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Groupage de Tra� Dans les Anneaux UnidiretionnelsWDM ave Graphe de Requêtes de Degré Borné ∗Xavier Muñoz † , Ignasi Sau ‡ §Thème COM � Systèmes ommuniantsProjet MASCOTTERapport de reherhe n° 6481 � February 2008 � 14 pagesRésumé : Le groupage de tra� est un des problèmes les plus importants dans les réseauxoptiques. Il onstiste à grouper des signaux de bas débit dans des �ux de plus grande apaité,ave l'objetif de réduire le oût du réseau. Dans les réseaux SONETWDM, e oût est donnéprinipalement par le nombre d'ADMs. Nous onsidérons l'anneau unidiretionnel ommegraphe physique. En termes de théorie des graphes, le groupage de tra� revient à trouverune partition des arêtes du graphe de requêtes en sous-graphes ave un nombre maximumd'arêtes, en minimisant le nombre total de sommets dans la partition.Nous onsidérons un graphe de requêtes de degré maximum ∆, et le but est de onevoirun réseau qui soit apable de satisfaire tous les graphes de requêtes tels que haque sommetpeut établire au plus ∆ ommuniations. Un modèle permettant ette �exibilité n'existaitpas dans la littérature. Nous formalisons le problème et trouvons la solution exate pour
∆ = 2 et ∆ = 3 (sauf le as C = 4). Nous donnons des bornes inférieures et supérieurespour le as géneral.Mots-lés : Réseaux optiques, SONET, groupage de tra�, ADM, déomposition desgraphes, graphe ubique, graphes sans bridges.
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Tra� Grooming in Unidiretional WDM Rings withBounded Degree Request Graph ¶Abstrat: Tra� grooming is a major issue in optial networks. It refers to grouping lowrate signals into higher speed streams, in order to redue the equipment ost. In SONETWDM networks, this ost is mostly given by the number of eletroni terminations, namelyADMs. We onsider the ase when the topology is a unidiretional ring. In graph-theoretialterms, the tra� grooming problem in this ase onsists in partitioning the edges of a requestgraph into subgraphs with a maximum number of edges, while minimizing the total numberof verties of the deomposition.We onsider the ase when the request graph has bounded maximum degree ∆, and ouraim is to design a network being able to support any request graph satisfying the degreeonstraints. The existing theoretial models in the literature are muh more rigid, and donot allow suh adaptability. We formalize the problem, and solve the ases ∆ = 2 (for allvalues of C) and ∆ = 3 (exept the ase C = 4). We also provide lower and upper boundsfor the general ase.Key-words: Optial networks, SONET over WDM, tra� grooming, ADM, graph deom-position, ubi graph, bridgeless graph.



Groupage de Tra� Dans les Anneaux Unidiretionnels WDM ave Graphe de Requêtes de Degré Borné 31 IntrodutionTra� grooming is the generi term for paking low rate signals into higher speed streams(see the surveys [3, 9, 15, 16, 20℄). By using tra� grooming, it is possible to bypass theeletronis at the nodes whih are not soures or destinations of tra�, and therefore reduingthe ost of the network. Typially, in a WDM (Wavelength Division Multiplexing) network,instead of having one SONET Add Drop Multiplexer (ADM) on every wavelength at everynode, it may be possible to have ADMs only for the wavelengths used at that node (theother wavelengths being optially routed without eletroni swithing).The so alled tra� grooming problem onsists in minimizing the total number of ADMsto be used, in order to redue the overall ost of the network. The problem is easily seen to beNP-omplete for an arbitrary set of requests. See [11, 10, 1℄ for hardness and approximationresults of tra� grooming in rings, trees and star networks.Here we onsider unidiretional SONET/WDM ring networks. In that ase the routingis unique and we have to assign to eah request between two nodes a wavelength and somebandwidth on this wavelength. If the tra� is uniform and if a given wavelength an arry atmost C requests, we an assign to eah request at most 1
C
of the bandwidth. C is known asthe grooming ratio or grooming fator. Furthermore if the tra� requirement is symmetri, itan be easily shown (by exhanging wavelengths) that there always exists an optimal solutionin whih the same wavelength is given to a pair of symmetri requests. Then without lossof generality we will assign to eah pair of symmetri requests, alled a irle, the samewavelength. Then eah irle uses 1

