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Abstract: This work concerns the observer-based control of a remote, Master-Slave system
through the Internet network. This communication link introduces variable, asymmetric and
unpredictable delays, as well as packet loss. The data-sampling effects are also taken into
account, even in the aperiodic case. Whereas the existing strategies require additional buffers,
allowing the delay to become constant, the present result uses the information as soon as
received. The proposed Lyapunov-Krasovskii functionals and LMI algorithms provide controller
and observer gains which ensure the asymptotic stability of the global closed loop. The maximum
admissible number of successive packets dropouts is also computed. The last part of the paper
provides a simulation, where the Slave is a second-order system.

Keywords: NCS (networked controlled system), delay system, sampled-data system,
asymptotic stabilization, packet loss, remote observer, Lyapunov-Krasovskii functional, LMI.

1. INTRODUCTION AND HYPOTHESES

Internet technology appears as a natural and cheap way
to ensure the communication link in remotely controlled
systems. Today, the available Quality of Service may seem
to be good enough for that kind of applications. How-
ever, such a communication link constitutes an additional
dynamical system, which great influence on stability was
already mentioned in the 60’s by Ferrel [1965]. Indeed,
several dynamics and perturbations (communication de-
lay, real-time sampling, packet dropout) are unavoidably
introduced and have to be taken into account during the
design of the control loop (see Richard and Divoux [2007]).

Fridman et al. [2004], Seuret et al. [2006] have shown that
both sampling effects and communication time lags can be
regrouped into an homogenized representation with time-
varying delays. The present study also includes the packet
loss effect into this unifying model. Once the global system
is reduced to a system with delays, several control tech-
niques can be involved (see for instance Niculescu [2001],
Richard [2003]). Here, an observer-based instantaneous
state feedback will be used. But, before presenting the de-
tails, a short overview of previous results will highlight the
various assumptions on the communication delays h1(t)
(from Master to Slave) and h2(t) (from Slave to Master).

Several works on tele-operation introduced the question
of transmission delays in the constant case: Azorin et al.
[2003], Fattouh and Sename [2003], Niemeyer and Slotine
[1998]. However, in networked control situations, the de-
lays are basically variable (jitter phenomenon). This is

1 This work was supported by an EPSRC Platform Grant reference
EP/D029937/1 entitled ‘Control of Complex Systems’.

a source of problem when the classical predictor-based
controllers are intended to be applied, since they generally
need the delays to be constant, i.e. hi(t) = hi.

In the case of variable delays, some researches have used
independent-of-delay conditions. Because such i.o.d. con-
ditions may be conservative in general, Eusebi and Mel-
chiorri [1998] considered particular cases such as con-
stant or symmetric delays. This last assumption refers
to the case where the transmission delays are equal, i.e.
h1(t) = h2(t) = R(t)/2, where R(t) denotes the round trip
time (RTT). In Garcia et al. [2000], non-symmetric delays
were considered, but only in the constant delay case, i.e.
h1(t) = h1 6= h2(t) = h2.

Another interesting approach was recently given by
Witrant et al. [2007], which generalized the predictor
techniques to the case of variable delays. In this case, a
maximal bound of the delays is assumed to be known (hM

such that 0 ≤ h(t) ≤ hM ), which is not that restrictive.
The most constraining assumption is that an ordinary
differential equation (ODE) model of the delay is supposed
to be available, which is possible in the case of a single-
owner network.

When using Internet, the generated delays are not only
time-varying and non-symmetric, but also unknown (no
dynamical model of the delays is available, see Niculescu
et al. [2003]). To bypass this problem, it was proposed by
Lelevé et al. [1999, 2001], N.J. Ploplys and Alleyne [2004]
to introduce two input buffers (Master and Slave) that
make both of the receivers wait until the maximum value
hM of the communicaton delay is reached. However, it is
obvious that this situation maximizes the delays h1(t) and



h2(t) up to their worst (largest) value (i.e., h1(t) →֒ hM

and h2(t) →֒ hM ) and, consequently, decreases the possible
range of speed performance. To reduce this maximizing
effect, Seuret et al. [2006, Sept., 2006] restricted the buffer
to the only transmission from Master to Slave (thus,
h1(t) →֒ hM ), while the remote observer was computing
the present Slave’s state on the basis of the non-buffered
Slave’s output. The stabilizing gains were designed via
some Lyapunov-Krasovskii functionals and, moreover, a
guaranteed speed rate was computed. A first original
contribution of the present study is to get rid of any buffer.
We only assume the (non-symmetric) delays to have known
minimal and maximal bounds hm and hM , so that the
following assumption holds:

