
HAL Id: inria-00268299
https://hal.inria.fr/inria-00268299

Submitted on 31 Mar 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Context Distribution for Supporting Composition of
Applications in Ubiquitous Computing

Carlos Noguera, Ellen van Paesschen, Carlos Andrés Parra, Johan Fabry

To cite this version:
Carlos Noguera, Ellen van Paesschen, Carlos Andrés Parra, Johan Fabry. Context Distribution for
Supporting Composition of Applications in Ubiquitous Computing. 23rd Annual ACM Symposium
on Applied Computing (SAC’08), Mar 2008, Fortaleza, Brazil. pp.1647-1648. �inria-00268299�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50273803?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00268299
https://hal.archives-ouvertes.fr

Context Distribution for Supporting Composition of
Applications in Ubiquitous Computing

Carlos Noguera,Ellen Van Paesschen,
Carlos Parra

University Lille 1, INRIA Futurs - LIFL CNRS
UMR 8022, ADAM Team

{noguera|parra|vanpaesschen}@lifl.fr

Johan Fabry
PLEIAD Lab

Computer Science Department (DCC)
University of Chile

jfabry@dcc.uchile.cl

1. INTRODUCTION
Devices and applications reacting to each other and to the

environment in which they reside is a very important part
of Ambient Intelligent systems. Such context-aware systems
require mechanisms to react to changes in their surrounding
environment.

Context-awareness can be divided into two complemen-
tary aspects. On the other hand, a static part that describes
the context and, on the other hand, a dynamic part that
specifies the actions to undertake in response to changes in
that context. In [4] we proposed a generative, model driven
framework called CARBO (Context-Awareness Rule-Based
Orchestration). It uses a model to specify the static part
of the context, and condition-action rules to define the dy-
namic part.

In this poster we present an extension to the CARBO
framework that distributes the context state into a set of
context slices, located on each of the participating entities.
In this way, rather than having the complete context state
in the device that runs the orchestration engine, each device
will keep the state of the entity that represents it.

2. INCLUDING CONTEXT AWARENESS
In CARBO, context awareness in applications is achieved

by specifying a model of the context, and writing a set of
rules. From these inputs, CARBO generates an orchestra-
tion engine that executes services on the applications partic-
ipating in the context as dictated by the rules. The develop-
ment of CARBO applications is composed of two phases, a
modeling of context and specification of behavior phase fol-
lowed of a code generation phase. In the first phase, a model
of context is defined with a set of abstractions as Descriptors
and Entities. In addition to the model, CARBO allows the
definition of a set of condition-action rules, which represent
the behavior of the applications in response to changes in
the context.

As a specification language, CARBO uses a limited subset
of the Java programming Language. Entities and context

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’08 March 16-20, 2008, Fortaleza, Ceará, Brazil
Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

descriptors are represented as classes sporting annotations
that state their role, and rules are represented as methods
containing a single if statement. Annotations are used to
state the role of the code elements both on the model and
rule set. Supose that we are working on a scenario in which
a smart home turns on the lights of a room whenever a user
identified through its cellphone comes with in range, the
model and rules explained previously would be represented
by the following Java code.

@Entity public class Cellphone{
@Attribute static String phoneNumber;

}

@RuleSet class LightRules{
@Rule public void rule1 (){

if(Cellphone.phoneNumber == MYNUMBER
Light.turnOn ();

}
}

From the set of annotated Java classes, CARBO generates
a custom orchestration engine that listens to events from an
underlying middleware, and keeps the state of the context
in an in-memory model. Form this context state, rules and
triggered if the conditions are met.

3. CONTEXT DISTRIBUTION
The initial CARBO context model centralizes the context

on the device that contains the rule engine. This however
does not cleanly map to the fact that we are dealing with
different devices when performing application composition.
Because of this, additional work must be performed by the
CARBO engine to assure that the context representation is
synchronized with the actual values of the context, as for ex-
ample that information is no longer available due to discon-
nection of devices. It is more sensible to consider that each
device contains a slice of the overall context, more specif-
ically the slice that is directly related to the device itself.
Here we discuss how we have extended CARBO to support
distributed context.

3.1 Handling Offline Context Slices
We regard the main issue of offline context slices to lie in

evaluating the condition of the rule. Consider the case of an
action of a rule that invokes a service that is unavailable at
that time. We should not delay invoking that service until it
becomes available. This is because this delayed invocation
may happen at a moment where the condition of the rule has
become false, which leads to erroneous behavior. We have
therefore chosen to simply skip service requests to offline

context slices. Hence, we need to consider the impact of any
of these slices being offline when evaluating the condition.

In our approach we return a programmer-specified value
when a context slice is offline and expect the condition ex-
pression to be constructed so that it handles such errors
appropriately. The idea is to treat offline context slices as
if they were online but contribute negatively to the truth
value of the condition.