C
of the bandwidth in the whole ring. If the two end-nodes are i and j, we need one ADM at node i and one at node j. The main point is thatif two requests have a ommon end-node, they an share an ADM if they are assigned thesame wavelength.The tra� grooming problem for a unidiretional SONET ring with n nodes and a groom-ing ratio C has been modeled as a graph partition problem in both [2℄ and [14℄ when therequest graph is given by a symmetri graph R. To a wavelength λ is assoiated a subgraph

Bλ ⊂ R in whih eah edge orresponds to a pair of symmetri requests (that is, a irle)and eah node to an ADM. The grooming onstraint, i.e. the fat that a wavelength anarry at most C requests, orresponds to the fat that the number of edges |E(Bλ)| of eahsubgraph Bλ is at most C. The ost orresponds to the total number of verties used in thesubgraphs, and the objetive is therefore to minimize this number.This problem has been well studied when the network is a unidiretional ring [3, 4, 7,8, 9, 14, 12, 13, 15, 18, 19℄. With the all-to-all set of requests, optimal onstrutions for agiven grooming ratio C were obtained using tools of graph and design theory, in partiularfor grooming ratio C = 3, 4, 5, 6 and C ≥ N(N − 1)/6 [3℄.Most of the researh e�orts in this grooming problem have been devoted to �nd theminimum number of ADMs required either for a given tra� pattern or set of onnetionrequests (typially uniform all-to-all ommuniation pattern), or either for a general tra�pattern. However in most ases the tra� pattern has been onsidered as an input for theproblem for plaing the ADMs. In this paper we onsider the tra� grooming problem fromRR n° 6481



4 Xavier Muñoz , Ignasi Saua di�erent point of view : Assuming a given network topology it would be desirable to plaethe minimum number of ADMs as possible at eah node in suh a way that they ould beon�gured to handle di�erent tra� patterns or graphs of requests. One annot expet tohange the equipment of the network eah time the tra� requirements hange.Without any restrition in the graph of requests, the number of required ADMs is givenby the worst ase, i.e. when the Graph of Requests is the omplete graph. However, inmany ases some restritions on the graph of requests might be assumed. From a pratialpoint of view, it is interesting to design a network being able to support any request graphwith maximum degree not exeeding a given onstant. This situation is usual in real optialnetworks, sine due to tehnology onstraints the number of allowed ommuniations for eahnode is usually bounded. This �exibility an also be thought from another point of view : ifwe have a limited number of available ADMs to plae at the nodes of the network, then itis interesting to know whih is the maximum degree of a request graph that our network isable to support, depending on the grooming fator. Equivalently, given a maximum degreeand a number of available ADMs, it is useful to know whih values of the grooming fatorthe network will support.The aim of this artile is to provide a theoretial framework to design suh networkswith dynamially hanging tra�. We study the ase when the physial network is given byan unidiretional ring, whih is a widely used topology (for instane, SONET rings). In [6℄the authors onsider this problem from a more pratial point of view : they all t-allowablea tra� matrix where the number of iruits terminated at eah node is at most t, and theobjetive is also to minimize the number of eletroni terminations. They give lower boundson the number of ADMs and provide some heuristis.In addition, we also suppose that eah pair of ommuniating nodes establishes a two-way ommuniation. That is, eah pair (i, j) of ommuniating nodes in the ring representstwo requests : from i to j, and from j to i. Thus, suh a pair uses all the edges of the ring,therefore induing one unity of load. Hene, we an use the notation introdued in [4℄ andonsider eah request as an edge, and then again the grooming onstraint, i.e. the fat thata wavelength an arry at most C requests, orresponds to the fat that the number of edges
|E(Bλ)| of eah subgraph Bλ is at most C. The ost orresponds to the total number ofverties used in the subgraphs.Namely, we onsider the problem of plaing the minimum number of ADMs in the nodesof the ring in suh a way that the network ould support any request graph with maximumdegree bounded by a onstant ∆. Note that using this approah, as far as the degree of eahnode does not exeed ∆, the network an support a wide range of tra� demands withoutreon�guring the eletronis plaed at the nodes. The problem an be formally stated asfollows :Traffi Grooming in Unidiretional Rings with Bounded-Degree Request GraphInput : Three integers n, C, and ∆.