A1 (maximal allowed delay) : hm ≤ hi(t) ≤ hM . (1)

Since we aim at limiting the value of hM , the use of UDP
(User Datagram Protocol) is preferred to TCP (Trans-
mission Control Protocol), the reliability mechanisms of
which may needlessly slow down the feedback loop. In
return, some data packets can be lost during the trans-
mission, without being re-emitted. Such losses may affect
the stabilization process. Taking the packet dropout into
consideration constitutes a second contribution of this work
since it was not taken into account in Seuret et al. [2006,
Sept., 2006]. We take the following evaluation:

A2 : Both Slave and Master receive at least
one packet over N consecutive.

(2)

The proposed method will allow for computing some
admissible (in the sense: non destabilizing) value of N .

An other feature of Internet is that the packets are
not arriving in their chronological emission order, while
UDP does not automatically re-organize them. Then, the
reception function of Master and Slave will be added a re-
ordering mechanism, based on some “time-stamps” added
in the control and measurements packets. This mechanism
ensures that the transmission delay variations satisfy:

A3 (packet reordering) : ḣi(t) < 1. (3)

The last disturbances implied by the network come from
the samplers and zero-holders needed for the discrete-
time implementation. Following the lines of Fridman et al.
[2004], we consider they produce an additional variable
delay t − tk, tk being the kth sampling instant. Moreover,
because of the computer architecture and operating sys-
tem, the sampling is generally not periodic, i.e. there is
no period T such that tk = kT . So, we only assume there
exists a known maximum sampling interval T such that:

A4 (max. sampling interval) : 0 ≤ tk+1 − tk ≤ T. (4)

The global delays resulting from the communication-plus-
sampling phenomena will be denoted by δi(tk) = hi(t) +

t − tk, for which the condition δ̇i(t) ≤ 1 holds. Note that

the limit case δ̇i = 1 occurs.

As in Seuret et al. [2006], both the Slave and the Master
are assumed to share a synchronized clock. This can be
achieved via an additional GPS card or thanks to some
tuning procedure (see Abdallah [2007]). As said before, the
control and measurement packets are sent together with
time-stamps, from which the receiver (Master or Slave)
can deduce the non-symmetric delay value. By this way,

both M-to-S h1(t) and S-to-M h2(t) delays are separately
reconstructed by the system, and not only the RTT.

The paper is organized as follows: Section 2 describes the
remote system features. Section 3 considers the problem of
robust stability with respect to packet loss. Section 4 gives
an illustrative example and Section 5, some concluding
remarks.

2. FEATURES OF THE REMOTE SYSTEM

The exchanged data correspond to the control (sent by
the Master to the Slave) and to the output of the remote
system (sent by the Slave to the Master). The Slave is
not supposed to have a large computation power and its
functions are limited to: Receive control packets; Apply
control; Send output measurement data. Thus the con-
trol and observation complexity is to be concentrated in
the Master which has to: Receive output measurements;
Estimate present state of Slave; Compute and Send the
control value. Our purpose is to guarantee the asymptotic
stability of the global Master-Slave system. In particular,
the global system must ensure the closed-loop stability
whatever the delay variation, the packet loss and the
possible aperiodicity of the real-time sampling processes.

Stabilizing a system in such conditions is not easy. The
Master receives the information he needs for the control
computation after it has crossed the communication zone.
The synchronism-based estimation of the transmission
delay, joined to the observer, allows the Slave state to
be known at the instant the information was sent to the
Master. Similarly, the control computed by the Master will
be applied some time after it is sent to the Slave, and this
dead-time is not known in advance.

