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École Polytechnique, France

(e-mail: Michel.Fliess@polytechnique.edu)

Abstract: This paper deals with on-line identification of delay systems. Based on non-
asymptotic techniques, the estimation approach reduces to solving polynomials or eigenvalue
problems. Numerical simulations with noisy data but also with slowly time varying parameters
and delay are provided.

1. INTRODUCTION

The real time delay identification is one of the most crucial
open problems in the field of delay systems (see, e.g.,
Richard [2003]). On the one hand, various powerful control
techniques (predictors, flatness-based predictive control,
finite spectrum assignments, observers, ...) may be ap-
plied if the dead-time is known. On the other hand, most
existing identification techniques for time-delay systems
(see, e.g., Orlov et al. [2006], Drakunov et al. [2006] for
adaptive techniques or Ren et al. [2005] for a modified least
squares technique) generally suffer from poor speed per-
formance. Recent developments in Belkoura and Richard
[2006], Belkoura et al. [2006] have considered the on line
identification of delay systems with particular (structured)
inputs. This paper considers the identification problem
from general input-output trajectories. Although the pa-
rameter estimation technique is still inspired from the
fast identification techniques that were proposed Fliess M.
[2003] for linear, finite-dimensional models, this paper con-
siders a new approach to deal with the delay estimation.
Let us recall that those techniques are not asymptotic, and
do not need statistical knowledge of the noises corrupting
the data (See, e.g., Fliess et al. [2007] for linear and non-
linear diagnosis, Fliess et al. [2003] for signal processing,
and Beltran-Carvajal et al. [2005] for successful laboratory
experiments).

General Framework

The approach used in this paper is mainly based on well
known facts about the convolution product. In a general
context, the space of distributions with left bounded
support is an algebra with respect to the convolution
product, with identity δ, the Dirac distribution. A delayed
signal can be formed from the convolution product u(t −
τ) = δτ ∗ u, with δτ the Dirac measure concentrated
at {τ}. The derivative or the integral (from 0 to t) of

a convolution product admits the respective equivalents
forms u̇∗v = u∗v̇ = δ̇∗u∗v, and (

∫
u)∗v = u∗

∫
v =

∫
(u∗v).

The complement of the largest open subset in which u
vanishes is called the support of u and will be denoted
suppu. The following property allows local considerations,
suppu ∗ v ⊂ suppu + supp v, where the sum in the right
hand side is defined by {x + y ; x ∈ supp u, y ∈ supp v}.
Finally, with no danger of confusion, we shall sometimes
denote u(s), s ∈ C, the Laplace transform of u, and let ∗
denote for the convolution product.

The paper is organized as follows. Section 2 focuses on
parameters and delay identification starting from the equi-
librium or rest position, hence assuming zero initial con-
ditions. Section 3 considers the general case where the
measurements are not assumed to start with the experi-
ment, but may run from an arbitrary starting point. Most
of our developments are illustrated on the single delayed
integrator, although extension to higher order systems
with state delay is generally straightforward (see section
3.1 ).

2. IDENTIFICATION FROM A REST POSITION

2.1 Single delay identification

We first focus on a single delay identification regardless
of the process dynamics. When considered on the whole
real line, a delay between an input u and an output y
reads y(t) = u(t− τ), rewritten as in (1) in a convolution
framework, and leading to (2) once multiplied by (t− τ).

y = δτ ∗ u, (1)

(t− τ)y = δτ ∗ tu. (2)
A convolution product derived from these two relations re-
sults in equation (3) with no deviated argument, and from
which a non asymptotic and explicit delay formulation (4)
is obtained:



(t− τ)y ∗ u = tu ∗ y, (3)

⇒ τ =
ty ∗ u− y ∗ tu

u ∗ y
. (4)

Provided the involved convolution products are well de-
fined, this delay formula holds for all nonzero values of
(u ∗ y)(t). More precisely, if the input u consists in mea-
surements on (0,∞), then by virtue of the convolution
support property, supp y ⊂ (τ,∞) and hence both nu-
merator and denominator of (4) have their support within
(τ,∞). Therefore, the delay is not identifiable for t < τ .
However, as in the finite dimensional case (see, e.g., Fliess
and Sira-Ramirez [2007]), the input signal u being used
in this algebraic approach does not necessarily exhibit the
classical ”persistency of excitation” requirement. Although
a local loss of identifiability may occur due to the zero
crossing of the denominator, only non trivial trajectories
are required. This point is considered in the next para-
graph for a delayed integrator. For open loop structures,
a constructive method for the design of sufficiently rich
inputs for delay systems has been considered in Belkoura
[2005].

