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Éric Moulines eric.moulines@enst.fr

LTCI, TELECOM ParisTech & CNRS

46, rue Barrault

75634 Paris cedex 13, France

Editor:

Abstract

We propose to investigate test statistics for testing homogeneity in reproducing kernel
Hilbert spaces. Asymptotic null distributions under null hypothesis are derived, and con-
sistency under fixed and local alternatives is assessed. Finally, experimental evidence of
the performance of the proposed approach on both artificial data and a speaker verification
task is provided.

Keywords: statistical hypothesis testing, reproducing kernel Hilbert space, covariance operator

1. Introduction

An important problem in statistics and machine learning consists in testing whether the
distributions of two random variables are identical under the alternative that they may differ

in some ways. More precisely, let {X(1)
1 , . . . ,X

(1)
n1

} and {X(2)
1 , . . . ,X

(2)
n2

} be independent
random variables taking values in an arbitrary input space X , with common distributions
P1 and P2, respectively. The problem consists in testing the null hypothesis of homogeneity
H0 : P1 = P2 , against the alternative HA : P1 6= P2. This problem arises in many
applications, ranging from computational anatomy (Grenander and Miller, 2007) to speaker
segmentation (Bimbot et al., 2004). We shall allow the input space X to be quite general,
including for example finite-dimensional euclidean spaces but also function spaces, or more
sophisticated structures such as strings or graphs (see Shawe-Taylor and Cristianini, 2004)
arising in applications such as bioinformatics (see recently Borgwardt et al., 2006).

Traditional approaches to this problem are based on cumulative distribution functions
(cdf), and use a certain distance between the empirical cdf obtained from the two samples.
Popular procedures are the two-sample Kolmogorov-Smirnov tests or the Cramer-Von Mises

1



tests (Lehmann and Romano, 2005), that have been frequently used to address these issues,
at least for low-dimensional data. Although these tests are popular due to their simplicity,
they are known to be insensitive to certain characteristics of the distributions, such as
densities containing high-frequency components or local features such as narrow bumps.
The low-power of the traditional cdf-based test statistics can be improved on by using test
statistics based on probability density estimators. Tests based on kernel density estimators
have been studied by Anderson et al. (1994) and Allen (1997), using respectively the L2

and L1 distances between densities. More recently, the use of wavelet estimators has been
proposed and thoroughly analyzed. Adaptive versions of these tests, that is where smoothing
parameters for the density estimator are obtained from the data, have been considered
by Butucea and Tribouley (2006).

Recently, Gretton et al. (2006) cast the two-sample homogeneity test in a kernel-based
framework, and have shown that their test statistics, coined Maximum Mean Discrepancy
(MMD) yields as a particular case the L2-distance between kernel density estimators. We
propose here to further enhance such an approach by directly incorporating the covariance
structure of the probability distributions into our test statistics, yielding in some sense to
a chi-square divergence between the two distributions. For discrete distributions, it is well-
known that such a normalization yield test statistics with greater power (Lehmann and
Romano, 2005).

The paper is organized as follows. In Section 2 and Section 3, we state the main
definitions and we build our test statistics upon kernel Fisher discriminant analysis. In
Section 4, we give the asymptotic distribution of our test statistic under the null hypothesis,
and establish the consistency and the limiting distribution of the test for both fixed and
a class of local alternatives. In Section 5, we first investigate the limiting power of our
test statistics against directional then non-directional sequences of local alternatives in a
particular setting, that is when P1 is the uniform distribution and P2 is a one-frequency
contamination of P1 on the Fourier basis and the reproducing kernel belongs to the class of
periodic spline kernels, and then compare our test statistics with the MMD test statistics in
terms of limiting power. In Section 6 we provide experimental evidence of the performance
of our test statistic on a speaker identification task. Detailed proofs are presented in the
last sections.

2. Mean and covariance in reproducing kernel Hilbert spaces

We first highlight the main assumptions on the reproducing kernel, and then introduce
operator-theoretic tools for defining the mean element and the covariance operator associ-
ated with a reproducing kernel.

2.1 Reproducing kernel Hilbert spaces

Let (X , d) be a separable measurable metric space, and denote by X the associated σ-algebra.
Let X be X -valued random variable, with probability measure P, and the expectation with
respect to P is denoted by E. Consider a Hilbert space (H, 〈·, ·〉H) of functions from X to
R. The Hilbert space H is a reproducing kernel Hilbert space (RKHS) if at each x ∈ X ,
the point evaluation operator δx : H → R, which maps f ∈ H to f(x) ∈ R, is a bounded
linear functional. To each point x ∈ X , there corresponds an element Φ(x) ∈ H such that
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Testing for Homogeneity with KFDA

〈Φ(x), f〉H = f(x) for all f ∈ H, and 〈Φ(x),Φ(y)〉H = k(x, y), where k : X × X → R is
a positive definite kernel (Aronszajn, 1950). In this situation, Φ(·) is the Aronszajn-map,

and we denote by ‖f‖H = 〈f, f〉1/2
H the associated norm. It is assumed from now on that

H is a separable Hilbert space. Note that this is always the case if X is a separable metric
space and if the kernel is continuous (see Steinwart et al., 2006a). We make the following
two assumptions on the kernel:

(A1) The kernel k is bounded, that is |k|∞ def
= sup(x,y)∈X×X k(x, y) <∞.

(A2) For all probability distributions P on (X ,X), the RKHS associated with k(·, ·) is dense
in L2(P).

Note that some of our results (such as the limiting distribution under the null distribu-
tion) are valid without assumption (A2), while consistency results against fixed or local
alternatives do need (A2). Assumption (A2) is true in particular for the gaussian kernel
on Rd as shown in (Steinwart et al., 2006b, Theorem 2), and that X may be a discrete
space (Steinwart et al., 2006b, Corollary 3).

2.2 Mean element and covariance operator

We shall need some operator-theoretic tools (see Aubin, 2000), to define mean elements
and covariance operators. A linear operator T is said to be bounded if there is a number C
such that ‖Tf‖H ≤ C ‖f‖H for all f ∈ H. The operator-norm of T is then defined as the
minimum of such numbers C, that is ‖T‖ = sup‖f‖

H
≤1 ‖Tf‖H. Furthermore, a bounded

linear operator T is said to be Hilbert-Schmidt, if the Hilbert-Schmidt-norm ‖T‖HS =
{∑∞

p=1 〈Tep, T ep〉H}1/2 is finite, where {ep}p≥1 is any complete orthonormal basis of H.
Note that ‖T‖HS is independent of the choice of the orthonormal basis. We shall make
frequent use of tensor product notations. The tensor product operator u⊗ v for u, v ∈ H is
defined for all f ∈ H as (u⊗ v)f = 〈v, f〉H u.

We now introduce the mean element and covariance operator (see Blanchard et al.,
2007). If

∫
k1/2(x, x)P(dx) < ∞, the mean element µP is defined as the unique element in

H satisfying for all functions f ∈ H,

〈µP, f〉H = Pf
def
=

∫
fdP . (1)

If furthermore
∫
k(x, x)P(dx) <∞, then the covariance operator ΣP is defined as the unique

linear operator onto H satisfying for all f, g ∈ H,

〈f,ΣPg〉H
def
=

∫
(f − Pf)(g − Pg)dP , (2)

that is 〈f,ΣPg〉H is the covariance between f(X) and g(X) where X is distributed according
to P. Note that the mean element and covariance operator are well-defined when (A1) is
satisfied. Moreover, when assumption (A2) is satisfied, then the map from P 7→ µP is
injective. Note also that the operator ΣP is a self-adjoint nonnegative trace-class operator.
In the sequel, the dependence of µP and ΣP in P is omitted whenever there is no risk of
confusion.
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We now define what we later denote by Σ−1/2 in our proofs. For a compact operator
Σ, the range R(Σ1/2) of Σ1/2 is defined as R(Σ1/2) = {Σ1/2f, f ∈ H}, and may be char-
acterized by R(Σ1/2) = {f ∈ H, ∑∞

p=1 λp 〈f, ep〉2H < ∞, f ⊥ N (Σ1/2)}, where {λp, ep}p≥1

are the nonzero eigenvalues and eigenvectors of Σ, and N (Σ) = {f ∈ H, Σf = 0} is
the null-space of Σ, that is functions which are constant in the support of P. Defin-

ing R−1(Σ1/2) = {g ∈ H, g =
∑∞

p=1 λ
−1/2
p 〈f, ep〉H ep, f ∈ R(Σ1/2)}, we observe that

Σ1/2 is a one-to-one mapping between R−1(Σ1/2) and R(Σ1/2). Thus, restricting the do-
main of Σ1/2 to R−1(Σ1/2), we may define its inverse for all f ∈ R(Σ1/2) as Σ−1/2f =∑∞

p=1 λ
−1/2
p 〈f, ep〉H ep. The null space may be reduced to the null element (in particular

for the gaussian kernel), or may be infinite-dimensional. Similarly, there may be infinitely
many strictly positive eigenvalues (true nonparametric case) or finitely many (underlying
finite-dimensional problems).

Given a sample {X1, . . . ,Xn}, the empirical estimates respectively of the mean element
and the covariance operator are then defined as follows:

µ̂
def
= n−1

n∑

i=1

k(Xi, ·) , (3)

Σ̂
def
= n−1

n∑

i=1

k(Xi, ·) ⊗ k(Xi, ·) − µ̂⊗ µ̂ . (4)

By the reproducing property, they lead, on the one hand, to empirical means as from (3) we
have 〈µ̂, f〉 = n−1

∑n
i=1 f(Xi) for all f ∈ H, and on the other hand, to empirical covariances

as from (4) we have 〈f, Σ̂g〉H = n−1
∑n

i=1 f(Xi)g(Xi)−{n−1
∑n

i=1 f(Xi)}{n−1
∑n

i=1 g(Xi)}
for all f, g ∈ H.

3. KFDA-based test statistic

Our two-sample homogeneity test can be formulated as follows. Let {X(1)
1 , . . . ,X

(1)
n1

} and

{X(2)
1 , . . . ,X

(2)
n2

} two independent identically distributed samples (iid) respectively from P1

and P2, having mean and covariance operators given by (µ1,Σ1) and (µ2,Σ2). We build our
test statistics using a (regularized) kernelized version of the Fisher discriminant analysis.

Denote by ΣW
def
= (n1/n)Σ1 +(n2/n)Σ2 the pooled covariance operator, where n

def
= n1+n2,

corresponding to the within-class covariance matrix in the finite-dimensional setting (see
Hastie et al., 2001).

3.1 Maximum Kernel Fisher Discriminant Ratio

Let us denote ΣB
def
= (n1n2/n

2)(µ2 −µ1)⊗ (µ2 −µ1) the between-class covariance operator.
For a = 1, 2, denote by (µ̂a, Σ̂a) respectively the empirical estimates of the mean element

and the covariance operator, defined as previously stated in (3) and (4). Denote Σ̂W
def
=

(n1/n)Σ̂1 +(n2/n)Σ̂2 the empirical pooled covariance estimator, and Σ̂B
def
= (n1n2/n

2)(µ̂2−
µ̂1)⊗ (µ̂2 − µ̂1) the empirical between-class covariance operator. Let {γn}n≥0 be a sequence
of strictly positive numbers. The maximum kernel Fisher discriminant ratio serves as a
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basis of our test statistics:

nmax
f∈H

〈
f, Σ̂Bf

〉

H〈
f, (Σ̂W + γnI)f

〉

H

= n1n2/n
∥∥∥(Σ̂W + γnI)−1/2(µ̂2 − µ̂1)

∥∥∥
2

H
, (5)

where I denotes the identity operator. Note that if the input space is Euclidean, e.g.,
X = Rd, the kernel is linear k(x, y) = xT y and γn = 0, this quantity matches the so-called
Hotelling’s T 2-statistic in the two-sample case (Lehmann and Romano, 2005).

We shall make the following assumptions respectively on Σ1 and Σ2

(B1) For u = 1, 2, the eigenvalues {λp(Σu)}p≥1 satisfy
∑∞

p=1 λ
1/2
p (Σu) <∞.

(B2) For u = 1, 2, there are infinitely many strictly positive eigenvalues {λp(Σu)}p≥1 of Σu.

The statistical analysis conducted in Section 4 shall demonstrate, in the case γn → 0,
the need to respectively recenter and rescale (a standard statistical transformation known as
studentization) the maximum Fisher discriminant ratio, in order to get a theoretically well-
grounded test statistic. These roles, recentering and rescaling, will be played respectively by
d1(ΣW , γ) and d2(ΣW , γ), where for a given compact operator Σ with decreasing eigenvalues
λp, the quantity dr(Σ, γ) is defined for all q ≥ 1 as

dr(Σ, γ)
def
=






∞∑

p=1

(λp + γ)−rλr
p






1/r

. (6)

3.2 Computation of the test statistics

In practice the test statistics may be computed thanks to the kernel trick, adapted to
the kernel Fisher discriminant analysis as outlined in (Shawe-Taylor and Cristianini, 2004,

Chapter 6). Let us consider the two samples {X(1)
1 , . . . ,X

(1)
n1

} and {X(2)
n1
, . . . ,X

(2)
n2

}, with

n1 + n2 = n. Denote by G
(u)
n : Rnu 7→ H, u = 1, 2, the linear operators which associates to

a vector α
(u) = [α

(u)
1 , . . . , α

(u)
nu ]T the vector in H given by G

(u)
n α

(u) =
∑nu

j=1 α
(u)
j k(X

(u)
j , ·).