INRIA



Groupage de Tra� Dans les Anneaux Unidiretionnels WDM ave Graphe de Requêtes de Degré Borné 5Output : An assignment of A(v) ADMs to eah node v ∈ V (Cn), in suh a way thatfor any request graph R with maximum degree at most ∆, it exists a partition of E(R)into subgraphs Bλ, 1 ≤ λ ≤ Λ, suh that :
(i) |E(Bλ)| ≤ C for all λ ; and
(ii) eah vertex v ∈ V (Cn) appears in at most A(v) subgraphs.Objetive : Minimize ∑

v∈V (Cn) A(v), and the optimum is denoted A(n, C, ∆).When the request graph is restrited to belong to a sublass of graphs C of the lassof graphs with maximum degree at most ∆, then the optimum is denoted A(n, C, ∆, C).Obviously, for any sublass of graph C, A(n, C, ∆, C) ≤ A(n, C, ∆).In this artile we solve the ases orresponding to ∆ = 2 and ∆ = 3 (giving a onjeturefor the ase C = 4), and give lower bounds for the general ase. The remainder of the artileis strutured as follows : in Setion 2 we give some properties of the funtion A(n, C, ∆), tobe used in the following setions. In Setion 3 we fous on the ase ∆ = 2, giving a losedformula for all values of C. In Setion 4 we study the ase ∆ = 3, solving all ases exept thease C = 4, for whih we onjeture the solution. Finally, Setion 5 is devoted to onlusionsand open problems.2 Behavior of A(n, C, ∆)In this setion we desribe some properties of the funtion A(n, C, ∆).Lemma 2.1 The following statements hold :(i) A(n, C, 1) = n.(ii) A(n, 1, ∆) = ∆n.(iii) If C′ ≥ C, then A(n, C′, ∆) ≤ A(n, C, ∆).(iv) If ∆′ ≥ ∆, then A(n, C, ∆′) ≥ A(n, C, ∆).(v) A(n, C, ∆) ≥ n for all ∆ ≥ 1.(vi) If C ≥ n∆
2 , A(n, C, ∆) = n.Proof:(i) The request graph an onsist in a perfet mathing, so any solution uses 1 ADMper node.(ii) A ∆-regular graph an be partitioned into n∆

2 disjoint edges, and we annot dobetter.(iii) Any solution for C is also a solution for C′.(iv) If ∆′ ≥ ∆, the subgraphs with maximum degree at most ∆ are a sublass of thelass of graphs with maximum degree at most ∆′.(v) Combine (i) and (iv).(vi) In this ase all the edges of the request graph �t into one subgraph. 2Sine we are interested in the number of ADMs required at eah node, let us onsiderthe following de�nition :
RR n° 6481



6 Xavier Muñoz , Ignasi SauDe�nition 2.1 Let M(C, ∆) be the least positive number M suh that, for any n ≥ 1, theinequality A(n, C, ∆) ≤ Mn holds.Lemma 2.2 M(C, ∆) is a natural number.Proof: First of all, we know by Lemma 2.1 that, for any C ≥ 1, A(n, C, ∆) ≤ A(n, 1, ∆) =
∆n. Thus A(n, C, ∆) is upper-bounded by ∆n. On the other hand, sine any vertex mayappear in the request graph, A(n, C, ∆) is lower-bounded by n.Suppose now that M is not a natural number. That is, suppose that r < M < r + 1 forsome positive natural number r. This means that, for eah n, there exists at least a fration
r
M

of the verties with at most r ADMs. For eah n, let Vn,r be the subset of verties of therequest graph with at most r ADMs. Then, sine r
M