For the sake of simplicity, the Slave is considered to fit a
linearized model. The stability must be robust with respect
to the resulting, global delay. This property will be proven
by using adequate Lyapunov-Krasovskii functionals, lead-
ing to an LMI optimization of the controller and observer
gains. The system has the following features:

• The Master computes and forwards the control to the
Slave. The forwarding induces a time-varying delay
h1(t), assumed to satisfy A1 and A3, with packet
loss for which A2 holds, as well as sampling effects
which create the variable delay τ1(t) satisfying A4.

• The Slave is driven by a controllable and observable,
known model (A,B, C), influenced by an input delay
δ1(t) to be defined later on in subsection 2.4:

{

ẋ(t) = Ax(t) + Bu(t − δ1(t)),
y(t) = Cx(t).

(5)

• The Slave measures its sampled output variables y,
that the Master receives after a delay h2(t) which
is also assumed to satisfy A1 (this assumption is
not restrictive since it is obtained by the union
of the intervals of variation of h1 and h2). The
delay τ2(t) due to the sampling is added. It means
that the Master only can access y(t − δ2(t)), where
δ2 corresponds to the resulting delay. The Master
includes an observer computing an estimate x̂ of the
complete Slave state x at the present time t. From x̂,
the Master elaborates the control law (here, u = Kx̂).



• The sampling instants tk may not be periodical i.e.
tk 6= kT , but it is supposed there exists a known T
such that A4 holds for any k.

• Both Master and Slave subsystems are synchronized,
i.e. they share a same clock. Each data packet in-
cludes a time-stamp indicating the time the packet
was sent. By this way, the receiver can calculate the
transfer delays hi(t) as soon as it receives the packet.

The next subsections detail the features and notations.

2.1 The sampling delays

The sample g(tk) of a function g(t) at time tk can be
written as g(tk) = g(t−[t−tk]) = g(t−τ(t)). This notation
replaces the sample-and-hold with an additional delay
τk(t) = t − tk, t ∈ [tk, tk+1[. Thus, under assumption A4,
the aperiodic sampling is modeled as an unknown delay
τ(t) ≤ T . This change allows continuous-time stability
techniques (e.g. Lyapunov-Krasovskii functionals) to be
used for sampled systems.

2.2 The control law

The controller computes a control law which considers
some set-values xs to be reached by the Slave. The static
state feedback control u(t) = K(x̂(t) − xs(t)) is defined
considering the state estimate x̂ given by the observer.
The main difficulty is to determine the linear gain K of the
state feedback control in order to guarantee the asymptotic
stability of the Slave motion despite the values of the
(unknown, time-varying) control delays. Without being
restrictive with regard to stability, we consider xs(t) = 0.

2.3 Transmission of the control u

The kth packet sent by the Master to the Slave includes the
designed control u(t1,k) and the instant of time t1,k when
the packet was sent. The Slave receives this information
at time tr1,k. Thanks to the clock synchronization, this
time has the same meaning for both the Slave and the
Master. Then, the term tr1,k − t1,k, corresponding to the
transmission delay, is known by the Slave once the packet
has reached it.

2.4 Receipt and processing of the control data

The control, sent at time t1,k, is received by the Slave at
time tr1,k ≥ t1,k + hm. There is no reason that the Master

also knows the time tr1,k when the control u(t1,k) will be
injected into the Slave input.

2.5 Transmission of the measured output information

The Slave accesses its output y at discrete instants of
time. He sends packet containing the output y(t2,k′) and
the measurement instant t2,k′ which is the k′th one. The
Master receives the output data at time tr2,k′ . Once the
packet has reached the Master, the delay tr2,k′ − t2,k′ is
known due to the synchronization.