This operator may be presented in a matrix form

G(u)
n =

[
k(X

(u)
1 , ·), . . . , k(X(u)

nu
, ·)
]
. (7)

We denote by Gn =
[
G

(1)
n G

(2)
n

]
. We denote by K

(u,v)
n = [G

(u)
n ]TG

(v)
n , u, v ∈ {0, 1}, the

Gram matrix given by K
(u,v)
n (i, j)

def
= k(X

(u)
i ,X

(v)
j ) for i ∈ {1, . . . , nu}, j ∈ {1, . . . , nv}.

Define, for any integer ℓ, Pℓ = Iℓ−ℓ−11ℓ1
T
ℓ where 1ℓ is the (ℓ×1) vector whose components

are all equal to one and Iℓ is the (ℓ× ℓ) identity matrix and let Nn be given by

Nn
def
=

(
Pn1

0
0 Pn2

)
. (8)

Finally, define the vector mn = (mn,i)1≤i≤n with mn,i = −n−1
1 for i = 1, . . . , n1 and

mn,i = n−1
2 for i = n1 + 1, . . . , n1 + n2. With the notations introduced above,

µ̂2 − µ̂1 = Gnmn , Σ̂u = n−1
u G(u)

n PnuP
T
nu

(G(u)
n )T , u = 1, 2 , Σ̂W = n−1GnNnN

T
nGT

n ,

5



which implies that

〈
µ̂2 − µ̂1, (Σ̂W + γI)−1(µ̂2 − µ̂1)

〉

H
= mT

nGT
n (n−1GnNnN

T
nGT

n + γI)−1Gnmn .

Then, using the matrix inversion lemma, we get

mT
nGT

n (n−1GnNnN
T
nGT

n + γI)−1Gnmn

= γ−1mT
nGT

n

{
I − n−1GnNn(γI + n−1NT

nGT
nGnNn)−1NT

nGT
n

}
Gnmn

= γ−1
{
mT

nKnmn − n−1mT
nKnNn(γI + n−1NnKnNn)−1NnKnmn

}
.

Hence, the maximum kernel Fisher discriminant ratio may be computed from

n1n2/n
∥∥∥(Σ̂W + γnI)−1/2(µ̂2 − µ̂1)

∥∥∥
2

H

= n1n2/γn
{
mT

nKnmn − n−1mT
nKnNn(γI + n−1NnKnNn)−1NnKnmn

}
.

4. Main results

This discussion yields the following normalized test statistics:

T̂n(γn) =
n1n2/n

∥∥∥(Σ̂W + γnI)−1/2δ̂
∥∥∥

2

H
− d1(Σ̂W , γn)

√
2 d2(Σ̂W , γn)

. (9)

In this paper, we first consider the asymptotic behavior of T̂n under the null hypothesis,
and against a fixed alternative. This will establish that our nonparametric test procedure is
consistent. However, this is not enough, as it can be arbitrarily slow. We thus then consider
local alternatives.

For all our results, we consider two situations regarding the regularization parameter γn;
(a) a situation where γn is held fixed, and in which the limiting distribution is somewhat
similar to the maximum mean discrepancy test statistics, and (b) a situation where γn tends
to zero slowly enough, and in which we obtain qualitatively different results.

4.1 Limiting distribution under null hypothesis

Throughout this paper, we assume that the proportions n1/n and n2/n converge to strictly
positive numbers, that is

nu/n→ ρu, as n = n1 + n2 → ∞ , with ρu > 0 for u = 1, 2 .

In this section, we derive the distribution of the test statistics under the null hypothesis
H0 : P1 = P2 of homogeneity, which implies µ1 = µ2 and Σ1 = Σ2 = ΣW . We first

consider the case where the regularization factor is held constant γn ≡ γ. We denote
D−→

the convergence in distribution.

6
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Theorem 1. Assume (A1-B1). Assume in addition that the probability distributions P1

and P2 are equal, i.e. P1 = P2 = P, and that γn ≡ γ > 0. Then,

T̂n(γ)
D−→ T∞(ΣW , γ)

def
= 2−1/2 d−1

2 (ΣW , γ)
∞∑

p=1

(λp(ΣW ) + γ)−1λp(ΣW )(Z2
p − 1) , (10)

where {λp(ΣW )}p≥1 are the eigenvalues of the covariance operator ΣW , and d2(ΣW , γ) is
defined in (6), and Zp, p ≥ 1 are independent standard normal variables.

If the number of non-vanishing eigenvalues is equal to p and if γ = 0, then the limiting
distribution coincides with the limiting distribution of the Hotelling T 2 for comparisons of
two p-dimensional vectors (which is a central chi-square with p degrees of freedom (Lehmann
and Romano, 2005). The previous result is similar to what is obtained by Gretton et al.
(2006) for the Maximum Mean Discrepancy test statistics (MMD), we obtain a weighted
sum of chi-squared distributions with summable weights. For a given level α ∈ [0, 1], denote
by t1−α(ΣW , γ) the (1 − α)-quantile of the distribution of T∞(ΣW , γ). Then, the sequence
of test T̂n(γ) ≥ t1−α(ΣW , γ), is pointwise asymptotically level α to test homogeneity. Be-
cause in practice the covariance ΣW is unknown, it is not possible to compute the quantile
t1−α(ΣW , γ). Nevertheless, this quantile can still be consistently estimated by t1−α(Σ̂W , γ),
which can be obtained from the sample covariance matrix (see Proposition 24).

Corollary 2. The test T̂n(γ) ≥ t1−α(Σ̂W , γ) is pointwise asymptotically level α.

In practice, the quantile t1−α(Σ̂W , γ) can be numerically computed by inverse Laplace
transform (see Strawderman, 2004; Hughett, 1998).

For all γ > 0, the weights {(λp + γ)−1λp}p≥1 are summable. However, if Assump-
tion (B2) is satisfied, both d1,n(γ,ΣW ) and d1,n(γ,ΣW ) tend to infinity when n → 0. The
following theorem shows that if γn tends to zero slowly enough, then our test statistics is
asymptotically normal:

Theorem 3. Assume (A1), (B1-B2). Assume in addition that the probability distributions
P1 and P2 are equal, i.e. P1 = P2 = P and that the sequence {γn} is such that

γn + d−1
2 (ΣW , γn)d1(ΣW , γn)γ−1

n n−1/2 → 0 ,

then

T̂n(γn)
D−→ N (0, 1) .

The proof of the theorem is postponed to Section 9. Under the assumptions of Theo-
rem 3, the sequence of tests that rejects the null hypothesis when T̂n(γn) ≥ z1−α, where
z1−α is the (1 − α)-quantile of the standard normal distribution, is asymptotically level α.

Contrary to the case where γn ≡ γ, the limiting distribution does not depend on the
reproducing kernel, nor on the sequence of regularization parameters {γ}n≥1. However,
notice that d−1

2 (ΣW , γn)d1(ΣW , γn)γ−1
n n−1/2 → 0 requires that {γ}n≥1 goes to zero at a

slower rate than n−1/2. For instance, if the eigenvalues {λp}p≥1 decrease at a polynomial
rate, that is if there exists s > 0 such that we have λp = p−s for all p ≥ 1, then, by Lemma 20,

we have d1(ΣW , γn) ∼ γ
−1/s
n and d2(ΣW , γn) ∼ γ

−1/2s
n as n→ ∞. Therefore, the condition

7



d−1
2 (ΣW , γn)d1(ΣW , γn)γ−1

n n−1/2 → 0 entails in this particular case that γ−1
n = o(n2s/1+4s),

where the rate of decay s of the eigenvalues of the covariance operator ΣW , depends both
on the kernel and the underlying distribution P1 = P2 = P. Besides, it may seem surprising
that the limiting distribution is normal. This is due to two facts. First, we regularize
the sample covariance operator prior to inversion (being of finite rank, the inverse of Σ̂
is obviously not defined). Second, the problem is here truly infinite dimensional, because
we have assumed that the eigenvalues are infinite dimensional λp(ΣW ) > 0 for all p (see
Lehmann and Romano, 2005, Theorem 14.4.2, for a related result).

4.2 Limiting behavior against fixed alternatives

We study the power of the test based on T̂n(γn) under alternative hypotheses. The minimal
requirement is to prove that this sequence of tests is consistent. A sequence of tests of
constant level α is said to be consistent in power if the probability of accepting the null
hypothesis of homogeneity goes to zero as the sample size goes to infinity under a fixed
alternative. Recall that two probability P1 and P2 defined on a measurable space (X ,X)
are called singular if there exist two disjoint sets A and B in X whose union is X such that
P1 is zero on all measurable subsets of B while P2 is zero on all measurable subsets of B.
This is denoted by P1 ⊥ P2.

When γn ≡ γ or when γn → 0, and P1 and P2 are not singular, then the following
proposition shows that the limits in both cases are finite, strictly positive and independent
of the kernel otherwise (see Fukumizu et al., 2008, for similar results for canonical correla-

tion analysis). The following result gives some useful insights on ‖Σ−1/2
W (µ2 − µ1)‖H, the

population counterpart of ‖(Σ̂W + γnI)−1/2(µ̂2 − µ̂1)‖H on which our test statistics is based
upon.

Proposition 4. Assume (A1-A2). Let ν a measure dominating P1 and P2, and let p1 and

p2 the densities of P1 and P2 with respect to ν. The norm ‖Σ−1/2
W (µ2−µ1)‖H is infinite if and

only if P1 and P2 are mutually singular. If P1 and P2 are nonsingular, ‖Σ−1/2
W (µ2 − µ1)‖H

is finite and is given by

∥∥∥Σ−1/2
W (µ2 − µ1)

∥∥∥
2

H
=

1

ρ1ρ2

(
1 −

∫
p1p2

ρ1p1 + ρ2p2
dν

)(∫
p1p2

ρ1p1 + ρ2p2
dν

)−1

.

It is equal to zero if the χ2-divergence is null, that is, if and only if P1 = P2.

By combining the two previous propositions, we therefore obtain the following consis-
tency theorem:

Theorem 5. Assume (A1-A2). Let P1 and P2 be two distributions over (X ,X), such that
P2 6= P1. If either γn ≡ γ or γn + d−1

2 (Σ1, γn)d1(Σ1, γn)γ−1
n n−1/2 → 0, then for any t > 0

PHA
(T̂n(γ) > t) → 1 . (11)

4.3 Limiting distribution against local alternatives

When the alternative is fixed, any sensible test procedure will have a power that tends to
one as the sample size n tends to infinity. This property is not suitable for comparing the
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limiting power of different test procedures. Several approaches are possible to answer this
question. One such approach is to consider sequences of local alternatives (Lehmann and
Romano, 2005). Such alternatives tend to the null hypothesis as n → ∞ at a rate which
is such that the limiting distribution of sequence the test statistics under the sequence of
alternatives converge to a non-degenerate random variable. To compare two sequences of
tests for a given sequence of alternatives, one may then compute the ratio of the limiting
powers, and choose the test which has the largest power.

In our setting, let P1 denote a fixed probability on (X ,X) and let Pn
2 be a sequence of

probability on (X ,X). The sequence Pn
2 depends on the sample size n and converge to P1 as

n goes to infinity with respect to a certain distance. In the asymptotic analysis of our test
statistics against sequences of local alternatives, the χ2-divergence Dχ2 (P1 ‖ Pn

2 ) is defined
for all n as

ηn
def
=

∥∥∥∥
dPn

2

dP1
− 1

∥∥∥∥
L2(P1)

, (12)

for Pn
2 absolutely continuous with respect to P1. Therefore, in the subsequent sections, we

shall make the following assumption:

(C) For any n, Pn
2 is absolutely continuous with respect to P1, and Dχ2 (P1 ‖ Pn

2 ) → 0 as
n tends to infinity.

The following theorem shows that under local alternatives, we get a series of shift in the
chi-squared distributions when γn ≡ γ:

Theorem 6. Assume (A1), (B1), and (C). Assume in addition γn ≡ γ > 0 and that
nη2

n = O(1), then

T̂n(γ)
D−→ 2−1/2d−1

2 (Σ1, γ)
∞∑

p=1

(λp(Σ1) + γ)−1λp(Σ1){(Zp + an,p(γ))
2 − 1} ,

with
an,p(γ) = (n1n2/n)1/2

〈
(Σ1 + γI)−1/2(µn

2 − µ1), ep

〉

H
, (13)

where {Zp}p≥1 are independent standard normal random variables, defined on a common
probability space.

When the sequence of regularization parameters {γn}n≥1 tends to zero at a slower rate
than n−1/2, the test statistics is shown to be asymptotically normal, with the same limiting
variance as the one under the null hypothesis, but with a non-zero limiting mean, as detailed
in the next two results. While the former states the asymptotic normality under general
conditions, the latter highlights the fact that the asymptotic mean-shift in the limiting
distribution may be conveniently expressed from the limiting χ2-divergence of P1 and Pn

2

under additional smoothness assumptions on the spectrum of the covariance operator.