> 0, we have that limn→∞ |Vn,r| = ∞.In other words, there is an arbitrarily big subset of verties with at most r ADMs per ver-tex. But we an onsider a request graph with maximum degree at most ∆ on the set ofverties Vn,r, and this means that with r ADMs per node is enough, a ontradition withthe optimality of M . 2If the request graph is restrited to belong to a sublass of graphs C of the lass of graphs withmaximum degree at most ∆, then the orresponding positive integer is denoted M(C, ∆, C).Again, for any sublass C, M(C, ∆, C) ≤ M(C, ∆).Combining Lemmas 2.1 and 2.2, we know that M(C, ∆) dereases by integer hops when
C inreases. One would like to have a better knowledge of those hops. The following lemmagives a su�ient ondition to assure than M(C, ∆) dereases by at most 1 when C inreasesby 1.Lemma 2.3 If C > ∆, then M(C + 1, ∆) ≥ M(C, ∆) − 1.Proof: Suppose that M(C + 1, ∆) ≤ M(C, ∆) − 2, and let us arrive at ontradition.Beginning with a solution for C +1, we will see that adding n ADMs (i.e. inreasing M by 1)we obtain a solution for C, a ontradition with the assumption M(C, ∆) ≥ M(C+1, ∆)+2.The request graph has at most ∆n

2 edges, and then in a solution for C +1 the number ofsubgraphs with exatly C+1 edges is at most ∆n
2(C+1) . All the subgraphs with C or less edgesan also be used in a solution for C. We remove an edge from eah one of the subgraphswith C + 1 edges, obtaining at most ∆n

2(C+1) edges, or equivalently at most ∆n
C+1 additionalADMs. We want this number to be at most n, i.e.

∆n

C + 1
≤ n ,whih is equivalent to ∆ ≤ C + 1, and this is true by hypothesis. 2We provide now a lower bound on M(C, ∆).Proposition 2.1 (General Lower Bound) M(C, ∆) ≥

⌈

C+1
C

∆
2

⌉

.

INRIA



Groupage de Tra� Dans les Anneaux Unidiretionnels WDM ave Graphe de Requêtes de Degré Borné 7Proof: Sine we have to onsider all the graphs with maximum degree at most ∆, we anrestrit ourselves to ∆-regular graphs with girth greater than C. Then, the best one oulddo is to partition the edges of the request graph into trees with C edges. In this ase, thesum of the degrees of all the verties in eah subgraph is 2C. Thus, the average degree ofthe verties in all the subgraphs is at most 2C
C+1 , hene it exists at least one vertex v withaverage degree not greater than 2C

C+1 . Therefore, v must appear in at least Mv subgraphs,with 2C
C+1Mv ≥ ∆. Thus, M(C, ∆) ≥

⌈

C+1
C

∆
2

⌉. 2Corollary 2.1 If the set of requests is given by a ∆-regular graph of girth greater than C,then
M(C, ∆) ≥

⌈

∆

2

⌉Proof: Trivial from Proposition 2.1. 2If the value of C is large in omparison to n the number of ADMs required per node maybe less than M(C, ∆) as stated in the following lemma :Lemma 2.4 A(n, C, ∆) ≤
⌈

n∆
2C

⌉

n.Proof: The number of edges of a request graph with degree ∆ is at most n∆
2 . We an parti-tion this edges greedily into subsets of at most C edges, obtaining at most ⌈

n∆
2C

⌉ subgraphs.Thus, in this partition eah vertex appears in at most ⌈

n∆
2C

⌉ subgraphs, as we wanted toprove. 2Notie that this is not in ontradition with Corollary 2.1, sine the inequality of thede�nition of M(C, ∆) must hold for all values of n.3 Case ∆ = 2Proposition 3.1 A(n, C, 2) = 2n− (C − 1).Proof: Consider the ase when the request graph is 2-regular and has girth greater than
C. Then, a feasible solution is obtained by plaing 2 ADMs at eah vertex. What we do isto ount in how many ADMs we an assure that we an plae only one ADM.Let us see �rst that we annot use 1 ADM in more than C−1 verties. Suppose this, i.e. thatwe have 1 ADM in C verties and 2 in all the others. Then, onsider a set of requests givenby a yle H of length C + 1 ontaining all the C verties with 1 ADM inside it, and otheryles ontaining the remaining verties. In this situation, we are fored to use 2 subgraphsfor the verties of H , and at least 2 verties of H must appear in both subgraphs. Hene wewill need more than 1 ADM in some vertex that had initially only 1 ADM.Now, let us see that we an always save C − 1 ADMs. Let {a0, a1, . . . , aC−2} be theset of verties with only 1 ADM, that we an hoose arbitrarily. We will see that we anRR n° 6481