2.6 Observation of the process

For a given k̂ and any t ∈ [t1,k̂
+ (hM − hm)/2, t1,k+1 +

(hM − hm)/2[, there exists a k′ such that the proposed
observer is of the form:

{

˙̂x(t) = Ax̂(t) + Bu(t1,k̂
) − L(y(t2,k′) − ŷ(t2,k′)),

ŷ(t) = Cx̂(t).
(6)

The time stamp t1,k̂
corresponds to the time when the

control input is supposed to be injected in the Slave. The
index k′ corresponds to the most recent output informa-
tion the Master has received. Note that the Master is not
supposed to know the time tr1,k and the control u(t1,k)

(see Section 2.4), which makes this observer realizable.
The input delay approach to sampled-data signals allows
a homogenized definition of the delays δ1(t) , t − t1,k

where k corresponds to the real sampling implemented in

the Slave process, δ̂1(t) , t − t1,k̂
and δ2(t) , t − t2,k′ to

be considered and the observer dynamics can be written:






˙̂x(t) = Ax̂(t) + Bu(t − δ̂1(t))
−L(y(t − δ2(t)) − ŷ(t − δ2(t))),

ŷ(t) = Cx̂(t),
(7)

In other words, the observer is realizable since t2,k′ defining
the observer delay is known due to the synchronization. In
the ideal case where N = 1 (from A2, no packet loss)
and where the Master-to-Slave delay is assumed to be well

known, i.e. δ1(t) = δ̂1(t) (obtained by means of a buffer
in Seuret et al. [2006]), the global system can then be
rewritten using the error vector e(t) = x(t) − x̂(t) as:

ẋ(t) =Ax(t) + BKx(t − δ1(t)) − BKe(t − δ1(t)), (8a)

ė(t) =Ae(t) + LCe(t − δ2(t)), (8b)

where the features of the system lead, for i = 1, 2, to
hm ≤ δi(t) ≤ hM +T . Equivalently, if one uses the average
delay δ(hm, hM , T ) = (hM +T +hm)/2 and the maximum
delay amplitude µ(hm, hM , T ) = (hM + T − hm)/2, then:

δ − µ ≤ δi(t) ≤ δ + µ, ∀i = 1, 2. (9)

For this ideal case, Theorems 2 and 3 by Seuret et al. [2006]
deliver controller and observer gains.

3. STABILIZATION WITH PACKET LOSS

This section focusses on a more realistic model of the
remote system detailed in Fig. 1. It is now accepted that

δ1(t) 6= δ̂1(t) and that data packets can be lost during
the transfer between Master and Slave. Since the UDP
protocol is used, packets dropouts are frequent. When a
data-packet is lost during the transmission process, the
delays δi(t) can be easily increased up to δ + µ as defined
in (9) and go greater. Then, the stability conditions from
Theorems 2 and 3 in Seuret et al. [2006] do not ensure
the stability of the global remote system anymore. Packet
losses have another effect on the system. Since the observer
uses the input control u(t1,k) which is supposed to be
implemented in the slave process, if a control-data packet
is lost, the observer will not use the same control. In
compensation, the assumption A2 (with N ≥ 2) is made
on the packet loss phenomenon.

Given k and any t ∈ [tr1,k + hm, tr1,k+1 + hm[, there exist

k̂ and k′ such that the proposed observer is of the form:



Fig. 1. Structure of the remote system under time-varying
delays, samplings and packet loss.

ẋ(t) = Ax(t) + BKx̂(t1,(k−p1)),
˙̂x(t) = Ax̂(t) + BKx̂(t1,k̂

)
−LC(x(t2,(k′

−p2)) − x̂(t2,(k′
−p2)).

(10)

where the positive integers p1 ≤ N and p2 ≤ N represent
the packet losses. Rewriting the equations by using the
error e(t) = x(t) − x̂(t), the dynamics become:

ẋ(t) = Ax(t) + BKx(t1,(k−p1)) − BKe(t1,(k−p1)),
ė(t) = Ae(t) + LCe(t2,(k′

−p2))

−BK

∫ t1,k̂

t1,(k−p1)

[ẋ(s) − ė(s)]ds.