Theorem 7. Assume (A1), and (B1-2), and (C). Let {γn}n≥1 be a sequence such that

γn + d−1
2 (Σ1, γn)d1(Σ1, γn)γ−1

n n−1/2 → 0 (14)

d−1
2 (Σ1, γn)nη2

n = O(1) and d−1
2 (Σ1, γn)d1(Σ1, γn)ηn → 0 , (15)
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where {ηn}n≥1 is defined in (12). If the following limit exists,

∆
def
= lim

n→∞

n
∥∥(Σ1 + γnI)

−1/2(µn
2 − µ1)

∥∥2

H

d2(Σ1, γn)
, (16)

then,

T̂n(γn)
D−→ N (ρ1ρ2∆, 1) .

Corollary 8. Under the assumptions of Theorem 7, if there exists a > 0 such that

〈
µn

2 − µ1,Σ
−1−a
1 (µn

2 − µ1)
〉
H
<∞ ,

and if the following limit exists,

∆ = lim
n→∞

d2(Σ1, γn)−1nη2
n ,

then,

T̂n(γn)
D−→ N (ρ1ρ2∆, 1) .

It is worthwhile to note that ρ1ρ2∆, the limiting mean-shift of our test statistics against
sequences of local alternatives does not depend on the choice of the reproducing kernel. This
means that, at least in the large-sample setting n→ ∞, the choice of the kernel is irrelevant,
provided that for some a > 0 we have

〈
µn

2 − µ1,Σ
−1−a
1 (µn

2 − µ1)
〉
H
<∞. Then, we get that

the sequences of local alternatives converge to the null at rate ηn = C d
1/2
2 (Σ1, γn)n−1/2

for some constant C > 0, which is slower than the usual parametric rate n−1/2 since
d2(Σ1, γn) → ∞ as n → ∞ as shown in Lemma 18. Note also that conditions of the
form

〈
µn

2 − µ1,Σ
−1−α
1 (µn

2 − µ1)
〉
H
< ∞ imply that the sequence of local alternatives are

limited to smooth enough densities pn
2 around p1.

5. Discussion

We illustrate now the behaviour of the limiting power of our test statistics against two
different types of sequences of local alternatives. Then, we compare the power of our test
statistics against the power of the Maximum Mean Discrepancy test statistics proposed
by Gretton et al. (2006). Finally, we highlights some links between testing for homogeneity
and supervised binary classification.

5.1 Limiting power against local alternatives of KFDA

We have seen that our test statistics is consistent in power against fixed alternatives, for
both regularization schemes γn ≡ γ and γn → 0. We shall now examine the behaviour of
the power of our test statistics, against different types of sequences of local alternatives:
i) directional alternatives, ii) non-directional alternatives. For this purpose, we consider
a specific reproducing kernel, the periodic spline kernel, whose derivation is given below.
Indeed, when P1 is the uniform distribution on [0, 1], and dP2/dP1 = 1 + ηcq with cq is a
one-component contamination on the Fourier basis, we may conveniently compute a closed-
form equivalent when n→ ∞ of the eigenvalues of the covariance operator Σ1, and therefore
the power function of the test statistics.
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Testing for Homogeneity with KFDA

Periodic spline kernel The periodic spline kernel, described in (Wahba, 1990, Chapter
2), is defined as follows. Any function f in L2(X ), where X is taken as the torus R/2πZ,
may be expressed in the form of a Fourier series expansion f(t) =

∑∞
p=0 apcp(t) where∑∞

p=0 a
2
p, and for all ℓ ≥ 1

c0(t) = 1X (17)

c2ℓ−1(t) =
√

2 sin(2π(2ℓ − 1)t) (18)

c2ℓ(t) =
√

2 cos(2π(2ℓ − 1)t) . (19)

Let us consider the family of RKHS defined by Hm = {f : f ∈ L2(X ),
∑∞

p=0 λ
−1
p a2

p < ∞}
with m > 1, where λp = (2πp)−2m for all p ≥ 1, whose norm is defined for all f ∈ L2(X ) as

‖f‖2
H = 1/2

∞∑

p=0

(2πp)−2ma2
p . (20)

Therefore, the associated reproducing kernel k(x, y) writes as

km(x, y) = 2
∞∑

p=0

(2πp)−2mcp(x− y) =
(−1)m−1

(2m)!
B2m ((x− y) − ⌊x− y⌋) ,

where B2m is the 2m-th Bernoulli polynomial.

The set {ep(t), p ≥ 1} is actually an orthonormal basis of H, where ep(t)
def
= λ

1/2
p cp(t)

for all p ≥ 1. Let us consider P1 the uniform probability measure on [0, 1]. We have
ep − EP1

[ep] ≡ ep and µ1 ≡ 0, where µ1 is the mean element associated with P1. Hence,
{(λp, ep(t)), p ≥ 1} is an eigenbasis of Σ1 the covariance operator associated with P1, where
for all ℓ ≥ 1

λ0 = 1 (21)

λ2ℓ−1 = (4πℓ)−2m (22)

λ2ℓ = (4πℓ)−2m . (23)

Note that the parameter m characterizes the RKHS Hm and its associated reproducing
kernel km(·, ·), and therefore controls the rate of decay of the eigenvalues of the covariance

operator Σ1. Indeed, by Lemma 20, we have d1(Σ1, γn) = C1 γ
−1/2m
n and d2(Σ1, γn) =

C2 γ
−1/4m
n for some constants C1, C2 > 0 as n→ ∞.

Directional alternatives Let us consider the limiting power of our test statistics in the
following setting:

H0 : P1 = Pn
2 against Hn

A : P1 6= Pn
2 , with Pn

2 such that dPn
2/dP1 = 1 +An−1/2cq ,

(24)
where P1 is the uniform probability measure on [0, 1], and cq(t) is defined in (17). In the
case γn ≡ γ, given a significance level α ∈ (0, 1), the associated critical level t1−α is defined
as satisfying

P



2−1/2d−1
2 (Σ1, γ)

∞∑

p=1

(λp(Σ1) + γ)−1λp(Σ1){Z2
p − 1} > t1−α



 = α .
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Note that an,p(γ) = 0 for all p ≥ 1 (from Theorem 6) except for p = q where

an,q(γ) =
√
A
√
n1n2/n2 (λq + γ)−1/2λ1/2

q .
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Figure 1: Evolution of power of KFDA as γ = 1, 10−1, . . . , 10−9, for q-th component alter-
natives with (from left to right) with q = 1, 5, 9.

In order to analyze the behaviour of the power for varying values of γ and for different
values of q, we compute the limiting power, when taking m = 2 in the periodic reproducing
kernel, and for q = 1, 5, 9, and investigate the evolution of the power as a function of the
regularization parameter γ. As Figure 1 shows, our test statistics has trivial power, that is
equal to α, when γ ≫ λq, while it reaches stricly nontrivial power as long as γ ≤ λq. This
motivates the study of the decaying regularization scheme γn → 0 of our test statistics, in
order to incorporate the γ → 0 into our large-sample framework. In the next paragraph,
we shall demonstrate that the version of our test statistics with decaying regularization
parameter γn → 0 reaches high power against a broader class of local alternatives, which we
call non-directional alternatives, where q ≡ qn → ∞, as opposed to directional alternatives
where q was kept constant. Yet, for having nontrivial power with the test statistics T̂ (γn)
against such sequences of local alternatives, the non-directional sequence of local alternatives
have to converge to the null at a slower rate than

√
n.

Non-directional alternatives Now, we consider the limiting power of our test statistics
in the following setting:

H0 : P1 = Pn
2 against Hn

A : P1 6= Pn
2 , with Pn

2 such that dPn
2/dP1 = 1 + ηncqn , (25)

Assume P1 is the uniform probability measure on [0, 1], and consider again the periodic
spline kernel of order 2m. Take {qn}n≥1 a nonnegative nondecreasing sequence of inte-
gers. Now, if the sequence of local alternatives is converging to the null at rate ηn =

(2∆)1/2q
1/4
n n−1/2 for some ∆ > 0, with qn = o(n1/1+4m) for our asymptotic analysis to

hold, then as long as γn ≡ λqn = q−2m
n we have

lim
n→∞

PH
n
A

(
T̂n(γn) > z1−α

)
= PH

n
A

(Z1 + ρ1ρ2∆ > z1−α)

= 1 − Φ [z1−α − ρ1ρ2∆] .
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Testing for Homogeneity with KFDA

λp(Σ) d1(Σ, γ) d2(Σ, γ)

Normal tails O
(
exp(−cp1/d)

)
O
(
logd(1/γ)

)
O
(
logd/2(1/γ)

)

Polynomial tails O
(
p−β

)
for any β > α O

(
γ−1/β

)
O
(
γ−1/2β

)

Table 1: examples of rate of convergence for the gaussian kernels for X = Rp

where we used Lemma 20 together with Theorem 7. On the other hand, if γ−1
n q−2m

n = o(1),
then the limiting power is trivial and equal to α.

Back to the fixed-regularization test statistics T̂n(γ), we may also compute the limiting
power of T̂n(γ) against the non-directional sequence of local alternatives defined in (25)
by taking into account Remark 17 to use Theorem 6. Indeed, as n tends to infinity, since
an,qn(γ) = (ρ1ρ2)

1/2(λqn + γ)−1/2λqnηn, then the fixed-regularization version T̂n(γ) of the
test statistics has trivial power against non-directional alternatives.

Remark 9. We analyzed the limiting power of our test statistics in the specific case where
P1 is the uniform distribution on [0, 1] and the reproducing kernel belongs to the family of
periodic spline kernels. Yet, our findings carry over more general settings as illustrated by
Table 1. Indeed, for general distributions with polynomial decay in the tail and (nonperiodic)
gaussian kernels, the eigenvalues of the covariance operator still exhibit similar behaviour
as in the example treated above.

We now discuss the links between our procedure with the previously proposed Maximum
Mean Discrepancy (MMD) test statistics. We also highlight interesting links with supervised
kernel-based classification.

5.2 Comparison with Maximum Mean Discrepancy

Our test statistics share many similarities with the Maximum Mean Discrepancy test statis-
tics of Gretton et al. (2006). In the case γn ≡ γ , both have limiting null distribution which
may be expressed as an infinite weighted mixture of chi-squared random variables. Yet,

while T̂MMD
n

D−→ C
∑∞

p=1 λp(Z
2
p −1) where T̂MMD

n denotes the test statistics used by MMD,

we have in our case T̂KFDA
n (γn)

D−→ C
∑∞

p=1(λp + γn)−1λp(Z
2
p − 1). Roughly speaking, the

test statistics based on KFDA uniformly weights the components associated with the first
eigenvalues of the covariance operator, and downweights the remaining ones, which allows
to gain greater power for testing by focusing on the user-tunable number of components of
the covariance operator. On the other hand, the test statistics based on MMD is naturally
sensitive to differences lying on the first components, and gets progressively less sensitive
to differences in higher components. Thus, our test statistics based on KFDA allows to
give equal weights to differences lying in (almost) all components, the effective number of
components on the which the test statistics focus on being tuned via the regularization
parameter γn. These differences may be illustrated by considering the behavuour of MMD
against sequences of local alternatives respectively with fixed-frequency and non-directional,
for periodic kernels.

Directional alternatives Let us consider the setting defined in (24). By a similar rea-
soning, we may also compute the limiting power of T̂MMD

n against directional sequences of
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local alternatives, with a periodic spline kernel of order m = 2, for different components
q = 1, 5, 9. Both test statistics KFDA and MMD reach high power when the sequences
of local alternatives lies on the first component. However, the power of MMD tumbles
down for higher-order alternatives whereas the power of KFDA remains strictly nontrivial
for high-order alternatives as long as γ is sufficiently small.
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Figure 2: Comparison of the evolution of power of KFDA versus the power of MMD as
γ = 1, 10−1, . . . , 10−9, for q-th component alternatives with (from left to right)
with q = 1, 5, 9.

Non-directional alternatives Now, consider sequences of local alternatives as defined
in (25). The test statistics MMD does not notice such alternatives. Therefore, MMD has
trivial power equal to α against non-directional alternatives.

5.3 Links with supervised classification

When the sample sizes of each sample are equal, that is when n1 = n2, KFDA is known to be
equivalent to Kernel Ridge Regression (KRR), also referred to as smoothing spline regression
in statistics. In this case, KRR performs a kernel-based least-square regression fit on the
labels, where the samples are respectively labelled −1 and +1. The recentering parameter
d1(Σ1, γn) in our procedure coincides with the so-called degrees of freedom in smoothing
spline regression, which were often advocated to provide a relevant measure of complexity for
model selection (see Efron, 2004). In particular, since the mean-shift in the limiting normal
distribution against local alternatives is lower-bounded by nd−1

1 (Σ1, γn)〈(µ2 − µ1), (Σ1 +
γnI)

−1(µ2 − µ1)〉, this suggests an algorithm for selecting γn and the kernel. For a fixed
degree of freedom d1(Σ1, γn), maximizing the asymptotic mean-shift (which corresponds to
the class separation) is likely to yield greater power. As future work, we plan to investigate,
both theoretically and practically, the use of (single and multiple) kernel learning procedures
as developed by Bach et al. (2004) for maximizing the expected power of our test statistics
in specific applications.