8 Xavier Muñoz , Ignasi Saudeompose the set of requests in suh a way that the verties ai always lie in the middle of apath or a yle, overing in this way both requests of eah vertex with only 1 ADM. Indeed,suppose �rst that two of these verties (namely, ai and aj) do not appear onseutively inone of the disjoint yles of the set of requests. Let bi be the nearest vertex to ai in theyle in the diretion of aj , and onversely for bj (bi may be equal to bj if ai and aj di�eronly on one vertex). Then, onsider two paths (eventually, yles) of the form {bi, ai, . . .}and {bj, aj , . . .}, to assure that both ai and aj lie in the middle of the subgraph. We do thesame onstrution for eah pair of non-onseutive verties.Now, onsider all the verties {a0, . . . , ai, . . . , at−1} whih are adjaent in the same yleof the request graph, with t ≤ C − 1. Let b0 be the nearest vertex to a0 di�erent from a1,and let bt−1 be the nearest vertex to at−1 di�erent from at−2. Then, onsider a subgraphwith the path (or yle, if b0 = bt−1) {b0a0a1 . . . at−1bt−1}. 24 Case ∆ = 3We study the ases C = 3 and C ≥ 5 in Setions 4.1 and 4.2, respetively. We disussthe open ase C = 4 in Setion 5.4.1 Case C = 3We study �rst the ase when the request graph is a bridgeless ubi graph in Setion4.1.1, and then the ase of a general request graph in Setion 4.1.2.4.1.1 Bridgeless Cubi Request GraphWe will need some preliminary graph theoretial onepts. Let G = (V, E) be a graph.For A, B ⊆ V , an A-B path in G is a path from x to y, with x ∈ A and y ∈ B. If A, B ⊆ Vand X ⊆ V ∪E are suh that every A-B path in G ontains a vertex or an edge from X , wesay that X separates the sets A and B in G. More generally we say that X separates G if
G − X is disonneted, that is, if X separates in G some two verties that are not in X . Aseparating set of verties is a separator. A vertex whih separates two other verties of thesame omponent is a ut-vertex, and an edge separating its ends is a bridge. Thus, the bridgesin a graph are preisely those edges that do not lie on any yle. A set M of independentedges in a graph G = (V, E) is alled a mathing. A k-regular spanning subgraph is alleda k-fator. Thus, a subgraph H ⊆ G is a 1-fator of G if and only if E(H) is a mathing of
V . We reall a well known result from mathing theory :Theorem 4.1 (Petersen, 1981) Every bridgeless ubi graph has a 1-fator.Then, if we remove a 1-fator from a ubi graph, what it remains is a disjoint set of yles.Corollary 4.1 Every bridgeless ubi graph has a deomposition into a 1-fator and disjointyles.

INRIA



Groupage de Tra� Dans les Anneaux Unidiretionnels WDM ave Graphe de Requêtes de Degré Borné 9
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c)Fig. 1 � a) Deomposition of a bridgeless ubi graph into disjoints yles and a 1-fator.b) Deomposition of a bridgeless ubi graph into paths of length 3. ) Cubi bridgelessgraph used in the proof of Proposition 4.1An example of a deomposition of a bridgeless ubi graph into disjoints yles and a 1-fatoris depited in Fig. 1a.Proposition 4.1 Let C be the lass of bridgeless ubi graphs. Then,
M(3, 3, C) = 2.Proof: Let us proof that we an always partition the request graph into paths with 3 edgesin suh a way that eah vertex appears in 2 paths. To do so, we take the deompositiongiven by Proposition 4.1, together with a lokwise orientation of the edges of eah yle.With this orientation, eah edge of the 1-fator has two inoming and two outgoing edgesof the yles. For eah edge of the 1-fator we take its two inoming edges, and form in thisway a path of length 3. It is easy to verify that this is indeed a deomposition into paths oflength three. For instane, if we do this onstrution in the graph of Fig. 1a, and we labelthe edges of the 1-fator as {A,B,. . .,G} and the ones of the yles as {1,2,. . .,14} (see Fig.1b), we obtain the following deomposition :