Applying the input delay representation Fridman et al.
[2004] yields:

ẋ(t) = Ax(t) + BKx(t − δ1(t)) − BKe(t − δ1(t)),
ė(t) = Ae(t) + LCe(t − δ2(t))

−BK

∫ t1,k̂

t1,(k−p1)

[ẋ(s) − ė(s)]ds,
(11)

with δ1(t) = t − t1,(k−p1) and δ2(t) = t − t2,(k′
−p2). From

the fact that the communication delays belong to the
interval [hm, hM ] where hm and hM are given by the
network properties and by noting that the assumption on
the packet loss leads to t1,k̂

− t1,(k−p1) ≤ NT + µ where µ

is defined above, the inequalities hm ≤ δi(t) ≤ hM + NT
hold for i = 1, 2. It is now possible to define the average
delay δ(hm, hM , N, T ) and the maximal delay amplitude
µ(hm, hM , N, T ) as:

δ(hm, hM , N, T ) = (hM + NT + hm)/2,
µ(hm, hM , N, T ) = (hM + NT − hm)/2

(12)

For the sake of simplicity in the notation, only δ and µ
will be used. Then, both of the resulting delays satisfy:

δ − µ ≤ δi(t) ≤ δ + µ, i = 1, 2. (13)

As in equation (11), there are interconnection terms be-
tween the two variables x and e, a separation principle is no
longer applicable to prove the global stabilization as it was
suggested in Seuret et al. [Sept., 2006]. The stability proof
requires to consider now both variables simultaneously.

Theorem 1. For given K and L, for q representing the
subscript x or e, suppose there exist positive definite
matrices Pq1, Sq, Rqa, Rqp, Sxe and Rxe and matrices of
size n × n: Pq2, Pq3, Zql for l = 1, 2, 3, Yql′ for l′ = 1, 2,
such that the following LMI’s hold:
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< 0,
(15)

[

Rq Yq1 Yq2

∗ Zq1 Zq2

∗ ∗ Zq3

]

≥ 0, q ∈ {x, e}, (16)

where β = 2µ, Pq =
[

Pq1 0

Pq2 Pq3

]

, and

Θx = Θn
x +

[

0 0

0 2µRxp

]

, Θe = Θn
e +

[

0 0

0 2µ(Rep + Rxe)

]

,

Θn
q = PT

q

[

0 I

A −I

]

+
[

0 I

A −I

]T

Pq

+
[

Sq + Yq1 + Y
T

q1 + δZq1 Yq2 + δZq2

∗ δRq + 2µRqa + δZq3

]

.

Then, the global remote system (10) is asymptotic stable.

Proof: The proof is given in the appendix.

Remark 1. Theorem 1 allows the robust stability of the
global remote system to be guaranteed with respect to the
packet dropout and for observer and controller gains given
in Seuret et al. [2006]. Since the problems of designing
observer and controller gains are dual, to develop construc-
tive LMI’s for obtaining both gains is not straightforward.
Another solution would be to develop conditions in order
to design the controller gain for a given observer gain and
other conditions to solve the opposite problem.

4. APPLICATION TO A MOBILE ROBOT

This study is illustrated on the model of a mobile robot
(Slave) moving in one direction. The identification phase
gives the following dynamics:

{

ẋ(t) =
[

0 1

0 −11, 32

]

x(t) +
[

0

11, 32

]

u(t − δ1(t)),

y(t) = [ 1 0 ] x(t).
(17)

The characteristics of our network (Internet, M-S distance
= 50km, France) allow for hm = 0, 1s and hM = 0.4s.
Consider now that the bandwidth of the network allows
the sampling period as T = 0.1s to be defined. For
these values, Theorems 2 and 3 in Seuret et al. [2006]

produce the following gains L = [ −0.9119 −0.0726 ]
T

and
K = [ −0.9125 −0.0801 ]. This gains ensures that, in the
ideal case the remote system is α-stable for αx = αe =
1.05. Theorem 1 ensures that, with these features, the
global system (8) is asymptotically stable and robust with
respect to the packet loss for all N ≤ 12 in (2). Moreover
it guarantees asymptotic stability of the global system
without the introduction of a buffer in the controller.

5. CONCLUDING REMARKS

This paper has proposed a new strategy for an observer-
based control of a remote process. Various perturbations
were dealt with: (1) jittery, non-symmetric and unpre-
dictable delays (Internet); (2) packet dropouts (UDP) and
(3) aperiodic sampling (real-time). No buffering technique
was involved, which allows both the Master and the Slave
to use the available information as soon as received.