6. Experiments

In this section, we investigate the experimental performances of our test statistic KFDA,
and compare it in terms of power against other nonparametric test statistics.
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Figure 3: Comparison of ROC curves in a speaker verification task

6.1 Speaker verification

We conducted experiments in a speaker verification task Bimbot et al. (2004), on a subset
of 8 female speakers using data from the NIST 2004 Speaker Recognition Evaluation. We
refer the reader to (Louradour et al., 2007) for instance for details on the pre-processing
of data. The figure shows averaged results over all couples of speakers. For each couple
of speaker, at each run we took 3000 samples of each speaker and launched our KFDA-test
to decide whether samples come from the same speaker or not, and computed the type II
error by comparing the prediction to ground truth. We averaged the results for 100 runs
for each couple, and all couples of speaker. The level was set to α = 0.05, and the critical
values were computed by a bootstrap resampling procedure. Since the observations may
be considered dependent within the sequences, and independent between the sequences, we
used a fixed-block variant of the boostrap, which consists in using boostrap samples built by
piecing together several boostrap samples drawn in each sequence. We performed the same
experiments for the Maximum Mean Discrepancy and the Tajvidi-Hall test statistic (TH).
We summed up the results by plotting the ROC-curve for all competing methods. Our
method reaches good empirical power for a small value of the prescribed level (1−β = 90%
for α = 0.05%). Maximum Mean Discrepancy also yields good empirical performance on
this task.

7. Conclusion

We proposed a well-calibrated kernel-based test statistic for testing the homogeneity of two
samples, built on the kernel Fisher discriminant analysis algorithm, for which we proved
that the asymptotic limit distribution under null hypothesis is standard normal distribution
when de regularization parameter decays to zero at a slower rate than n−1/2. Besides, our
test statistic can be readily computed from Gram matrices once a reproducing kernel is
defined, and reaches nontrivial power aqgainst a large class of alternatives under mild con-
ditions on the regularization parameter. Finally, our KFDA-test statistic yields competitive
performance for speaker identification purposes.
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8. Proof of some preliminary results

We preface the proof by some useful results relating the KFDA statistics to kernel indepen-
dent quantities.

Proposition 10. Assume (A1)-(A2). Let P1 and P2 be two probability distributions on
(X ,X), and denote by µ1, µ2 the associated mean (see (1)). Let Q be a probability dominating
P1 and P2, and let Σ be the associated covariance operator (see (2)). Then,

∥∥∥∥
dP1

dQ
− dP2

dQ

∥∥∥∥
L2(Q)

<∞,

if and only if the vector (µ2 − µ1) ∈ H belongs to the range of the square root Σ1/2. In
addition,

〈
µ2 − µ1,Σ

−1(µ2 − µ1)
〉
H

=

∥∥∥∥
dP1

dQ
− dP2

dQ

∥∥∥∥
2

L2(Q)

. (26)

Proof. Denote by {λk}k≥1 and {ek}k≥1 the strictly positive eigenvalues and the correspond-
ing eigenvectors of the covariance operator Σ, respectively. For k ≥ 1, set

fk = λ
−1/2
k {ek − Qek} . (27)

By construction, for any k, ℓ ≥ 1,

λkδk,ℓ = 〈ek,Σeℓ〉H = 〈ek − Qek, eℓ − Qeℓ〉L2(Q) = λ
1/2
k λ

1/2
ℓ 〈fk, fℓ〉L2(Q) ,

where δk,ℓ is Kronecker’s delta. Hence {fk}k≥1 is an orthonormal system of L2(Q). Note
that µ2 − µ1 belongs to the range of Σ1/2 if and only if

(a) 〈µ2 − µ1, g〉H = 0 for all g in the null space of Σ,

(b)
〈
µ1 − µ2,Σ

−1(µ1 − µ2)
〉
H

def
=
∑∞

p=1 λ
−1
p 〈ep, (µ1 − µ2)〉2H <∞.

Consider first condition (a). For any g ∈ H, il follows from the definitions that

〈µ2 − µ1, g〉H =

∫
(dP1 − dP2) g =

∫
(dP1 − dP2) (g − Qg)

=

〈
dP1

dQ
− dP2

dQ
, g − Qg

〉

L2(Q)

.

If g belongs to the null space of Σ, then ‖g−Qg‖L2(Q) = 0, and the previous relation implies
that 〈µ2 − µ1, g〉H = 0. Consider now (b).

∞∑

p=1

λ−1
p 〈ep, (µ1 − µ2)〉2H =

∞∑

p=1

λ−1
p

(∫
{dP1(x) − dP2(x)}ep(x)

)2

=
∞∑

p=1

〈
dP1

dQ
− dP2

dQ
, fp

〉2

L2(Q)

≤
∥∥∥∥
dP1

dQ
− dP2

dQ

∥∥∥∥
2

L2(Q)

. (28)
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In order to prove the equality, we simply notice that because of the density of the RKHS
in L2(Q), then {fk}k≥1 is a complete orthonormal basis of the space of functions L2

0(Q),
defined as

L2
0(Q)

def
=

{
g ∈ L2(Q) ,

∫
(g − Qg)2dQ > 0 and Qg = 0

}
. (29)

Lemma 11. Assume (A1)-(A2). Let P1 and P2 two probability distributions on (X ,X) such
that P2 ≪ P1.

Denote by Σ1 and Σ2 the associated covariance operators. Then, for any γ > 0,

∥∥∥I − Σ
−1/2
1 Σn

2Σ
−1/2
1

∥∥∥
2

HS
≤ 4

∥∥∥∥
dP2

dP1
− 1

∥∥∥∥
2

L2(P1)

, (30)

∣∣Tr{(Σ1 + γI)−1(Σ2 − Σ1)}
∣∣ ≤ 2d2(Σ1, γ)

∥∥∥∥
dP2

dP1
− 1

∥∥∥∥
L2(P1)

. (31)

where d2(Σ1, γ) is defined in (6).

Proof. Denote by {λk}k≥1 and {ek}k≥1 the strictly positive eigenvalues and the correspond-
ing eigenvectors of the covariance operator Σ1. Note that 〈ek,Σ1eℓ〉 = λkδk,ℓ for all k and

ℓ. Let us denote fk = λ
−1/2
k {ek − P1ek}. Then, we have 〈fk, fℓ〉L2(P1)

= δk,ℓ. Note that

∞∑

k,ℓ=1

{
δk,ℓ − λ

−1/2
k λ

−1/2
ℓ 〈ek,Σ2eℓ〉H

}2

=
∞∑

k,ℓ=1

{〈
fk,

(
1 − dP2

dP1

)
fℓ

〉

L2(P1)

+ λ
−1/2
k λ

−1/2
ℓ 〈µ2 − µ1, ek〉H 〈µ2 − µ1, eℓ〉H

}2

.

Then, using that (a+ b)2 ≤ 2(a2 + b2), and (28) in Proposition 10 with Σ = Σ1, we obtain

∥∥∥I − Σ
−1/2
1 Σn

2Σ
−1/2
1

∥∥∥
2

HS
≤ 4

∥∥∥∥
dP2

dP1
− 1

∥∥∥∥
2

L2(P1)

. (32)

Denote, for all p, q ≥ 1

εp,q
def
=
〈
ep, (Σ

−1/2
1 Σ2Σ

−1/2
1 − I)eq

〉
. (33)

By applying the Hölder inequality, and using (30), we get

∣∣Tr{(Σ1 + γI)−1(Σ2 − Σ1)}
∣∣ =

∞∑

p=1

∣∣〈ep, (Σ1 + γI)−1Σ1ep
〉
εp,p

∣∣

≤




∞∑

p=1

〈
ep, (Σ1 + γI)−1Σ1ep

〉2



1/2


∞∑

p=1

ε2p,p




1/2

≤ 2d2(Σ1, γ)

∥∥∥∥
dP2

dP1
− 1

∥∥∥∥
L2(P1)

,

which completes the proof of (31).
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Proposition 12. Assume (A1). Let {Xn
1 , . . . ,X

n
n} be a triangular array of i.i.d random

variables, whose mean element and covariance operator are respectively (µn,Σn). If, for all
n all the eigenvalues λp(Σ

n) of Σn are non-negative, and if there exists C > 0 such that for

all n we have
∑∞

p=1 λ
1/2
p (Σn) < C, then

∑∞
p=1 |λp(Σ̂ − Σn)| = OP (n−1/2).

Proof. Lemma 21 shows that, for any orthonormal basis {ep}p≥1 in the RKHS H:

∞∑

p=1

|λp(Σ̂ − Σn)| ≤
∞∑

p=1

∥∥∥(Σ̂ − Σn)ep

∥∥∥
H
.

We take the orthonormal family of eigenvectors {ep}p≥1 of the covariance operator Σn

(associated to the eigenvalues λp(Σ
n) ranked in decreasing order). Then, it suffices to show

that
∑∞

p=1

∥∥∥(Σ̂ − Σn)ep

∥∥∥
H

= OP (n−1/2). Note that,

(
Σ̂ − Σn

)
ep = n−1

n∑

i=1

ζp,n,i −
(
n−1

n∑

i=1

k(Xi, ·)
) (

n−1
n∑

i=1

ep,n(Xi)

)
,

where ep,n = ep − En[ep(X1)] and

ζp,n,i
def
= k(Xi, ·)ep,n(Xi) − En {k(X1, ·)ep,n(X1)}

By the Minkowski inequality,

{
En
∥∥∥
(
Σ̂ − Σn

)
ep

∥∥∥
2

H

}1/2

≤
{

En

∥∥∥∥∥n
−1

n∑

i=1

ζ2
p,n,i

∥∥∥∥∥

}1/2

+




En




∥∥∥∥∥n

−1
n∑

i=1

k(Xi, ·)
∥∥∥∥∥

2

H

∣∣∣∣∣n
−1

n∑

i=1

ep,n(Xi)

∣∣∣∣∣

2









1/2

= A1 +A2 .

We consider these two terms separately. Consider first A1. We have

A2
1 = n−1En ‖ζp,n,i‖2

H ≤ n−1En
{
‖k(X1, ·)‖2

H |ep,n(X1)|2
}
≤ n−1|k|∞En

[
|ep,n(X1)|2

]
.

Consider now A2. Since
∥∥n−1

∑n
i=1 k(Xi, ·)

∥∥2

H
≤ |k|∞, we have

A2
2 ≤ n−1|k|∞En

[
|ep,n(X1)|2

]
.

This shows, using the Minkowski inequality, that




En




∞∑

p=1

∥∥∥(Σ̂ − Σn)ep

∥∥∥
H




2



1/2

≤ 2|k|1/2
∞ n−1/2

∞∑

p=1

{
En
[
|ep,n(X1)|2

]}1/2
.

Since by assumption
∑∞

p=1

{
En
[
|ep,n(X1)|2

]}1/2
=
∑∞

p=1 λ
1/2
p (Σn) < ∞, the proof is con-

cluded.

18



Testing for Homogeneity with KFDA

Corollary 13. Assume (A1). Let {X(1)
1,n1

, . . . ,X
(1)
n1,n1

} and {X(2)
1,n2

, . . . ,X
(2)
n2,n2

} be two tri-
angular arrays, whose mean elements and covariance operators are respectively (µn

1 ,Σ
n
1 ) and

(µn
2 ,Σ

n
2 ), where n1/n→ ρ1 and n2/n → ρ2 as n tends to infinity. If supn>0

∑∞
p=1 λ

1/2
p (Σn

a) <
∞, then

∞∑

p=1

|λp(Σ̂W − ΣW )| = OP (n−1/2) . (34)

In addition, we also have
∥∥∥Σ̂W − ΣW

∥∥∥
HS

= OP (n−1/2) . (35)

Proof. Since Σ̂W − ΣW = n1n
−1(Σ̂1 − Σ1) + n2n

−1(Σ̂2 − Σn
2 ), then

∞∑

p=1

∥∥∥(Σ̂W − ΣW )ep

∥∥∥
H
≤ n1n

−1
∞∑

p=1

∥∥∥(Σ̂1 − Σ1)ep

∥∥∥
H

+ n2n
−1

∞∑

p=1

∥∥∥(Σ̂2 − Σn
2 )ep

∥∥∥
H
,

and applying twice Proposition 12 leads to (34). Now, using that

∥∥∥Σ̂W − ΣW

∥∥∥
HS

≤
∞∑

p=1

|λp(Σ̂W − ΣW )| , (36)

then (35) follows as a direct consequence of (34).

9. Asymptotic approximation of the test statistics

The following proposition shows that in the asymptotic study of our test statistics, we can
replace most empirical quantities by population quantities. For ease of notation, we shall
denote µ2 − µ1 by δ. µ̂2 − µ̂1 by δ̂.