2.2 Taking a dynamic into account

When facing derivatives, one of the nice features of multi-
plication by polynomial (as in (2)) or exponential functions
lies in the ability to use simple integration by parts formu-
las to avoid any derivation in the identification algorithm.
This paragraph illustrates the time lag identification for
the delayed integrator:

ẏ = δτ ∗ ku. (5)

Taking into account the integration by parts
∫ t

0
θẏdθ =

ty −
∫ t

0
y, as well as the convolution product properties of

the introductory section, the previous approach combined
with a integration results in:

τ =

∫ t

0
(θẏ ∗ u− ẏ ∗ θu)dθ∫ t

0
(u ∗ ẏ)dθ

(6)

=
ty ∗ u− y ∗ tu−

∫ t

0
u ∗ y

u ∗ y
. (7)

Note that as in the free dynamic case of the previous
paragraph, the static gain value k is not required nor
identified. Also, and in order to avoid multiplications
by unbounded functions (polynomials), and hence the
amplification of noise and neglected dynamics, exponential
functions may be considered as well. Setting λ = e−γτ for
some tunable positive parameter γ, η(t) = e−γt, and using
η(t)u(t− τ) = λ δτ ∗ ηu, one obtains from (5),

η × (5) ⇒ ηẏ = λ k δτ ∗ ηu, (8)

(5) ∗ (8) ⇒ λ ηu ∗ ẏ = ηẏ ∗ u. (9)
With a slight abuse of notations, the integration by parts
of (9) reads in this case,

∫
ηẏ = ηy + γ

∫
ηy, yielding

λ =
ηy ∗ u+ γ

∫
(ηy ∗ u)

ηu ∗ y
, (10)

while the delay is obtained from τ = log(λ)/γ. For this
simple example, and since only a constant delay has to
be identified, an additional step considering the integral

of the square of equation (10) (i.e.
∫

(10)2) avoids the
possible singularities resulting from the zero crossing of
the denominator ηu ∗ y. This finally results in the delay
estimation:

λ =


∫ t

0

[
u ∗ ηy + γ

∫ θ

0
(u ∗ ηy)

]2
dθ∫ t

0
(ηu ∗ y)2


1
2

. (11)

A simulation result with noisy data is depicted in Figure
1, for an input u(t) = cos(2t)(0.2+sin(7t)), γ = 0.2, and a
delay τ = 0.3 s. The simulation step size has been fixed to
0.05 s, and the integrals involved in the convolutions have
been approximated by simple sums.
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Fig. 1. Trajectories and estimated delay of Eq.(5).

2.3 Simultaneous parameters and delay identification

The aim of this paragraph is to provide a structure of the
estimation problem when simultaneous parameters and
delay identification is required. We focus on a first order
system,

ẏ + a y = δτ ∗ ku, (12)
although a generalization to higher order processes is
straightforward. According to the previous procedure
(multiplication by η(t) = e−γt followed by a convolution
product), one gets:

η ẏ + a ηy = k λδτ ∗ ηu, (13)

λ(ηu ∗ ẏ + a ηu ∗ y) = u ∗ ηẏ + a ηy ∗ u (14)
This is a non linear relation w.r.t. the unknown coefficients
λ = e−γτ and a. A direct method may consists in k ≥ 3
successive integrations by parts of (14), leading to a least
square estimation of the vector θ = (λ, a, λa)t. On the
other hand, and in order to avoid redundancy in the
estimated parameters, the following spectral formulation
may be be considered,

[A− λ B]
(
a
1

)
= 0, (15)

where, using a Matlab-like notation, the entries of the
trajectory-dependent matrices A and B are given by

A(1, :) = (
∫
u ∗ ηẏ

∫
u ∗ ηy), A(2, :) =

∫
A(1, :),

B(1, :) = (
∫
ηu ∗ ẏ

∫
ηu ∗ y), B(2, :) =

∫
B(1, :).



