:

- decoding time measurements, when the Zyablov iterative decoding does not succeed, and therefore a
Gaussian elimination is needed. This is the worst case from a decoding point of view;

- decoding time measurements as a function of the loss probability, in order to compare situations where
the Zyablov iterative decoding is successful and situations where Gaussian elimination is needed. These
tests are more representative of real situations.
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Figure 5: Decoding success probability of Reed-Solomon, LDPC-staircase and LDPC-triangle codes (k=1,000
symbols, code rate 2/3 and 1/3).

5.4.1 Decoding Time When Gaussian Elimination is Needed (Worst Case)

Decoding Time for a Fixed Object Size and Code Rate Figures 6 show the decoding time during
the Gaussian elimination process of both LDPC codes for an object of size 1,000 symbols and a code rate
set to 2/3. By varying the symbol erasure probability, the resulting average simplified system size changes,
which in turn impacts the decoding times. These figures show this time as a function of the simplified
system size, and the corresponding histogram. With LDPC-staircase codes, the histogram shows that most
simplified systems are composed of 250 variables, corresponding to an average decoding time around 0.003
seconds. We also see that if the average decoding time never exceeds 0.005 seconds, the maximum time
remains below 0.015 seconds which is acceptable.

LDPC-triangle codes are known to be slower with the Zyablov Iterative decoding scheme. This is con-
firmed here also. We see that most simplified systems are composed of 370 variables, corresponding to an
average decoding time around 0.014 seconds. Here the maximum decoding time remains below 0.057 seconds.

Decoding Time Comparison for Various Object Sizes When the object size increases, Figure 7
shows that the Gaussian elimination decoding time increases, following a O(k3) law. With LDPC-triangle
codes, an object of size 4,000 source symbols (it leads to a simplified matrix which is almost always composed
of a number of variables below but close to k × (3/2 − 1) = 2000), the maximum decoding time remains
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Figure 6: Histogram of the Gaussian elimination decoding time of LDPC-staircase and LDPC-triangle codes
W.R.T. the simplified system size (object size=1,000 symbols and code rate=2/3).
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Figure 7: Decoding time of LDPC-staircase/LDPC-triangle codes with a Gaussian elimination and Reed-
Solomon codes as a function of the object size, for a code rate=2/3.

below 0.5 second. With LDPC-staircase codes, the same level of performance is achieved with an object
of size 7,000 symbols instead of 4,000. If the decoding time of objects larger than this threshold quickly
increase, conversely smaller objects are very easily decoded. In all cases, in the range of objects considered,
these decoding times are significantly below the ones achieved with Reed-Solomon codes.

5.4.2 Decoding Time of the Hybrid Decoding Scheme

We have seen so far the decoding time of the two LDPC codes when Gaussian elimination is needed. In
practice, if the loss probability is sufficiently low (i.e., the reception quality is good enough), the Zyablov
iterative decoding algorithm will succeed. The results of previous section are therefore rather pessimistic.
We now study the whole decoding time as a function of the loss probability.

Figure 8 compares the decoding time of the LDPC-staircase and LDPC-triangle codes W.R.T. that of
Reed-Solomon as a function of the loss probability, for an object of size 1,000 symbols and a code rate set
to 2/3. With LDPC codes, as long as the loss probability remains below ≈ 0.27, the high speed Zyablov
algorithm succeeds to decode the object. Then, as the loss probability increases, the Gaussian elimination
must be used. The decoding time progressively increases because (1) the Gaussian elimination is more and
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Figure 8: Total decoding time of LDPC-staircase and LDPC-triangle codes versus Reed-Solomon codes, as
a function of the loss probability, for an object size=1,000 symbols and a code rate=2/3.

more likely to be required and (2) in that case, the size of the system that has been simplified by the Zyablov
scheme increases too (said differently the Zyablov iterative decoding scheme behaves more and more badly).
Then above a certain threshold that depends on the code rate and erasure recovery capabilities, decoding
becomes impossible. If we compare with the Reed-Solomon decoding time, we see that LDPC-triangle
decoding is always an order of magnitude faster, even when Gaussian elimination is needed. This result
is even more true with LDPC-staircase codes for which the Zyablov and Gaussian elimination schemes are
both faster than with LDPC-triangle codes (Figure 6).

6 Conclusions

This work focuses on the decoding of the LDPC AL-FEC codes for the erasure channel. More precisely, this
work studies the erasure recovery capabilities of these codes when a Gaussian elimination scheme is used
in addition to the Zyablov iterative decoding scheme. For the need of the exercise, two LDPC flavors are
considered, namely LDPC-staircase and LDPC-triangle, but similar results are expected with other LDPC
codes.

A first contribution is to show that the erasure recovery capabilities of LDPC-triangle codes are now
extremely close to that of an ideal code. With a code rate 2/3, the LDPC-triangle inefficiency ratio is
between 1.6% and 1.0% only compared to the 5.5% when the iterative decoding scheme alone is used. This
result is all the more significant as it is not achieved asymptotically as it is often the case, but very quickly,
with blocks of size 500 symbols. The results W.R.T. small code rates are even more impressive. Whereas the
iterative decoding scheme becomes unusable as the code rate decreases, the Gaussian elimination makes the
LDPC-triangle codes almost ideal with an inefficiency ratio lower than 0.2%. Said differently, the Zyablov
decoding algorithm does not exhibit the near-MDS capabilities of the LDPC-triangle codes as a Gaussian
elimination does.

A second contribution is to show that such simple codes as LDPC-staircase codes can achieve good results,
even if their erasure recovery capabilities remain a little bit farther from an ideal code. Here also the use
of Gaussian elimination largely improves the situation, even with small source blocks or small code rates.
Besides LDPC-staircase codes are significantly faster than LDPC-triangle codes, which, for instance, enables
their use with larger blocks. For instance LDPC-staircase and triangle codes feature the same worst case
decoding time with blocks of size 7,000 and 4,000 symbols respectively (i.e., 0.5 seconds in our tests).

A third contribution is that our results contradict a common belief that using Gaussian elimination is not
usable in practice because of a prohibitive processing load. On the contrary, we show that with block sizes
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16 Cunche & Roca

that amount to a few thousands of symbols, the joint use of the two decoding algorithms (since the Gaussian
elimination no longer works on the initial system but on a simplified one) and a careful implementation make
the processing load reasonable. For instance, with an object of size 1,000 symbols and a code rate 2/3, the
worst case decoding of LDPC-triangle codes with Gaussian elimination is an order of magnitude faster than
the decoding of the reference Reed-Solomon codec. And if the erasure rate is sufficiently low for the Zyablov
iterative decoding to succeed, decoding is two orders of magnitude faster than with Reed-Solomon. Even for
objects of size 10,000 symbols, both LDPC variants remain faster than Reed-Solomon codes.

All these results are likely to change the way we consider some simple yet efficient LDPC codes for
the erasure channel. They also open new perspectives since these codes feature better erasure recovery
capabilities and lower decoding times than the software Reed-Solomon codec we used. Additionally the
hybrid Zyablov iterative decoding/Gaussian elimination scheme can easily be tailored to match the use-case
and operational requirements. For instance a receiver might decide that a Gaussian elimination will only
be used if the simplified system has a size inferior to a certain that can take into account the processing
capabilities of the terminal, or the remaining battery capacity, or the estimated decoding time. This flexibility
is another key benefit of our proposal.

7 Acknowledgments

The authors would like to acknowledge Laurent Fazzio from STMicroelectronics who wrote the first version
of the Gaussian elimination code, as well as Pascal Moniot from STMicroelectronics for his support. The
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