Proposition 14. Assume (C). If

γn + d−1
2 (Σ1, γn)d1(Σ1, γn)γ−1

n n−1/2 → 0

d−1
2 (Σ1, γn)nη2

n = O(1) and d−1
2 (Σ1, γn)d1(Σ1, γn)ηn → 0 ,

then, T̂n(γn) = T̃n(γn) + oP (1), where

T̃n(γ)
def
=

(n1n2/n)
∥∥∥(Σ1 + γI)−1/2 δ̂

∥∥∥
2

H
− d1(Σ1, γ)

√
2d2(Σ1, γ)

. (37)

Proof. Notice that

|d2(Σ̂W , γn) − d2(Σ1, γn)| ≤ |d2(Σ̂W , γn) − d2(ΣW , γn)| + |d2(ΣW , γn) − d2(Σ1, γn)| .

Then, on the one hand, using Eq. (77) for r = 2 in Lemma 23 with S = ΣW and ∆ =

Σ̂W −ΣW and Eq. (34) in Corollary 13, we get
∣∣∣d2(Σ̂W , γn) − d2(ΣW , γn)

∣∣∣ = OP (γ−1
n n−1/2).

On the other hand, using Eq. (79) in Lemma 23 with S = Σ1 and ∆ = n2n
−1(Σn

2 −
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Σ1), we get d2(ΣW , γn) − d2(Σ1, γn) = O(ηn). Furthermore, similar reasoning, using
Eq. (77) and Eq. (78) again in Lemma 23 allows to prove that d−1

2 (Σ1, γn)d1(Σ̂W , γn) =
d−1
2 (Σ1, γn)d1(Σ1, γn) + oP (1). Next, we shall prove that

∥∥∥(Σ̂W + γnI)−1/2δ̂
∥∥∥

2

H
=
∥∥∥(Σ1 + γnI)−1/2δ̂

∥∥∥
2

H
+n−1OP

{
(d1(Σ1, γn) + nη2

n)(γ−1
n n−1/2 + ηn)

}
.

(38)
Using straightforward algebra, we may write

∣∣∣∣
∥∥∥(Σ̂W + γnI)−1/2δ̂

∥∥∥
2

H
−
∥∥∥(Σ1 + γnI)−1/2δ̂

∥∥∥
2

H

∣∣∣∣ ≤ A1A2 {B1 +B2} , (39)

with

A1
def
=
∥∥∥(Σ1 + γnI)−1/2δ̂

∥∥∥
H
, B1

def
=
∥∥∥(Σ̂W + γnI)−1/2(Σ̂W − ΣW )(Σ1 + γnI)−1/2

∥∥∥ ,

A2
def
=
∥∥∥(Σ̂W + γnI)−1/2δ̂

∥∥∥
H
, B2

def
=
∥∥∥(Σ̂W + γnI)−1/2(Σn

2 − Σ1)(Σ1 + γnI)−1/2
∥∥∥ .

We now prove that

A2
1 = OP (n−1d1(Σ1, γn) + η2

n) , (40)

A2
2 = OP (n−1d1(Σ1, γn) + η2

n) . (41)

We first consider (40). Note that E

(
δ̂ ⊗ δ̂

)
= δn ⊗ δn + n−1

1 Σ1 + n−1
2 Σn

2 , which yields

E‖(Σ1 + γnI)−1/2δ̂‖2 = Tr
{

(Σ1 + γnI)−1E

(
δ̂ ⊗ δ̂

)}
=
〈
δn, (Σ1 + γnI)−1δn

〉
H

+
n

n1n2
Tr
{
(Σ1 + γnI)−1Σ1

}
+ n−1

2 Tr
{
(Σ1 + γnI)−1 (Σn

2 − Σ1)
}
. (42)

Using Proposition 10 with Σ = Σ1 together with Assumption (C), we may write

∣∣〈δn, (Σ1 + γnI)−1δn
〉
H

∣∣ ≤
∣∣〈δn,Σ−1

1 δn
〉
H

∣∣ ≤
∥∥∥∥
dPn

2

dP1
− 1

∥∥∥∥
2

L2(P1)

= η2
n .

Next, applying Lemma 11, we obtain

∣∣Tr{(Σ1 + γnI)−1(Σn
2 − Σ1)}

∣∣ = O(d2(Σ1, γn)ηn) ,

which yields

E‖(Σ1 + γnI)−1/2δ̂‖2 = (n/n1n2)d1(Σ1, γn) {1 +O(ηn)} +O(η2
n) . (43)

Finally, we get (40) by the Markov inequality. Now, to prove (41), it suffices to observe that∥∥∥(Σ̂W + γnI)−1(Σ1 + γnI)
∥∥∥ = 1+oP (1), and then conclude from (40). Next, using the upper-

bound
∥∥(Σ + γnI)−1/2

∥∥ ≤ γ
−1/2
n , and Corollary 13 which gives

∥∥∥Σ̂W − ΣW

∥∥∥
HS

= OP (n−1/2),

we get
B1 = OP (γ−1

n n−1/2) . (44)
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Finally, under Assumption (C), using Eq. (30) in Lemma 11, we obtain

B2 = OP (ηn) . (45)

The proof of (38) is concluded by plugging (40-41-44-45) into (39).

Remark 15. For the sake of generality, we proved the approximation result under the
assumptions γn + d−1

2 (Σ1, γn)d1(Σ1, γn)γ−1
n n−1/2 → 0 on the one hand, d−1

2 (Σ1, γn)nη2
n =

O(1) and d−1
2 (Σ1, γn)d1(Σ1, γn)ηn → 0 on the other hand. However, in the case γn ≡ γ, the

approximation is still valid if nη3
n → 0, which allows to use this approximation to derive the

limiting power of our test statistics against non-directional sequences of local alternatives
as in (25).

10. Proof of Theorems 6-7

For ease of notation, in the subsequent proofs, we shall often omit Σ1 in quantities involving
it. Hence, from now on, λp, λq, d2 stand for λp(Σ1), λq, d2(Σ1, γ). Define

Yn,p,i
def
=






(
n2

n1n

)1/2 (
ep(X

(1)
i ) − E[ep(X

(1)
1 )]

)
1 ≤ i ≤ n1 ,

−
(

n1

n2n

)1/2 (
ep(X

(2)
i−n1

) − E[ep(X
(2)
1 )]

)
n1 + 1 ≤ i ≤ n .

(46)

The following lemma gives formulas for the moments of Yn,p,i, used throughout the actual
proof of the main results.

Lemma 16. Consider {Yn,p,i}1≤i≤n,p≥1 and as defined respectively in (46) . Then

n∑

i=1

E[Yn,p,iYn,q,i] = λ1/2
p λ1/2

q {δp,q + n1n
−1εp,q} (47)

Cov(Y 2
n,p,i, Y

2
n,q,i) ≤ Cn−2|k|∞λ1/2

p λ1/2
q (1 + εp,p)

1/2(1 + εq,q)
1/2 . (48)

Proof. The first expressions are proved by elementary calculations from

E[Yn,p,1Yn,q,1] =
n2

n1n
δp,qλp(Σ1)

E[Yn,p,1Yn,q,n1+1] = 0, since X
(1)
1 ⊥ X

(2)
1

E[Yn,p,n1+1Yn,q,n1+1] =
n1

n2n
λ1/2

p λ1/2
q

{
δp,q +

〈
ep, (Σ

−1/2
1 Σn

2Σ
−1/2
1 − I)eq

〉}
.

Next, notice that, for all p ≥ 1, we have by the reproducing property and the the Cauchy-
Schwarz inequality

|ep(x)| = 〈ep, k(x, ·)〉H ≤ ‖ep‖H ‖k(x, ·)‖H ≤ |k|1/2
∞ .

which yields
∣∣Cov(Y 2

n,p,i, Y
2
n,q,i)

∣∣ ≤ E[Y 2
n,p,iY

2
n,q,i] + E[Y 2

n,p,i]E[Y 2
n,q,i]

≤ CE1/2[Y 4
n,p,i]E

1/2[Y 4
n,q,i]

≤ Cn−1|k|∞E1/2[Y 2
n,p,i]E

1/2[Y 2
n,q,i]

≤ Cn−2|k|∞λ1/2
p λ1/2

q (1 + εp,p)
1/2(1 + εq,q)

1/2 .
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10.1 Proof of Theorem 6

Proof. The proof is adapted from (Serfling, 1980, pages 195-199). By Proposition 14,

T̂n(γ) =
V̂n,∞(γ) − d1(Σ1, γ)√

2d2(Σ1, γ)
+ oP (1) ,

where

V̂n,∞(γ)
def
=

∞∑

p=1

(λp + γ)−1

(
Sn,p +

√
n1n2

n
〈δn, ep〉

)2

,

with

Sn,p
def
=

√
n1n2

n

〈
δ̂ − δn, ep

〉
=

n∑

i=1

Yn,p,i . (49)

Now put

V̂n,N (γ)
def
=

N∑

p=1

(λp + γ)−1

(
Sn,p +

√
n1n2

n
〈δn, ep〉

)2

. (50)

Because {Yn,p,i} are zero mean, independent, Lemma 16-Eq. (47) shows that, as n goes

to infinity,
∑n

i=1 Cov(Yn,p,i, Yn,q,i) → λ
1/2
p λ

1/2
q δp,q . In addition, the Lyapunov condition

is satisfied, since using (48),
∑n

i=1 E[Y 4
n,p,i] ≤ Cn−1λp. We may thus apply the central

limit theorem for multivariate triangular arrays, which yields Sn,N
D−→ N (0,ΛN ) where

Sn,N = (Sn,1, . . . , Sn,N ) and (ΛN )p,q = δp,qλp, 1 ≤ p, q ≤ N . Fix u and let ǫ > 0 be
given. Then, using the version of the continuous mapping theorem stated in (van der
Vaart, 1998, Theorem 18.11), with the sequence of quadratic functions {gn}n≥1 defined as
[ gn : TN = (T1, . . . , TN ) 7→ (TN + an)T [diag(α1, . . . , αN )](TN + an) ], we may write

|E[eiuV̂n,N (γ)] − E[eiuVn,N (γ)]| ≤ ǫ , (51)

with Vn,N (γ)
def
=
∑N

p=1(λp + γ)−1λp(Zp + an,p)
2, where {Zp}p≥1 are independent standard

normal random variables, defined on a common probability space, and {an,p}p≥1 are defined
in (13). Next, we prove that limN→∞ lim supn→∞ E[(V̂n,∞(γ) − V̂n,N (γ))2] = 0. By the
Rosenthal inequality (see (Petrov, 1995, theorem 2.12), there exists a constant C such that
E[S4

n,p] ≤ C(n−1λp + λ2
p). The Minkowski inequality then leads to

E1/2[(V̂n,∞(γ) − V̂n,N (γ))2]

≤
∞∑

p=N+1

(λp + γ)−1 E1/2

{(
Sn,p +

√
n1n2

n
〈δn, ep〉

)4
}

≤ C




γ
−1

∞∑

p=N+1

λ1/2
p (n−1/2 + λ1/2

p ) + n

∞∑

p=N+1

(λp + γ)−1 〈δn, ep〉2





≤ C




γ
−1

∞∑

p=N+1

λ1/2
p + n

∞∑

p=N+1

(λp + γ)−1 〈δn, ep〉2



+ o(1) .
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Notice that, using (28) in Proposition 10 with Σ = Σ1, we have

n

∞∑

p=N+1

(λp + γ)−1 〈δn, ep〉2 ≤ nγ−1λN+1

∞∑

p=1

λ−1
p 〈δn, ep〉2 ≤ γ−1λN+1 nη

2
n , (52)

which goes to zero uniformly in n as N → ∞. Therefore, under Assumptions (B1) and (C),
we may choose N large enough so that

|E[eiuV̂n,∞(γ)] − E[eiuV̂n,N (γ)]| < ǫ . (53)

Similar calculations allow to prove that E[(Vn,∞(γ) − Vn,N(γ))2] = o(1), which yields that
for all ǫ > 0, for a sufficiently large N , we have

|E[eiuVn,∞(γ)] − E[eiuVn,N (γ)]| < ǫ . (54)

Finally, combining (51) and (53) (54), by the triangular inequality, we have proved that,
for ǫ > 0, we may choose a sufficiently large N , such that

|E[eiuV̂n,∞(γ)] − E[eiuVn,∞(γ)]| < ǫ , (55)

and the proof is concluded by invoking Lévy’s continuity theorem (Billingsley, 1995, Theo-
rem 26.3).

Remark 17. For the sake of generality, we proved the result under the assumption that
nη2

n = O(1). However, if there exists a nonnegative nondecreasing sequence of integers
{qn}n≥1 such that for all n we have

∑∞
p=1(λp + γ)−1 〈δn, ep〉2 = (λqn + γ)−1 〈δn, eqn〉2, then

the truncation argument used in (52) is valid under a weaker assumption. In particular,
when considering non-directional sequences of local alternatives as in (25), it suffices to take
N → ∞ such that N−1qn = o(1), which for n sufficiently large allows to get n

∑∞
p=N+1(λp+

γ)−1 〈δn, ep〉2 = 0 in place of (52) in the proof. The rest of the proof follows similarly.

The following lemma highlights the main difference between the asymptotics respectively
when γn ≡ γ and γn → 0, which is that d1(Σ1, γn) → ∞ and d2(Σ1, γn) → ∞ in the case
γn → 0, whereas they acted as irrelevant constants in the case γn ≡ γ.

Lemma 18. If γn = o(1), then, d1(Σ1, γn) → ∞, and d2(Σ1, γn) → ∞, as n tends to
infinity.