Hence, for each value of t, the unknown delay consists in
one eigenvalue of (15), while the parameter a is obtained
from the associated normalized eigenvector. Nevertheless,
the problem of selecting the appropriate eigenpair with
the help of additional integrations leads to an eigenvalue
problem for non square pencils. As mentioned in Wright
and Trefethen [2002], ”(15) has the awkward feature
that most matrices have no eigenvalues at all, whilst
for those that do, an infinitesimal perturbation will in
general remove them”. In the next section where a similar
structure is proposed, a simple approach is proposed to
overcome this difficulty.

2.4 General remarks

Formulas for higher order systems This paragraph pro-
vides some useful relations and examples one can use for
systems with higher order derivatives. Equation (16) gives
the Leibniz formula related to the product of a Dirac
derivative with a smooth function α, while equation (17)
shows a property related to a relation involving both
convolution product and multiplication par polynomials
(see e.g. Schwartz [1966]).

α δ(n)
a =

∑n

k=0
(−1)(n−k)Ck

n α
(n−k)(a) δ(k)

a , (16)

tn (S ∗ T ) =
n∑

k=0

Ck
n (tk S) ∗ (tn−k T ) (17)

Setting zi = ti y, the following example illustrates the
application of the theses relations to the product t3 y(2).
Note that integrating twice this expression results in
nothing but the integration by parts formula.

t3 y(2) = t3 (δ(2) ∗ y) = −6 z1 + 6 z(1)
2 − z

(2)
3 (18)

The next relations give the analog formulation in case
of multiplication by exponential functions as well as an
application to e−γt y(2), where we have denoted z = e−γt y
and λ = eγτ .

e−γt (S ∗ T ) = e−γt S ∗ e−γt T (19)

e−γt y(2) = e−γt (δ(2) ∗ y) = γ2 z + 2γ z(1) + z(2) (20)

Operational formulation The convolutional approach
used in this section may be equivalently formulated in
the operational domain (Laplace transform), recalling that
multiplying a function w(t) respectively by t and e−γt

reads in the operational form −dw
ds and w(s + γ). Hence,

one can easily get the equivalent form for the integration
by parts∫

tẏ ↔ −dy
ds

+
y

s
,

∫
e−γtẏ ↔ (1 +

γ

s
)y(s+ γ),

and, from (7) and (10), some simple manipulations lead to
the delay formulation counterparts,

τ =
[
dy

ds
u(s)− y

du

ds
− u(s)y(s)/s

]
/u(s)y(s),

λ =
[
(1 +

γ

s
)y(s+ γ)u(s)

]
/u(s+ γ)y(s).

Limits of this approach Although non asymptotic, this
method assumes zero initial conditions, which means that

the process is initially at rest and that the measurements
start with the experiment. In the general case, and due to
the convolution products, one can not disregard the effects
of non zero initial conditions. On the other hand, the
formed algorithms are based, at each time t, on the knowl-
edge of the entire trajectory. Also, and by construction, the
static gain is not directly (or need not be) identified. All
these drawbacks are considered in the next section.

3. IDENTIFICATION FROM ARBITRARY INITIAL
CONDITIONS

3.1 Theoretical approach

Let us consider again the delayed integrator of the previous
section. Taking into account the memory effect, equation
(5) is rewritten now as

ẏ = δτ ∗ ku+ ψ0, (21)
in which the ”initial condition term” reads ψ0(θ) = y(0)δ+
k u(−τ + θ), θ ∈ (0, τ), and for which suppψ0 ⊂ (0, τ).
With this formulation, the measurements are not assumed
to start with the experiment, but may run from an
arbitrary starting point t0. It should be stressed that in
(21) we may consider as well r − y for some reference
signal r instead of a control u, which corresponds to the
closed loop case with state delay. For the sake of our
demonstration, let us assume that we are given an upper
bound τ̄ of the unknown delay, and consider T > τ̄ and a
smooth function α such that

suppα ⊂ (τ̄ , T − τ̄) ⊂ (0, T ). (22)
Typically, α may be viewed as an element of the test
functions used in the distribution framework. The iden-
tification procedure is based on the convolution product
of α(p), p = 0, · · · , np, with equation (21). By virtue of
(22) and the integration by parts formula, the left hand
side of this product reads:

α(p) ∗ ẏ = α(p+1) ∗ y =
∫ T

0

α(p+1)(θ)y(t− θ) dθ. (23)

Unlike the previous section, this relation, still based on on-
line computations, only requires the output measurements
on (t, t − T ). Using again the support of α, one gets for
the first term of the right hand side:

k α(p) ∗ δτ ∗ u= k

∫ T

0

α(p)(θ)u(t− τ − θ) dθ

= k

∫ T−τ

−τ

α(p)(θ)u(t− τ − θ) dθ

= k

∫ T

0

α(p)(σ − τ)u(t− σ) dσ (24)

As for the convolution with the initial condition term ψ0,
let us notice that even if y(0) and the past values of u
are known, the support within (0, τ) of ψ0, and hence
the convolution product α(p) ∗ψ0 are by nature unknown.
However, their support satisfies suppα(p)∗ψ0 ⊂ (0, T +τ),
so that for t > T + τ , one has∫ T

0

α(p+1)(θ)y(t−θ)dθ = k

∫ T

0

α(p)(θ−τ)u(t−θ)dθ. (25)

In the next step, the shifted candidate function α and its
derivatives are replaced by their Fourier series approxima-
tions of order n, yielding



α(θ)≈
∑n

q=−n
cqe

j qωθ, (26)

α(p)(θ − τ)≈
∑n

q=−n
λqcp,qe

j qωθ, (27)

where we have denoted cp,q = (jqω)pcq, ω = 2π/T , and the
unknown delay dependent coefficient λ = e−jωτ . The delay
here will be deduced from the phase angle of λ. For each
derivation order p, equation (25) is therefore approximated
by the following relation with available terms ap(y) and
bq,p(u),

ap(y)≈ k
∑n

q=−n
λq bq,p(u), (28)

ap(y) =
∫ T

0

α(p+1)(θ)y(t− θ)dθ,

bq,p(u) =
∫ T

0

cp,qe
j qωθu(t− θ)dθ.

In case of known static gain k, the delay estimation
problem reduces to computing the polynomials roots of
(28) for different derivation orders p. For the general case,
the simultaneous gain and delay identification problem
may be stated as the following generalized eigenvalue
formulation,

∑n

q=−n
Aqλ

q

(
k
1

)
= 0, (29)

Aq,q 6=0 =

(
bq,0 0
· · · · · ·
bq,np

0

)
, A0 =

(
b0,0 −a0

· · · · · ·
b0,np

−anp

)
.

In the next paragraph, the resolution of (29) as well as its
practical implementation is discussed.

3.2 Practical implementation

As mentioned earlier, and since the content of the pencil
involves noisy measurements, solving a generalized eigen-
value problem with non square matrices is not an easy
task, and traditional methods are expected to lead to
no solutions in most cases. On the other hand, the re-
cent pseudo-spectra analysis one can find for instance in
(Wright and Trefethen [2002]) is not compatible with an
online perspective. As an alternative, the following steps
are proposed:

(1) solve (29) with square Aq (i.e. with np = 2). Using
for instance the polyeig Matlab function provides 4n
eigenpairs and hence 4n estimation pairs (λ, k),

(2) select the pair that minimizes the norm of the left
hand side of (29) for nk > 2. This step may be
interpreted as the selection of the stationary solution
of the problem.

On the other hand, the constraint on the support of α
will be relaxed by considering harmonic functions taking
small values in the vicinity of T . In return, equation (27)
is no more an approximation for some appropriate order
n. Figure 2 shows the example of α = sin6(ωt/2) on the
interval (0, T ), with the a priori assumption T = 5 >> τ .
Moreover, and in order to avoid unavailable measurements,
the starting phase algorithm (i.e. in the vicinity of t = 0)
uses an increasing window size, from 0 to T .
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Fig. 2. Candidate functions α(p), p = 0, 1, 2 for Eq. (25).