To enable this approach to work, the rule creator must be
able to specify what context information should be returned
when a slice is offline. This ensures that the conditions that
use this information evaluate correctly. One way in which
this can be realized is using tagged futures.

3.2 Tagged Futures
Futures [5], are intended to act as placeholder values for an

as yet undetermined object. Futures can be passed around
in an application, as if they are the object for which they
are the placeholder, but attempting to read the actual value
blocks until the future is resolved. Our concept of Tagged
Futures [3] enhances futures by allowing an unresolved future
to be read. The programmer specifies a mock value to be
used instead of the actual value, as an extra tag added to
the future. Read accesses to the future will return this mock
value, and as soon as the future is resolved, read accesses will
return the actual value. For more information we refer to [3].

The behavior of tagged futures meets the needs for our
chosen approach to deal with offline context slices. We can
have a context slice as a tagged future of which the dif-
ferent attributes are tagged with their offline value. When
online, the context slice works as normal, and when offline,
the programmer-specified value for these slices is returned.
For example, consider the code below, for the light room
example. Here the attributes of the different entities have
been given an extra annotation that specifies the value to
be returned when offline.

@Entity public class Cellphone{
@Future("\"0\"")
@Attribute static String phoneNumber;

}
@RuleSet class LightRules{

@Rule public void rule1 (){
if(Cellphone.phoneNumber == MYNUMBER)

Light.turnOn ();
}

}

The Cellphone entity specifies 0 as a mock value when of-
fline. We assume there is no cellphone with number 0. Con-
sequently, when the user is out of range, the corresponding
part of the if-test will fail. As a result of this, the test of
the rule does not need to manually take into account the
offline nature of context slices. In fact, the rule would be
identical if it was written without taking distribution into
account. This shows the advantage of using tagged futures:
the ability to deal with distributed context does not come
at a cost of higher complexity of the code of the rule. If
sensible mock values are used for when offline, the rule will
behave correctly.

4. RELATED WORK
There are several related works in the domain of context-

aware systems. Here we describe how some of these ap-
proaches deal with disconnection issues. EgoSpaces [1] de-
fines a safe-distance protocol, that is, for every transaction

to begin, the system should verify that every agent is close
enough so that the transaction will be finished before the
agent may be out of range. In our approach, we do not need
to verify a safe-distance. By using futures, we have the se-
mantics needed to deal with offline devices. The rules will
evaluate to false, until the device is online again.

In Gaia [6], disconnection is handled by using a presence
service. This service is periodically sending heartbeats to
verify if an entity is in the active space. If the entity does
not respond to the heartbeat, the presence service assumes
the entity is no longer available and notifies the rest of the
space. Spoon Graffiti uses a similar approach to detect dis-
connections. Nevertheless, Gaia limits itself to notify the
disconnection of an entity. In our approach we also define
the actions to follow when an entity goes offline.

Another related project is CARISMA [2] in which a set of
policies are created to deal with conflicts regarding the in-
formation stored in profiles across different entities. Never-
theless, they do not address the problem of disconnection
directly and trust an underlying middleware to resolve con-
flicts related to elements going out of range.

5. CONCLUSIONS
In this poster we present an evolution to the CARBO

orchestration engine that distributes context state amongst
the different participants by using context slices. As a re-
sult, CARBO is a better match to the domain of Ubiquitous
Computing setting, where each device is responsible for its
own context representation. To implement context distribu-
tion we use tagged futures as implemented in Spoon Graf-
fiti. This allowed us to elegantly manage the connection and
disconnection of each of the slices that compose the whole
context. The small price to pay for this context distribu-
tion, is that default values have to be specified for each of
the attributes of the entities.

6. REFERENCES
[1] Egospaces: Facilitating rapid development of

context-aware mobile applications. IEEE Trans. Softw.
Eng., 32(5):281–298, 2006.

[2] L. Capra, W. Emmerich, and C. Mascolo. Carisma:
Context-aware reflective middleware system for mobile
applications. IEEE Transactions on Software
Engineering, 29(10):929–945, Sep 2003.

[3] J. Fabry and C. Noguera. Abstracting connection
volatility through tagged futures. In Proceedings of the
2nd Ambient Intelligence Developments (AmI.d)
Conference, sept 2007.

[4] C. A. Parra, M. D’Hondt, C. Noguera, and E. V.
Paesschen. Introducing context-awareness in
applications by transforming high-level rules. In Object
Technology for Ambient Intelligence Workshop
(OT4AmI), Berlin, Germany, 2007.

[5] J. R. Halstead. Multilisp: a language for concurrent
symbolic computation. ACM Trans. Program. Lang.
Syst., 7(4):501–538, 1985.

[6] M. RomĞn, C. K. Hess, R. Cerqueira, A. Ranganathan,
R. H. Campbell, and K. Nahrstedt. Gaia: A
Middleware Infrastructure to Enable Active Spaces.
IEEE Pervasive Computing, pages 74–83, Oct–Dec
2002.