Proof. Since the function x 7→ x/(x + γn) is monotone increasing, for any λ ≥ γn, λ/(λ +
γn) ≥ 1/2. Therefore,

n∑

p=1

λp(Σ1)

λp(Σ1) + γn
≥ 1

2
# {k ≤ n : λp(Σ1) ≥ γn} ,

and the proof is concluded by noting that since γn → 0, # {k : λp(Σ1) ≥ γn} → ∞, as n
tends to infinity.
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The quantities λp(Σ1), λq(Σ1), d1(Σ1, γn), d2(Σ1, γn) being pervasive in the subsequent
proofs, they shall be respectively be abbreviated as λp, λq, d1,n, d2,n. Our test statistics
writes as T̃n = (

√
2d2,n)−1An with

An
def
=

n1n2

n

∥∥∥(Σ1 + γnI)−1/2δ̂
∥∥∥

2
− d1,n . (56)

Using the quantities Sn,p and Yn,p,i defined respectively in (49) and (46), An may be ex-
pressed as

An =

∞∑

p=1

(λp + γn)−1

(
Sn,p +

√
n1n2

n
〈δn, ep〉

)2

− d1,n

=
∞∑

p=1

(λp + γn)−1

{
S2

n,p − ES2
n,p + 2

√
n1n2

n
Sn,p 〈δn, ep〉

}

+
n1n2

n

〈
δn, (Σ1 + γnI)−1δn

〉
+

∞∑

p=1

(λp + γn)−1 {
ES2

n,p − λp

}
.

Since, by Lemma 16 Eq. (47), ES2
n,p−λp = (n1/n)λpεp,p, where εp,p is defined in (33), then,

by Hölder inequality, we obtain

∣∣∣∣∣∣

∞∑

p=1

(λp + γn)−1 {
ES2

n,p − λp

}
∣∣∣∣∣∣
≤




∞∑

p=1

(λp + γn)−2 λ2
p




1/2


∞∑

p=1

ε2p,p




1/2

= O(d2,nηn) .

We now decompose

∞∑

p=1

(λp + γn)−1

{
S2

n,p − ES2
n,p + 2

√
n1n2

n
Sn,p 〈δn, ep〉

}
= Bn + 2Cn + 2Dn ,

where Bn and Cn and Dn are defined as follows

Bn
def
=

∞∑

p=1

n∑

i=1

{
Y 2

n,p,i − EY 2
n,p,i

}
, (57)

Cn
def
=

∞∑

p=1

(λp + γn)−1
n∑

i=1

Yn,p,i

√
n1n2

n
〈δn, ep〉 , (58)

Dn
def
=

∞∑

p=1

(λp + γn)−1
n∑

i=1

Yn,p,i






i−1∑

j=1

Yn,p,j




 . (59)

The proof is in three steps. We will first show that Bn is negligible, then that Cn is negligible,
and finally establish a central limit theorem for Dn.
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Step 1: Bn = oP (1). The proof amounts to compute the variance of this term. Since the
variables Yn,p,i and Yn,q,j are independent if i 6= j, then Var(Bn) =

∑n
i=1 vn,i, where

vn,i
def
= Var




∞∑

p=1

(λp + γn)−1{Y 2
n,p,i − E[Y 2

n,p,i]}





=

∞∑

p,q=1

(λp + γn)−1(λq + γn)−1Cov(Y 2
n,p,i, Y

2
n,q,i) .

Using Lemma 16, Eq. (48), we get

n∑

i=1

vn,i ≤ Cn−1




∞∑

p=1

(λp + γn)−1λ1/2
p (1 + εp,p)

1/2




2

≤ Cn−1γ−2
n




∞∑

p=1

λ1/2
p




2

{1 +O(ηn)}

where the RHS above is indeed negligible, since by assumption we have γ−1
n n−1/2 → 0 and∑∞

p=1 λ
1/2
p <∞.

Step 2: Cn = oP (d2
2,n). Again, the proof essentially consists in computing the variance of

this term, and then conclude by the Markov inequality. As previously, since the variables
Yn,p,i and Yn,q,j are independent if i 6= j, then Var(Cn) =

∑n
i=1 un,i, where

un,i
def
=

∞∑

p=1

(λp + γn)−2E[Y 2
n,p,i]

n1n2

n
〈δn, ep〉2

+

∞∑

p,q=1

(λq + γn)−1(λq + γn)−1E[Yn,p,iYn,q,i]
n1n2

n
〈δn, ep〉 〈δn, eq〉 .

Moreover, note that E[Y 2
n,p,i] ≤ Cn−1λp, and under Assumption (C1)

n1n2

n
d−2
2,n

∞∑

p=1

(λp + γn)−2λp 〈δn, ep〉2

=
n1n2

n
d−2
2,n

∞∑

p=1

(λp + γn)−1 〈δn, ep〉2 ≤ d−1
2,n

n
〈
δn, (Σ1 + γn)−1δn

〉

d2,n
= o(1) .

Similarly, for p 6= q we have |E[Yn,p,iYn,q,i]| ≤ Cn−1λ
1/2
p λ

1/2
q |εp,q|, which implies that

n1n2

n
d−2
2,n

∑

p 6=q

(λp + γn)−1(λq + γn)−1λ1/2
p λ1/2

q | 〈δn, ep〉 || 〈δn, eq〉 ||εp,q|

≤ n1n2

n
d−2
2,n




∞∑

p=1

(λp + γn)−2λp 〈δn, ep〉2







∑

p 6=q

ε2p,q




1/2

= o(1) .
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Step 3: d−1
2,nDn

D−→ N (0, 1/2). We use the central limit theorem (CLT) for triangular array
of martingale difference (Hall and Heyde, 1980, Theorem 3.2). For = 1, . . . , n, denote

ξn,i
def
= d−1

2,n

∞∑

p=1

(λp + γn)−1Yn,p,iMn,p,i−1 , where Mn,p,i
def
=

i∑

j=1

Yn,p,j , (60)

and let Fn,i = σ (Yn,p,j, p ∈ {1, . . . , n}, j ∈ {0, . . . , i}). Note that, by construction, ξn,i is a
martingale increment, that is E [ξn,i | Fn,i−1] = 0. The first step in the proof of the CLT is
to establish that

s2n =
n∑

i=1

E
[
ξ2n,i

∣∣Fn,i−1

] P−→ 1/2 . (61)

The second step of the proof is to establish the negligibility condition. We invoke (Hall

and Heyde, 1980, Theorem 3.2), which requires to establish that max1≤i≤n |ξn,i| P−→ 0
(smallness) and E(max1≤i≤n ξ

2
n,i) is bounded in n (tightness), where ξn,i is defined in (60).

We will establish the two conditions simultaneously by checking that

E

(
max
1≤i≤n

ξ2n,i

)
= o(1) . (62)

Splitting the sum s2n, between diagonal terms En, and off-diagonal terms Fn, we have

En = d−2
2,n

∞∑

p=1

(λp + γn)−2
n∑

i=1

M2
n,p,i−1E[Y 2

n,p,i] , (63)

Fn = d−2
2,n

∑

p 6=q

(λp + γn)−1(λq + γn)−1
n∑

i=1

Mn,p,i−1Nn,q,i−1E[Yn,p,iYn,q,i] . (64)

Consider first the diagonal terms En. We first compute its mean. Note that E[N2
n,p,i] =

∑i
j=1 E[Y 2

n,p,j]. Using Lemma 16, we get

∞∑

p=1

(λp + γn)−2
n∑

i=1

i−1∑

j=1

E[Y 2
n,p,j]E[Y 2

n,p,i]

=
1

2

∞∑

p=1

(λp+γn)−2






[
n∑

i=1

E[Y 2
n,p,i]

]2

−
n∑

i=1

E2[Y 2
n,p,i]




 =
1

2
d2
2,n

{
1 +O(d−1

2,nηn) +O(n−1)
}
.

Therefore, E[En] = 1/2 + o(1). Next, we check that En − E[En] = oP (1) is negligible. We
write En − E[En] = d−2

2,n

∑n
p=1(λp + γn)−2Qn,p, with

Qn,p
def
=

n∑

i=1

E[Y 2
n,p,i+1]

{
N2

n,p,i − E
[
N2

n,p,i

]}
. (65)
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Using this notation,

Var[En] = d−4
2,n

n∑

p=1

(λp + γn)−4E[Q2
n,p]

+ 2d−4
2,n

∑

1≤p<q≤n

(λp + γn)−2(λq + γn)−2E[Qn,pQn,q] . (66)

We will establish that

|E[Qn,pQn,q]| ≤ C
{
λ2

pλ
2
q(δp,q + |εp,q|)2 + n−1λ3/2

p λ3/2
q

}
. (67)

Plugging this bound into (66) and using that λp/(λp + γn) ≤ 1 and d2,n → ∞ as n tends to
infinity, yields under Assumption (B1)

Var[En] ≤
{
d−2
2,n + n−1γ−1

n d−2
2,n

}
+ C




d
−2
2,nηn + n−1d−4

2,n




∞∑

p=1

λp




2

 ,

showing that Var[En] = o(1), and hence that En − E[En] = oP (1). To show (67), note first
that {M2

n,p,i − E[M2
n,p,i]}1≤i≤n is a Fn-adapted martingale. Denote by νn,p,i its increment

defined recursively as follows: νn,p,1 = N2
n,p,1 − E[N2

n,p,1] and for i ≥ 1 as

νn,p,i = M2
n,p,i − E[M2

n,p,i] −
{
N2

n,p,i−1 − E[N2
n,p,i−1]

}
= Y 2

n,p,i − E[Y 2
n,p,i] + 2Yn,p,iMn,p,i−1 .

Using the summation by part formula, Qn,p may be expressed as

Qn,p =

n−1∑

i=1

νn,p,i




n∑

j=i+1

E[Y 2
n,p,j]



 .

Using Lemma 16, Eq. (47), we obtain for any 1 ≤ p ≤ q ≤ n,

|E[Qn,pQn,q]| ≤




n∑

j=1

E[Y 2
n,p,j]








n∑

j=1

E[Y 2
n,q,j]




∣∣∣∣∣

n−1∑

i=1

E[νn,p,iνn,q,i]

∣∣∣∣∣

≤ Cλpλq(1 +O(ηn))

∣∣∣∣∣

n−1∑

i=1

E[νn,p,iνn,q,i]

∣∣∣∣∣ . (68)

We get

E[νn,p,iνn,q,i] = Cov(Y 2
n,p,i, Y

2
n,q,i) + 4E {Yn,p,iYn,q,i}E {Mn,p,i−1Nn,q,i−1} .

First, applying Eq. (48) in Lemma 16 gives

n−1∑

i=1

Cov(Y 2
n,p,i, Y

2
n,q,i) ≤ Cn−1λ1/2

p λ1/2
q . (69)
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Since E[Mn,p,i−1Nn,q,i−1] =
∑i−1

j=1 E[Yn,p,jYn,q,j], Lemma 16, Eq. (47) shows that

∣∣∣∣∣

n∑

i=1

E[Yn,p,iYn,q,i]E[Mn,p,i−1Nn,q,i−1]

∣∣∣∣∣ =
1

2

∣∣∣∣∣∣






(
n∑

i=1

E[Yn,p,iYn,q,i]

)2

−
n∑

i=1

E2[Yn,p,iYn,q,i]






∣∣∣∣∣∣

≤ Cλpλq(δp,q + |εp,q|)2 . (70)

Eq. 67 follows by plugging (69) and (70) into (68). We finally consider Fn defined in (64).
We will establish that Fn = oP (1). Using Lemma 16-Eq. (47),

E1/2[M2
n,p,i−1]E

1/2[N2
n,q,i−1] ≤ Cλ1/2

p λ1/2
q ,

and |E[Yn,p,iYn,q,i]| ≤ Cn−1λ
1/2
p λ

1/2
q εp,q, the Minskovski inequality implies that

{E|Fn|2}1/2 ≤ Cd−2
2,n

∑

p 6=q

(λp + γn)−1(λq + γn)−1λpλqεp,q ≤ Cηn ,

showing that Fn = o(1). This concludes the proof of Eq. (61).

We finally show Eq. (62). Since |Yn,p,i| ≤ n−1/2|k|1/2
∞ P-a.s we may bound

max
1≤i≤n

|ξn,i| ≤ Cd−1
2,nn

−1/2
∞∑

p=1

(λp + γn)−1 max
1≤i≤n

|Mn,p,i−1| . (71)

Then, the Doob inequality implies that E1/2[max1≤i≤n |Mn,p,i−1|2] ≤ E1/2[N2
n,p,n−1] ≤

Cλ
1/2
p . Plugging this bound in (71), the Minkowski inequality

E1/2

(
max
1≤i≤n

ξ2n,i

)
≤ C




d
−1
2,nγ

−1
n n−1/2

∞∑

p=1

λ1/2
p




 ,

and the proof is concluded using the fact that γn + d−1
2 (Σ1, γn)d1(Σ1, γn)γ−1

n n−1/2 → 0 and
Assumption (B1).