{1, A, 6}, {5, B, 2}, {3, C, 8}, {7, D, 9}, {14, E, 11}, {10, F, 12}, {4, G, 13}Now let us see that we annot do better, i.e. with 2n − 1 ADMs. If suh a solution exists,there would be at least one vertex with only 1 ADM, and the average of the number ofADMs of all the other verties must not exeed 2. In order to see that this is not alwayspossible, onsider the ubi bridgeless graph on 10 verties of Fig. 1. Let w be the vertexwith only 1 ADM. This graph has no triangles exept those ontaining w. Sine we an useonly 1 ADM in w, we must take all its requests in one subgraph. It is not possible to overthe 4 remaining requests of the nodes u and v in one subgraph, and thus without loss ofgenerality we will need 3 ADMs in u. With these onstraints, one an hek that the bestsolution uses 20 ADMs, that is 2n > 2n − 1. 2
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10 Xavier Muñoz , Ignasi SauTaking a look at the proof we see that the only property that we need from the bridgelessubi graph is that we an partition it into a 1-fator and disjoint yles. Hene, we anrelax the hypothesis of Proposition 4.1 to obtain the following orollary :Corollary 4.2 Let C be the lass of graphs of maximum degree at most 3 that an be par-titioned into disjoints yles and a 1-fator. Then(i) M(3, 3, C) = 2 ; and(ii) M(C, 3, C) ≤ 2 for any C ≥ 4.4.1.2 General Request GraphIt turns out that when the request graph is not restrited to be bridgeless we have that
M(3, 3) = 3.Proposition 4.2 M(3, 3) = 3.Proof: By (ii) and (iii) of Lemma 2.1 we know that M(3, 3) ≤ 3. We shall exhibit aounterexample showing that M(3, 3) > 2, proving the result. Consider the ubi graph
G depited in Fig. 2a. We will prove that it is not possible to partition the edges of Ginto subgraphs with at most 3 edges in suh a way that eah vertex appears in at most 2subgraphs.
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a) c)b)

HG

0a e

Fig. 2 � a) Cubi graph G that an not be edge-partitioned into subgraphs with at most3 edges in suh a way that eah vertex appears in at most 2 subgraphs. b) Graph thatannot be partitioned into 2 onneted subgraphs with at most 3 edges. ) Counterexampleof Proposition 4.2 showing that M(3, 3) = 3Indeed, suppose the opposite, i.e. that we an partition the edges of G into (onneted)subgraphs B1, . . . , Bk with |E(Bi)| ≤ 3 in suh a way that eah vertex appears in at most2 subgraphs, and let us arrive at a ontradition.Following the notation illustrated in Fig. 2a, let A1, A2, A3 be the onneted omponentsof G\{e1, e2, e3}. Let also, with abuse of notation, ai = Ai∩ei, i = 1, 2, 3, and a0 = e1∩e2∩e3.
INRIA



Groupage de Tra� Dans les Anneaux Unidiretionnels WDM ave Graphe de Requêtes de Degré Borné 11Claim 1 There exist an index i∗ ∈ {1, 2, 3} and a subgraph Bk∗ ontaining a0, suh that
Bk∗ ∩ Ai∗ = {ai∗}.Proof: Among all the subgraphs B1, . . . , Bk involved in the deomposition of G, onsiderthe ℓ subgraphs Bj1 , . . . , Bjℓ