A characteristic feature of this control strategy is to
consider that the Master runs in continuous time (i.e.,
with small computation step) whereas the Slave provides
discrete-time measurements. Thus, the observer keeps on
providing a continuous estimation of the present Slave
state, even if the Slave information is not sent contin-
uously. Technically speaking, it is also noticeable that
the corresponding stability criterion considers non-small
delays, i.e. delays which lower bound is non zero.

A remaining assumption is that Master and Slave’s clocks
are synchronized. This property is needed for the delay
measurement and can be obtained via technical (GPS)
or computational Abdallah [2007] solutions. However, the
ongoing implementations of a related strategy Seuret et al.
[2006, Sept., 2006] show that the global system may work
even if the clocks are a bit out of synch. Including this
robustness in the design is left to future works.

6. APPENDIX: PROOF OF THEOREM 3

To analyze the asymptotic stability property of such
a system, equations (11) are rewritten by using the
descriptor representation introduced in Fridman [2001],
Fridman and Shaked [2002] with x̄(t) = col{x(t), ẋ(t)},
ē(t) = col{e(t), ė(t)}. Consider the following Lyapunov-
Krasovskii functional:

V (t) = Vxn(t) + Vxa(t) + Vxp(t) + Ven(t) + Vea(t) + Vep(t)
(18)

where the sub-Lyapunov-Krasovskii functionals are, for q
representing the subscript of the variables ‘x’ and ‘e’:

Vqn(t) = q̄T (t)EPq q̄(t) +

∫ 0

−δ

∫ t

t+θ

q̇T (s)Rq q̇(s)dsdθ

+

∫ t

t−δ

qT (s)Sqq(s)ds,

Vqa(t) =

∫ µ

−µ

∫ t

t+θ−δ

q̇T (s)Rqaq̇(s)dsdθ,

Vxp(t) =

∫ µ

−µ

∫ t

t+θ−δ

ẋT (s)Rxpẋ(s)dsdθ,

Vep(t) =

∫ µ

−µ

∫ t

t+θ−δ

ėT (s)(Rep + Rxe)ė(s)dsdθ,

with E = diag{In, 0} and Px, Pe defined in Theorem 1.

The signification of each sub-Lyapunov-Krasovskii func-
tional has to be explain. The first functionals Vxn and
Ven deal with the stability of the Slave and the observer
systems subject to the constant delay δ while Vxa and Vea

refer to the disturbances due to the delay variations. Even
if the functionals do not explicitly depend on each time
varying delay, it will be considered two different delays δ1

and δ2. The last functionals Vxp and Vep are concerned
with the packet loss. This will appear more clearly later
on. According to Theorem 2 in Seuret et al. [2005], if LMI
(16) holds for ′q = x′, the following inequalities hold:

V̇xn(t) + V̇xa(t) ≤ ξT
x (t)

[

Ψx1 P
T
x

[

0

BK

]

∗ −Sx

]

ξx(t) + ηx(t),

(19)
where ξx(t) = col{x(t), ẋ(t), x(t − δ)} and:

ηx(t) = −2x̄T (t)PT
x [ 0 (BK)

T ] e(t − δ1(t)),

Ψx1 = Θn
x + µPT

x [ 0 (BK)
T ]

T
R−1

xa [ 0 (BK)
T ] Px,

Noting that e(t − δ1(t)) = e(t − δ) −
∫ t−δ

t−δ1(t)
ė(s)ds and

using a classical LMI bounding, the following inequality
holds for i = 1, 2:

ηx(t) ≤ x̄T (t)PT
x

[

0

BK

]

(S−1
xe + µR−1

xe )
[

0

BK

]T

Pxx̄(t)

+eT (t − δ)Sxee(t − δ) + |

∫ t−δ

t−δ1(t)

ėT (s)Rxeė(s)ds|

(20)
where Sxe and Rxe are positive definite matrices which
represent the presence of the error vector in the state
equation. Then, the following inequality holds:

V̇xn(t) + V̇xa(t) ≤

ξT
x (t)

[

Ψx2 P
T
x

[

0

BK

]

−

[

Y
T

x1

Y
T

x2

]

∗ −Sx

]

ξx(t)

+eT (t − δ)Sxee(t − δ) + |

∫ t−δ

t−δ1(t)

ėT (s)Rxeė(s)ds|,

(21)

where Ψx2 = Θn
x + PT

x [ 0 (BK)
T ]

T
(S−1

xe + µR−1
xa +

µR−1
xe ) [ 0 (BK) ]Px.

For the error dynamics, LMI (16) with q = e yields:

V̇en(t) + V̇ea(t) ≤ ξT
e (t)

[

Ψe1 P
T
e

[

0

LC

]

− Y
T

e

∗ −Se

]

ξe(t)

−ηx
e (t) + ηe

e(t),

(22)

where ξe(t) = col{e(t), ė(t), e(t − δ)} and where Ψe1 =

Θn
e + µPT

e [ 0 (LC)
T ]

T
R−1

ea [ 0 (LC) ]Pe, and ηq
e(t) = 2ēT (t)

×PT
e [ 0 (BK)

T ]
T ∫ t1,k̂

t1,(k−p1)
q̇(s)ds with q representing either

x or e. Note that the functions ηx
e (t) and ηe

e(t) correspond
to the disturbance due to the lost control packets. The
following equality holds:

−ηx
e (t) = −2ēT (t)PT

e

[

0

BK

]

∫ t1,k̂

t1,(k−p1)

ẋ(s)ds.

Noting that from A4, one has t1,k̂
− t1,(k−p1) ≤ 2µ, thus:

ηx
e (t) ≤ 2µēT (t)PT

e

[

0

BK

]

R−1
xp

[

0

BK

]T

Peē(t)

+

∫ t1,k̂

t1,(k−p1)

ẋT (s)Rxpẋ(s)ds.
(23)

In the same way, the following inequality holds:

ηe
e(t) ≤ 2µēT (t)PT

e

[

0

BK

]

R−1
ep

[

0

BK

]T

Peē(t)

+

∫ t1,k̂

t1,(k−p1)

ėT (s)Repė(s)ds.
(24)

Finally, the following inequality holds:

V̇en(t) + V̇ea(t) ≤ ξT
e (t)

[

Ψe2 P
T
e

[

0

LC

]

− Y
T

e

∗ −Se

]

ξe(t)

+
∑

q=x,e

∫ t1,k̂

t1,(k−p1)

q̇T (s)Rqpq̇(s)ds,

(25)

where

Ψe2 = Θn
e + µPT

e

[

0

LC

]

R−1
ea

[

0

LC

]T

Pe

+2µPT
e

[

0

BK

]

(R−1
xp + R−1

ep )
[

0

BK

]T

Pe.

Differentiating Vxp and Vep along the trajectories leads to
inequalities (26) for the state vector and error dynamics:



V̇xp(t) = 2µẋT (t)Rxpẋ(t)

−

∫ t−δ+µ

t−δ−µ

ẋT (s)Rxpẋ(s)ds

V̇ep(t) = 2µėT (t)(Rep + Rxe)ė(t)

−

∫ t−δ+µ

t−δ−µ

ėT (s)(Rep + Rxe)ė(s)ds.

(26)

Combining (21), (25) and (26) and noting that the sum of
the negative integrals in (26) with the integrals from (24)
is negative because t1,k̂

and t1,(k−p1) are included in the

interval [t−δ−µ, t−δ+µ], the following inequality holds:

V̇ (t) ≤ ξT
x (t)

[

Ψx2 P
T
x

[

0

BK

]

∗ −Sx

]

ξx(t)

+ξT
e (t)

[

Ψe2 P
T
e

[

0

LC

]

∗ −Se + Sxe

]

ξe(t).

(27)

The Schur complement leads to the LMI’s given in (14)
and (15). Then if LMI’s from Theorem 1 are satisfied, the
system (11) is asymptotically stable.
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