11. Proof of Theorem 5

Proof of Proposition 4. We denote by Σ = ρ1Σ1 + ρ2Σ2 + ρ1ρ2δ ⊗ δ the covariance oper-
ator associated with the probability density p = ρ1p1 + ρ2p2, and δ = µ2 − µ1. Then,
Proposition 10 applied to the probability densities p1, p2 and p = ρ1p1 + ρ2p2 shows that〈
δ,Σ−1δ

〉
H

=
∫ (p1−p2)2

ρ1p1+ρ2p2
dρ. Thus

ρ1ρ2

〈
δ,Σ−1δ

〉
H

=
1

2

∫ ρ1

ρ2
(p1 − p)2 + ρ2

ρ1
(p2 − p)2

p
dρ

=
1

2ρ1ρ2

∫
ρ2
1p

2
1 + ρ2

2p
2
2

p
dρ− 1

2

ρ2

ρ1
− 1

2

ρ1

ρ2

=
1

2ρ1ρ2
− 1

2

ρ2

ρ1
− 1

2

ρ1

ρ2
−
∫
p1p2

p
dρ = 1 −

∫
p1p2

p
dρ .
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The previous inequality shows that ρ1ρ2

〈
δ,Σ−1δ

〉
H
< 1 is satisfied when

∫
p1p2/pdρ 6= 0.

Therefore, in this situation,

〈
δ, (ρ1Σ1 + ρ2Σ2)

−1δ
〉
H

=
〈
δ, (Σ − ρ1ρ2δ ⊗ δ)−1δ

〉
H

=
〈
δ,Σ−1δ

〉
H

(1 − ρ1ρ2

〈
δ,Σ−1δ

〉
H

)−1 ,

and the proof follows by combining the two latter equations.
Consider now the case where

∫
p1p2/pdρ = 0, that is when the probability distribution

P1 and P2 are singular (for any set A ∈ X such as P1(A) 6= 0, P2(A) = 0 and vice-versa).
In that case,

〈
δ, (ρ1Σ1 + ρ2Σ2)

−1δ
〉
H

is infinite.

Proof. We first prove that

∥∥∥(Σ̂W + γnI)−1/2δ̂
∥∥∥

2

H

P−→
∥∥∥(ΣW + γ∞I)

−1/2δ
∥∥∥

2

H
, (72)

where γ∞
def
= limn→∞ γn. Using straightforward algebra, we may write
∣∣∣∣
∥∥∥(Σ̂W + γnI)−1/2δ̂

∥∥∥
2

H
−
∥∥∥(ΣW + γ∞I)

−1/2δ
∥∥∥

2

H

∣∣∣∣ ≤ C1 + C2 +C3 , (73)

where

C1
def
=
∥∥∥(ΣW + γnI)−1/2δ̂

∥∥∥
H

∥∥∥(Σ̂W + γnI)−1/2δ̂
∥∥∥
H

∥∥∥(Σ̂W + γnI)−1/2(Σ̂W − ΣW ) (ΣW + γnI)−1/2
∥∥∥

HS
,

C2
def
=

∣∣∣∣

(∥∥∥(ΣW + γnI)−1/2δ̂
∥∥∥

2

H
−
∥∥∥(ΣW + γnI)−1/2δ

∥∥∥
2

H

)∣∣∣∣ ,

C3
def
=

∣∣∣∣

(∥∥∥(ΣW + γnI)−1/2δ
∥∥∥

2

H
−
∥∥∥(ΣW + γ∞I)

−1/2δ
∥∥∥

2

H

)∣∣∣∣ .

First, prove that C1 = oP (1). Write C1 = A1A2B1. Using (with obvious changes) the
relation (42), the monotone convergence theorem yields

lim
n→∞

E

∥∥∥(ΣW + γnI)−1/2δ̂
∥∥∥

2

H
=
〈
δ, (ΣW + γ∞I)

−1δ
〉
H
.

which gives A1 = OP (1). As for proving A2 = OP (1), using an argument similar to the
one used to derive Eq. (41), it suffices to observe that A2 = A1 + oP (1). Then, Eq. (35)
in Corollary 13 gives B1 = OP (γ−1

n n−1/2), which shows that C1 = A1A2B1 = oP (1). Next,
prove that C2 = oP (1). We may write

C2 = 2
〈
δ̂ − δ, (ΣW + γnI)−1δ

〉

H
+
∥∥∥(ΣW + γnI)−1/2(δ̂ − δ)

∥∥∥
2

H
.

Since
∥∥(ΣW + γnI)−1/2

∥∥
H

≤ γ
−1/2
n , and

∥∥(ΣW + γnI)−1/2δ
∥∥
H
< ∞, and moreover ‖δ̂ −

δ‖H = OP (n−1/2), then we get C2 = OP (γ
−1/2
n n−1/2) = oP (1) Finally, prove that C3 = o(1)

Note that C3 = −∑∞
p=1 γ

−1
n (λp +γn)−1λp 〈δ, ep〉2H, where {λp} and {ep} denote respectively

the eigenvalues and eigenvectors of ΣW . Since [γ 7→ (λp+γ)−1γ] is monotone, the monotone
convergence theorem shows that C3 = o(1).
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Now, when P1 6= P2, Proposition 4 with P = ρ1P1 + ρ2P2 ensures that δ ∈ R(Σ
1/2
W ) as

long as
∥∥∥dP2

dP1
− 1
∥∥∥

L2(P1)
< ∞. Then, under assumption (A2), by injectivity of ΣW we have

δ 6= 0. Hence, since ΣW is trace-class, we may apply Lemma 19 with α = 1, which yields

d−1(ΣW , γn) n → ∞. Therefore, T̂n(γn)
P−→ ∞, and the proof ois concluded. Otherwise,

that is when
∥∥∥dP2

dP1
− 1
∥∥∥

L2(P1)
= ∞, we have T̂n(γn)

P−→ ∞.

Appendix A. Technical Lemmas

Lemma 19. Let {λp}p≥1 be a non-increasing sequence of non-negative numbers. Let α > 0.
Assume that

∑
p≥1 λ

α
p <∞. Then, for any β ≥ α,

sup
γ>0

γα
∞∑

p=1

λβ
p (λp + γ)−β ≤ 2

∞∑

p=1

λα
p . (74)

In addition, if limp→∞ pλα
p = ∞, then for any β > 0,

lim
γ→0

γα
∞∑

p=1

λβ
p (λp + γ)−β = ∞ . (75)

Proof. For γ > 0, denote by qγ = supp≥1{p : λp > γ}. Then,

γα
∞∑

p=1

λβ
p (λp + γ)−β ≤ γα

∞∑

p=1

λα
p (λp + γ)−α ≤ γαqγ +

∞∑

p>qγ

λα
p . (76)

Since the sequence {λp} is non-increasing, the condition C
def
=
∑

p≥1 λ
α
p < ∞ < ∞ implies

that pλα
p ≤ C. Therefore, λp ≤ C1/αp−1/α, which implies that for any p satisfying Cγ−α ≤

p, λp ≤ γ, showing that qγ ≤ Cγ−α. This establishes (74).

Since λ 7→ λ(λ + γ)−1 is non-decreasing, for p ≤ qγ , λp(λp + γ)−1 ≥ (1/2). Therefore,

γα
∑∞

p=1 λ
β
p (λp + γ)−β ≥ (2)−βγαqγ . Since limp→∞ pλα

p = ∞, this means that λp > 0 for
any p, which implies that limγ→0+ qγ = ∞. Therefore, limγ→0+ qγλ

α
qγ

= limγ→0+ qγγ
α = ∞.

The proof follows.

Lemma 20. Let {λp}p≥1 be a non-increasing sequence of non-negative numbers. Assuse
there exists s > 0 such that λp = p−s for all p ≥ 1. Then,




∞∑

p=1

(λp + γn)−rλr
p




1/r

= γ−1/sr

{∫ ∞

0
(1 + vs)−rdv

}1/r

(1 + o(1)) , as γ → 0 .

Proof. First note that

∞∑

p=1

(λp + γn)−rλr
p =

∞∑

p=1

(1 + γnλ
−1
p )−r =

∞∑

p=1

(1 + (γ1/s
n p)s)−r .
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For all γ > 0, the function [u 7→ (1 + (γ1/su)s)−r] is increasing and nonnegative. Therefore,
for all p ≥ 1 we may write

∫ p+1

p
(1 + (γ1/su)s)−rdu ≤ (1 + (γ1/sp)s)−r ≤

∫ p

p−1
(1 + (γ1/su)s)−rdu ,

γ−1/s

∫ γ1/s(p+1)

γ1/sp
(1 + vs)−rdv ≤ (1 + (γ1/sp)s)−r ≤ γ−1/s

∫ γ1/sp

γ1/s(p−1)
(1 + vs)−rdv .

Hence, sussing on p over 1, . . . , N − 1, we obtain

γ−1/s

∫ γ1/sN

γ1/s

(1 + vs)−rdv ≤∑N
p=1(1 + (γ1/sp)s)−r ≤ γ−1/s

∫ γ1/sN

0
(1 + vs)−rdv .

Therefore, taking N → ∞ in such a way that γ1/sN → ∞ as γ → 0, we finally get

∞∑

p=1

(1 + (γ1/sp)s)−r = γ−1/s

{∫ ∞

0
(1 + vs)−rdv

}
(1 + o(1)) .

Lemma 21. Let A be a self-adjoint compact operator on H. Then, for any orthonormal
basis {ϕp}p≥1 of H,

∞∑

p=1

|λp(A)| ≤
∞∑

p=1

‖Aϕp‖H .

Proof. Let {ψp}p≥1 be an orthonormal basis of H consisting of a sequence of eigenvectors
of A corresponding to the eigenvalues {λp(A)} of this latter operator, so that 〈ψp, Aψp〉H =
λp(A). Then,

∞∑

p=1

|λp(A)| =
∞∑

p=1

∣∣〈ψp, Aψp〉H
∣∣ ≤

∞∑

q=1

∞∑

p=1

∣∣〈Aϕq, ψp〉H
∣∣ ∣∣〈ϕq, ψp〉H

∣∣

≤
∞∑

q=1




∞∑

p=1

∣∣〈Aϕq, ψp〉H
∣∣2



1/2


∞∑

p=1

∣∣〈ϕq, ψp〉H
∣∣2



1/2

≤
∞∑

q=1

‖Aϕq‖H .

Appendix B. Perturbation results on covariance operators

Lemma 22. Let A be a compact self-adjoint operator, with {λp}p≥1 the eigenvalues of A,
and {ep}p≥1 an orthonormal system of eigenvectors of A. Then, for all integer k > 1, using
the convention pk+1 = p1,

∞∑

p=1

〈
ep, (AB)kep

〉
=

∞∑

p1=1

∞∑

p2=1

· · ·
∞∑

pk=1









k∏

j=1

λpj








k∏

j=1

〈
epj , Bepj+1

〉







 .
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Proof. Let k be some integer, fixed throughout the proof. The proof is by induction, that
is, we shall prove that, for all ℓ ∈ {1, . . . , k},

∞∑

p=1

〈
ep, (AB)kep

〉

=

∞∑

p1=1

∞∑

p2=1

· · ·
∞∑

pℓ=1









ℓ−1∏

j=1

λpj








ℓ−1∏

j=1

〈
epj , Bepj+1

〉



〈
epℓ
, (AB)k−ℓ+1ep1

〉



 , P(ℓ) .

First, for ℓ = 2, using that A∗ep1
= Aep1

= λp1
ep1

, and B∗ep1
=
∑∞

p2
〈ep1

, Bep2
〉 ep2

, we
indeed have

∞∑

p1=1

〈
ep1
, AB(AB)k−1ep1

〉
=

∞∑

p1=1

λp1

〈
B∗ep1

, (AB)k−1ep1

〉

=
∞∑

p1=1

λp1

〈
∞∑

p2

〈ep1
, Bep2

〉 ep2
, (AB)k−1ep1

〉

=

∞∑

p1=1

∞∑

p2=1

λp1
〈ep1

, Bep2
〉
〈
ep2
, (AB)k−1ep1

〉
, P(2) .

Assume the statement P(ℓ) is true, with ℓ < k − 1. Let us now marginalize out, first A
then B in (AB)k−ℓ+1, for the (ℓ + 1)-th time, by summing over an index pℓ+1. Using the
same arguments as above, that is A∗epℓ

= λpℓ
epℓ

and B∗epℓ
=
∑∞

pℓ+1

〈
epℓ
, Bepℓ+1

〉
epℓ+1

,

∞∑

p=1

〈
ep, (AB)kep

〉

=
∞∑

p1=1

· · ·
∞∑

pℓ=1









ℓ−1∏

j=1

λpj








ℓ−1∏

j=1

〈
epj , Bepj+1

〉



〈
epℓ
, AB(AB)k−ℓep1

〉





=

∞∑

p1=1

· · ·
∞∑

pℓ=1









ℓ−1∏

j=1

λpj



λpℓ




ℓ−1∏

j=1

〈
epj , Bepj+1

〉



〈
B∗epℓ

, (AB)k−ℓep1

〉





=
∞∑

p1=1

· · ·
∞∑

pℓ=1

∞∑

pℓ+1=1









ℓ∏

j=1

λpj








ℓ−1∏

j=1

〈
epj , Bepj+1

〉


〈epℓ
, Bepℓ+1

〉 〈
epℓ+1

, (AB)k−ℓep1

〉



 ,

which proves P(ℓ+ 1).