A simulation result based on the same configurations as
those of section 2.2 is shown in Figure 3, where the
sliding window size T has been fixed to 5 s. Note that
a good estimation is obtained for t < T . The small and
local deviations one can observe result from the specific
trajectories for which the eigenvalue problem (29) becomes
nearly singular.
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Fig. 3. Trajectories and estimated parameters k, τ of Eq.
(21).

In this new context, the ability to identify from bounded
sets (t, t− T ) of measurements make it possible to extend
the parameters estimations to non stationary cases with
slowly time varying coefficients. In Figure 4, these esti-
mations are shown for a delayed integrator with slowly
time varying gain k(t) = 2(1 + .2 sin(.03t)) and delay
τ(t) = 0.3(1− 0.8 sin(.06t) cos(.01t)).

4. CONCLUSION

This note has presented a new method for the identifica-
tion of delay systems based on arbitrary input-output tra-
jectories. The ability of identification on bounded sets of
measurements allows us to extend the estimation problem
to slowly time varying parameters and delay. Extensions
to multivariable and multidelay cases, rigorous proofs for
non stationary processes, a well as a deeper study of the
eigenvalue problem singularities are under investigation.

REFERENCES

L. Belkoura. Identifiability of systems described by convo-
lution equations. Automatica, 41:505–512, 2005.



0 10 20 30 40 50 60
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5
Trajectories

 

 

0 10 20 30 40 50 60
−0.5

0

0.5

1

1.5

2

2.5

3
Estimated parameters

 

 

u
y

τ
K

Fig. 4. Trajectories and estimated parameters k(t), τ(t) of
Eq. (21) in case of slowly time varying coefficients.

L. Belkoura and J.-P. Richard. A distribution framework
for the fast identification of linear systems with delays.
6th IFAC Workshop on Time Delay Systems, TDS06, L
Aquila, Italy, July 10-12, 2006.

L. Belkoura, J.-P. Richard, and M. Fliess. On-line iden-
tification of systems with delayed inputs. 16th Conf.
Mathematical Theory of Networks & Systems, MTNS
06, Kyoto, Japan, July, 2006.

F. Beltran-Carvajal, G. Silva-Navarro, H. Sira-Ramirez,
and J. Quezada-Andrade. Active vibration control using
on-line algebraic identification of harmonic vibrations.
Proc. Amer. Control Conf, Portland, OR, 2005.

S.V. Drakunov, W. Perruquetti, J.-P. Richard, and
L. Belkoura. Delay identification in time-delay systems
using variable structure observers. Annual Reviews in
Control, pages 143–158, 2006.

M. Fliess and H. Sira-Ramirez. Closed-loop parametric
identification for continuous-time linear systems via new
algebraic techniques. In H. Garnier & L. Wang, ed-
itor, Continuous-Time Model Identification from Sam-
pled Data. Springer, http: //hal.inria.fr/ inria-00114958,
2007.

M. Fliess, M. Mboup, H. Mounier, and H. Sira-Ramirez.
Questioning some paradigms of signal processing via
concrete examples. Algebraic Methods in Flatness, Sig-
nal Processing and State Estimation, Editiorial Lagares,
Mexico, pages 1–21, 2003.

Michel Fliess, Cedric Join, and Hebertt Sira-Ramirez.
Non-linear estimation is easy. Int. J. Modelling,
Identification and Control, http://hal.inria.fr/inria-
00158855/fr/, 2007.

Sira-Ramirez H. Fliess M. An algebraic framework for
linear identification. ESAIM Control, Optimization and
Calculus of Variations, 9, 2003.

Y. Orlov, I.V. Kolmanovsky, and O. Gome. On-line iden-
tification of siso linear time-delay systems from out-
put measurements: Theory and applications to engine
transient fuel identification. Proceedings of the 2006
American Control Conference Minneapolis, Minnesota,
USA, June 14-16, 2006.

X.M. Ren, A.B. Rad, P.T. Chan, and W.L. Lo. On line
identification of continuous-time systems with unknown
time delay. Ieee Tac, 50-9:1418–1422, 2005.

JP. Richard. Time-delay systems: an overview of some
recent advances and open problems. Automatica, 39:
1667–1694, 2003.
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