overing the edges {e1, e2, e3}. If ℓ = 1, then the subgraph
Bj1 is a star with three edges and enter a0, and then Bj1 ∩ Ai = {ai} for eah i = 1, 2, 3.If ℓ ≥ 3, then the vertex a0 appears in 3 subgraphs, a ontradition. Hene it remains tohandle the ase ℓ = 2. If the laim was not true, it would imply that for eah i = 1, 2, 3 itwould exist jf(i) ∈ {j1, j2} suh that Bf(i) ∩ Ai ontains at least one edge. In partiular,this would imply that the graph depited in Fig. 2b ould be partitioned into 2 onnetedsubgraphs with at most 3 edges, whih is learly not possible. 2Suppose without loss of generality that the index i∗ given by Claim 1 is equal to 1. Thus,
a1 appears in a subgraph Bk∗ that does not ontain any edge of A1. Therefore, the edges of
A1 must be partitioned into onneted subgraphs with at most 3 edges, in suh a way that
a1 appears in only 1 subgraph, and all its other verties in at most 2 subgraphs. Let us nowsee that this is not possible, obtaining the ontradition we are looking for.Indeed, sine a1 has degree 2 in A1 and it an appear in only one subgraph, it must havedegree two in the subgraph in whih it appears, i.e. in the middle of a P3 or a P4, beause A1is triangle-free. It is easy to see that this is equivalent to partitioning the edges of the graph
H depited in Fig. 2 into onneted subgraphs with at most 3 edges, in suh a way thatthe thik edge e appears in a subgraph with at most 2 edges, and eah vertex appears in atmost 2 subgraphs. Observe that H is ubi and triangle-free. Let n1 be the total number ofverties of degree 1 in all the subgraphs of the deomposition of H . Sine eah vertex of Han appear in at most 2 subgraphs and H is ubi, eah vertex an appear with degree 1 inat most 1 subgraph. Thus, n1 ≤ |V (H)| = 6.Sine we have to use at least 1 subgraph with at most 2 edges and |E(H)| = 9, there areat least 1 +

⌈

9−2
3

⌉

= 4 subgraphs in the deomposition of H . But eah subgraph involvedin the deomposition of H has at least 2 verties of degree 1, beause H is triangle-free.Therefore, n1 ≥ 8, a ontradition. 24.2 Case C ≥ 5For C ≥ 5 we an easily prove that M(C, 3) = 2, making use of a onjeture made byBermond et al. in 1984 [5℄ and proved by Thomassen in 1999 [17℄ :Theorem 4.2 ([17℄) The edges of a ubi graph an be 2-olored suh that eah monohro-mati omponent is a path of length at most 5.A linear k-forest is a forest onsisting of paths of length at most k. The linear k-arboriityof a graph G is the minimum number of linear k-forests required to partition E(G), and isdenoted by lak(G) [5℄. Theorem 4.2 is equivalent to saying that, if G is ubi, then la2(G) = 2.Let us now see that Theorem 4.2 implies that M(C, 3) = 2 for all . Indeed, all the pathsof the linear forests have at most 5 edges, and eah vertex will appear in exatly 1 of the 2linear forests, so the deomposition given by Theorem [17℄ is a partition of the edges of aubi graph into subgraphs with at most 5 edges, in suh a way that eah vertex appears in
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12 Xavier Muñoz , Ignasi Sauat most 2 subgraphs. In fat the result of [17℄ is stronger, in the sense that G an be anygraph of maximum degree at most 3. Thus, we dedue thatCorollary 4.3 For any C ≥ 5, M(C, 3) = 2.Thomassen also proved [17℄ that 5 annot be replaed by 4 in Theorem 4.2. This fatdo not imply that M(4, 3) = 3, beause of the following reasons : (i) the subgraphs ofthe deomposition of the request graph are not restrited to be paths, and (ii) it is notneessary to be able to �nd a 2-oloring of the subgraphs of the deomposition (a oloringin this ontext means that eah subgraph reeives a olor, and 2 subgraphs with the sameolor must have empty intersetion).5 ConlusionsWe have onsidered the tra� grooming problem in unidiretional WDM rings when therequest graph belongs to the lass of graph with maximum degree ∆. This formulation allowsthe network to support dynami tra� without reon�guring the eletroni equipment atthe nodes. We have formally de�ned the problem, and we have foused mainly on the ases
∆ = 2 and ∆ = 3, solving ompletely the former and solving all the ases of the latter,exept the ase when the grooming value C equals 4. We have proved in Setion 4.1.2 that
M(3, 3) = 3, and in Setion 4.2 that M(C, 3) = 2 for all C ≥ 5. Beause of the integralityof M(C, ∆) and Lemma 2.1, M(4, 3) equals either 2 or 3. We onjeture thatConjeture 5.1 The edges of a graph with maximum degree at most 3 an be partitionedinto subgraphs with at most 4 edges, in suh a way that eah vertex appears in at most 2subgraphs.If Conjeture 5.1 is true, it learly implies that M(4, 3) = 2. Corollary 4.2 states that
M(4, 3, C) = 2, C being the lass of bridgeless graphs of maximum degree at most 3. Never-theless, �nding the value of M(4, 3) remains open. We have also dedued lower and upperbounds in the general ase (any value of C and ∆). Tab. 1 summarizes the values of M(C, ∆)that we have obtained.