The proof is concluded by a k-step induction, that is once A in (AB)k is eventually
marginalized out k-times and only the last term 〈epk

, Bep1
〉 remains.

Lemma 23. Let γ > 0, and S a trace-class operator. Denote {λp}p≥1 and {ep}p≥1 respec-
tively the positive eigenvalues and the corresponding eigenvectors of S. Consider dr(T, γ)
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for r = 1, 2, with T a compact operator, as defined in (6). If ∆ is a trace-class perturbation
operator such that

∥∥(S + γI)−1∆
∥∥ < 1, and ‖∆‖C1

=
∑∞

p=1 ‖∆ep‖ < γ, then

|dr(S + ∆, γ) − dr(S, γ)| ≤
γ−1 ‖∆‖C1

1 − γ−1 ‖∆‖C1

, for r = 1, 2 . (77)

If d2(S, γ)
∥∥S−1/2∆S−1/2

∥∥
HS

< 1, then

|d1(S + ∆, γ) − d1(S, γ)| ≤
d2(S, γ)

∥∥S−1/2∆S−1/2
∥∥

HS

1 − d2(S, γ)
∥∥S−1/2∆S−1/2

∥∥
HS

, (78)

|d2(S + ∆, γ) − d2(S, γ)| ≤
∥∥S−1/2∆S−1/2

∥∥
HS

1 −
∥∥S−1/2∆S−1/2

∥∥
HS

. (79)

Proof. If
∥∥((S + γI)−1∆

}∥∥ < 1, then we may write

(S + ∆ + γI)−1(S + ∆) = (I + (S + γI)−1∆)−1(S + γI)−1(S + ∆)

=

∞∑

k=0

(−1)k
{
(S + γI)−1∆

}k
(S + γI)−1(S + ∆)

= (S + γI)−1S +

∞∑

k=1

(−1)k
{
(S + γI−1)∆

}k (
(S + γI)−1S − I

)
,

where the series converge in operator-norm. Since the trace is continuous in the space of
trace-class operators, and using

∥∥(S + γI)−1S − I
∥∥ < 1, we get by linearity of the trace,

|d1(S + ∆, γ) − d1(S, γ)| =
∣∣Tr
{
(S + ∆ + γI)−1(S + ∆)

}
− Tr

{
(S + γI)−1S

}∣∣

=

∞∑

k=1

∣∣∣Tr
{{

(S + γI)−1∆
}k {

(S + γI)−1S − I
}}∣∣∣ ≤

∞∑

k=1

∣∣∣Tr
{(

(S + γI)−1∆
)k}∣∣∣ . (80)

Applying Lemma 22 with B = ∆, and A = (S + γI)−1, we obtain

Tr
{(

(S + γI)−1∆
)k}

=
∞∑

p=1

〈
ep,
(
(S + γI)−1∆

)k
ep

〉

=

∞∑

p1=1

· · ·
∞∑

pk=1









k∏

j=1

(λpj + γ)−1








k∏

j=1

〈
epj ,∆epj+1

〉







 .

Since, for all 1 ≤ j ≤ k, we have
∣∣〈epj ,∆epj+1

〉∣∣ ≤
∥∥∆epj

∥∥ and (λpj +γ)−1 ≤ γ−1, the upper-
bound in (80) is actually the sum of a geometric series whose ratio is γ−1

∑∞
p=1 ‖∆ep‖ =

γ−1 ‖∆‖C1
, where γ−1 ‖∆‖C1

< 1 by assumption, which completes the proof of (77) when
r = 1. A similar reasoning as above allows to prove (77) when r = 2.

We now prove the second upper-bound (78). Using that

∣∣∣Tr
{(

(S + γI)−1∆
)k}∣∣∣ =

∣∣∣∣Tr

[{(
S1/2(S + γI)−1S1/2

)(
S−1/2∆S−1/2

)}k
]∣∣∣∣ ,
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we may apply Lemma 22 again, but with B = S−1/2∆S−1/2, and A = S1/2(S + γI)−1S1/2,
yielding

Tr
{(

(S + γI)−1∆
)k}

=
∞∑

p=1

〈
ep,
(
(S + γI)−1∆

)k
ep

〉

=

∞∑

p1=1

· · ·
∞∑

pk=1









k∏

j=1

(λpj + γ)−1λpj








k∏

j=1

〈
epj ,

(
S−1/2∆S−1/2

)
epj+1

〉







 .

Then, using that
∣∣〈epj ,

(
S−1/2∆S−1/2

)
epj+1

〉∣∣ ≤
∥∥(S−1/2∆S−1/2

)
epj

∥∥, and applying Hölder
inequality, we obtain

∣∣∣Tr
{(

(S + γI)−1∆
)k}∣∣∣

≤






∞∑

p=1

(λp + γ)−2λ2
p






k/2



∞∑

p1=1

· · ·
∞∑

pk=1




k∏

j=1

〈
epj ,

(
S−1/2∆S−1/2

)
epj+1

〉2










1/2

≤ dk(S)
∥∥∥S−1/2∆S−1/2

∥∥∥
k

HS
.

Finally, going back to (80), the upper-bound is actually the sum of a geometric series whose
ratio is d(S)

∥∥S−1/2∆S−1/2
∥∥

HS
, where d(S)

∥∥S−1/2∆S−1/2
∥∥

HS
< 1 by assumption, which

completes the proof of (78). As for (79), observe that

|d2(S + ∆, γ) − d2(S, γ)| ≤
∞∑

k=1

∥∥∥
{{

(S + γI)−1∆
}k {

(S + γI)−1S − I
}}∥∥∥

HS

≤
∞∑

k=1

∥∥∥
{
(S + γI)−1∆

}k
∥∥∥

HS

≤
∞∑

k=1

∥∥∥
{
S−1/2∆S−1/2

}∥∥∥
k

HS
,

where we used the inequality ‖AB‖HS ≤ ‖A‖HS ‖B‖HS, and
∥∥(S + γI)−1S − I

∥∥ ≤ 1 and∥∥(S + γI)−1S
∥∥ ≤ 1.

Appendix C. Miscellaneous proofs

Proposition 24. Assume (A1) and (B1). Assume in addition that P1 = P2 = P. If
γn ≡ γ , then

Supx

∣∣∣P(T∞(Σ̂W , γ) ≤ x) − P(T∞(ΣW , γ) ≤ x)
∣∣∣→ 0 , (81)

where T∞(S, γ) for a trace-class operator S is defined in (10).
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Proof. First, define the random variables {Yn} and {Y } as follows

Yn
def
=

∞∑

p=1

(λ̂p + γ)−1λ̂p(Z
2
p − 1) , Y

def
=

∞∑

p=1

(λp + γ)−1λp(Z
2
p − 1) ,

where {Zp}p≥1 are independent standard normal variables. Considering the random element
h ∈ H, such that 〈h, ep〉H = Zp for all p ≥ 1, we may write

Yn =
∥∥∥(Σ̂W + γI)−1/2Σ̂

−1/2
W h

∥∥∥
2

H
− d1,n(Σ̂W , γ) ,

Y =
∥∥∥(ΣW + γI)−1/2Σ

−1/2
W h

∥∥∥
2

H
− d1,n(ΣW , γ) .

Then, using Eq. (77) for r = 1 in Lemma 23 with S = ΣW , and Corollary 13 which gives∥∥∥Σ̂W − ΣW

∥∥∥
HS

= OP (n−1/2), we get |Yn − Y | = OP (n−1/2), and hence that Yn
P−→ Y in

case γn ≡ γ . Next, applying the Polya theorem (Lehmann and Romano, 2005, Theorem
11.2.9) gives the result

Supx |P(Yn ≤ x) − P(Y ≤ x)| → 0 .

Appendix D. Eigenvalues of covariance operators

In this section, we give new general results regarding the decay of eigenvalues of covariance
operators. We assume that we have a bounded density p(x) on Rp with respect to the
Lebesgue measure, and a translation invariant kernel k(x − y) with positive integrable
Fourier transform. In this section, we consider eigenvalues of the second order moment
operator, which dominates the covariance operator. From the proof of Proposition 10,
the eigenvalues of the second order moment operator are the eigenvalues of the following
operator from L2(Rp) to L2(Rp), defined as

Qf(x) =

∫

Rp

p(x)1/2k(x− y)f(y)p(y)1/2dy

We let denote λn(p,K) the eigenvalues of this operator ranked in decreasing order.
We let denote T (p) the pointwise multiplication by p, defined from L2(Rp) to L2(Rp).

We also denote C(k) the convolution operator by k. We thus get Q = T (p)1/2C(k)T (p)1/2.
Note that by taking Fourier transforms (P of p, and K of k), the eigenvalues are the same
as the one of T (K)1/2C(P )T (K)1/2 and thus p and K plays equivalent roles (Widom, 1963).

The following lemma, taken from Widom (1964), gives an upperbound of the eigenvalues
in the situation where p and K are indicator functions:

Lemma 25. Let ε > 0. Then there exists δ > 0 such that, if p(x) is the indicator function
of [−1, 1] and K is the indicator function of [−γ, γ], with γ 6 (1− ε)nπ/2, then λn(p,K) 6

e−nδ.

This result is very useful because it is uniform in γ, as long as γ 6 (1 − ε)nπ/2. We
now take ε = 1

2 , and we thus get λn(1[−1,1], 1[−nπ/4,nπ/4]) 6 e−nδ for some δ > 0.

35



We consider the tail behavior of p(x) and of the Fourier transform K(ω) of k, through
M(p, u) = max‖x‖∞>u p(x) and M(K, v) = max‖ω‖∞>v K(ω), where, for x = (x1, . . . , xp),
‖x‖∞ = max1≤i≤p |xi|. We also let denote M0(K) and M0(p) the supremum of K and p
over Rd.

Proposition 26. For all (u, v) such that uv = nπ/4, then

λn(p,K) 6 M(p, u)M0(K) +M(K, v)M0(p) +M0(K)M0(p)e
−δn1/p

Proof. We divide twice Rp in two parts, the spatial version Rp = {x, ‖x‖∞ 6 u} ∪
{x, ‖x‖∞ > u} = Au ∪ Bu and the Fourier version Rp = {ω, ‖ω‖∞ 6 v} ∪ {ω, ‖ω‖∞ >
v} = Av ∪Bv. We have for all p and K,

λn(p,K) 6 λn(p1Au ,K) + λ1(p1Bu ,K)

which is classical results for perturbation of eigenvalues By definition of M(p, u), we have
T (p1Bu) 4 M(p, u)I, and moreover C(k) 4 M0(K)I, which implies that λ1(p1Bu ,K) 6

M(p, u)M0(K). We thus get

λn(p,K) 6 λn(p1Au ,K) +M(p, u)M0(K).

Similarly, we get

λn(p,K) 6 λn(p1Au ,K1Av) +M(p, u)M0(K) +M(K, v)M0(p).

We know that if two operators satisties A 4 B, then λn(A) 6 λn(B), thus since T (p1Au) 4

T (M0(p)1Au) and similarly for K, we get

λn(p,K) 6 M0(K)M0(p)λn(1Au , 1Av ) +M(p, u)M0(K) +M(K, v)M0(p)

By a simple change of variable, it easy to show that λn(1Au , 1Av ) = λn(1A1
, 1Avu) When

p = 1, we immediately have λn(1A1
, 1Avu) 6 e−δn. When p > 1, then we notice that

the eigenfunctions and eigenvalue of the operators will be product of eigenfunctions and
eigenvectors of the univariate operators. That is, the eigenvalues are of the form µi1 · · ·µip

where (i1, . . . , ip) are positive integer and µi 6 e−δi are eigenvalues of the univariate opera-
tor. From the product formulation, we get that if n is equal to the number of partitions of a
certain integer k into p strictly positive integers, then λn 6 e−δk. This number of partitions
is exactly equal to [(p− 1)!(p − k)!]−1(k − 1)! 6 (k − 1)p.

Thus, given any n, we can find an integer k such that (k − 1)p 6 n, and we have

λn(1A1
, 1Avu) 6 e−δk. This leads to λn(1A1

, 1Avu) 6 e−δn1/p
. The proposition follows.

We can now derive a number of corollaries:

Corollary 27. If p(x) is upper bounded by a constant times e−α‖x‖2

and K(ω) is up-
per bounded by a constant times e−β‖ω‖2

, then there exists η > 0 such that λn(p,K) =

O(e−ηn1/p
).

Proof. Take u = v =
√
nπ/4.
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Corollary 28. If p(x) is upper bounded by a constant times (1 + ‖x‖)−α (with α > p such
that we have integrability) and K(ω) is upper bounded by a constant times e−β‖ω‖2

, then
λn(p,K) = O( 1

nα−η ) for any η > 0.

Proof. Take v proportional to nη/α.

Corollary 29. If p(x) is upper bounded by a constant times (1 + ‖x‖)−α (with α > p such
that we have integrability) and K(ω) is upper bounded by a constant times (1+‖x‖)−β (with
β > p such that we have integrability) , then λn(p,K) = O(n−αβ/(α+β)).

Proof. Take v proportional to nα/(α+β).
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