C \ ∆ 1 2 3 4 5 6 . . . ∆

1 1 2 3 4 5 6 . . . ∆
2 1 2 3 4 5 6 . . . ∆

3 1 2 3 ≥ 3 ≥ 4 ≥ 4 . . . ≥
⌈

2∆
3

⌉

4 1 2 2?? ≥ 3 ≥ 4 ≥ 4 . . . ≥
⌈

5∆
8

⌉

5 1 2 2 ≥ 3 ≥ 3 ≥ 4 . . . ≥
⌈

3∆
5

⌉

. . . 1 . . . . . . . . . . . . . . . . . . . . .

C 1 2 2 ≥
⌈

C+1
C

2
⌉

≥
⌈

C+1
C

5
2

⌉

≥
⌈

C+1
C

3
⌉

. . . ≥
⌈

C+1
C

∆
2

⌉Tab. 1 � Values of M(C, ∆). The ase C = 4, ∆ = 3 is a onjetured value
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Groupage de Tra� Dans les Anneaux Unidiretionnels WDM ave Graphe de Requêtes de Degré Borné 13This problem an �nd wide appliations in the design of optial networks using WDMtehnology. It would be interesting to ontinue the study for larger values of ∆, whih willertainly rely on graph deomposition results. Another generalization ould be to restritthe request graph to belong to other lasses of graphs for whih there exist powerful deom-position tools, like graphs with bounded tree-width, or families of graphs exluding a �xedgraph as a minor.Référenes[1℄ O. Amini, S. Pérennes, and I. Sau. Hardness and approximation of tra� grooming. In18th International Symposium on Algorithms and Computation (ISAAC 2007), pages561�573, Sendai, Japan, Deember 2007.[2℄ J.-C. Bermond and D. Coudert. Tra� grooming in unidiretional WDM ring networksusing design theory. In IEEE ICC, volume 2, pages 1402�1406, Anhorage, Alaska, May2003.[3℄ J.-C. Bermond and D. Coudert. The CRC Handbook of Combinatorial Designs (2nd edi-tion), volume 42 of Disrete Mathematis and Its Appliations, hapter VI.27, Groom-ing, pages 493�496. CRC Press, C.J. Colbourn and J.H. Dinitz edition, Nov. 2006.[4℄ J.-C. Bermond, D. Coudert, and X. Muñoz. Tra� grooming in unidiretional WDMring networks : the all-to-all unitary ase. In The 7th IFIP Working Conferene onOptial Network Design & Modelling � ONDM'03, pages 1135�1153, Feb. 2003.[5℄ J.-C. Bermond, J.-L. Fouquet, M. Habib, and B. Pérohe. On linear k-arboriity. Dis-rete Math., 52(2-3) :123�132, 1984.[6℄ R. Berry and E. Modiano. Reduing eletroni multiplexing osts in SONET/WDMrings with dynamially hanging tra� . IEEE J. on Seleted Areas in Comm. 18, pages1961�1971, 2000.[7℄ A. Chiu and E. Modiano. Tra� grooming algorithms for reduing eletroni multi-plexing osts in WDM ring networks. IEEE/OSA Journal of Lightwave Tehnology,18(1) :2�12, 2000.[8℄ R. Dutta and N. Rouskas. On optimal tra� grooming in WDM rings. IEEE Journalof Seleted Areas in Communiations, 20(1) :1�12, Jan. 2002.[9℄ R. Dutta and N. Rouskas. Tra� grooming in WDM networks : Past and future. IEEENetwork, 16(6) :46�56, November/Deember 2002.[10℄ M. Flammini, G. Monao, L. Mosardelli, M. Shalom, and S. Zaks. Approximating thetra� grooming problem in tree and star networks. In 32nd International Workshop on
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