
HAL Id: inria-00274383
https://hal.inria.fr/inria-00274383

Submitted on 18 Apr 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using UML Protocol State Machines in Conformance
Testing of Components
Dirk Seifert, Jeanine Souquières

To cite this version:
Dirk Seifert, Jeanine Souquières. Using UML Protocol State Machines in Conformance Testing of
Components. [Research Report] 2008. �inria-00274383�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50268545?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00274383
https://hal.archives-ouvertes.fr


Using UML Protocol State Machines in Conformance Testing of Components

Dirk Seifert and Jeanine Souquières

LORIA – Université Nancy 2

Campus Scientifique, BP 239

F-54506 Vandœuvre lès Nancy cedex

{Dirk.Seifert,Jeanine.Souquieres}@Loria.fr

Abstract

In previous works we designed a comprehensive ap-

proach for conformance testing based on UML behavioral

state machines. In this paper we propose two extensions to

this approach. First, we apply our approach in the con-

text of a component-based development, and address the

problem of checking the interoperability of two connected

components. Second, we address the problem of selecting

relevant input sequences. Therefore we use UML proto-

col state machines to specify restricted environment mod-

els. This means that we restrict the valid protocol at the

provided interface of the component under test with respect

to a specific test purpose. Based on these models we select

relevant input sequences. We implemented both extensions

presented here in our TEAGER tool suite to show their ap-

plicability. Both extensions address the behavior at the in-

terfaces of components. We use UML state machines as a

unified notation for behavioral and protocol conformance

testing as well as for test input selection. This considerably

eases the work of test engineers.

1 Introduction

In a model-based development approach, models of the

system which have to be built guide and control the devel-

opment process [4]. There are various types of models dif-

fering in the level of abstractions or in their intended use.

For example, the Unified Modeling Language (UML) com-

prises thirteen diagram types to specify the structure and

the behavior of a system or a system component [30]. In

the first steps, the models are used to analyze the problem

domain and to ease the information exchange among devel-

opers. Later on, they form the basis to design and imple-

ment the system, and serve as documentation. Nowadays,

the models are also used for quality assurance purposes. Be-

fore implementing the system, required properties can be

verified on the models, or they can be simulated to check

the intended behavior. Finally, the models can be used for

generating tests to check the implemented system. Hence,

models of the system which shall be built allow early start-

ing, continuous and automated quality assurance processes.

Testing means executing a system under test with se-

lected but real data to evaluate its conformance, whereat

conformance is evaluated on the basis of the observations

made on the system under test. It aims in falsification, that

means to show inconsistencies between the specification

and the system under test. It benefits from the fact that the

real system is brought to execution. Thus, the interaction

of the real hardware and the real software can be evaluated.

A further important advantage of testing is its applicabil-

ity at different levels of abstraction and at different stages

of the development. In [25], we presented a conformance

test approach based on UML state machines, where a state

machine model [30] serves as the specification of the sys-

tem under test. We generate test cases from a state machine

specification which include input sequences to stimulate the

system under test as well as test oracles to automatically

evaluate the test execution. Thus, we are able to automati-

cally generate, execute, and evaluate test cases. The focus

of our approach is on the level of unit testing.

In a component-based development approach [29, 15],

the problem of building a system out of previously-existing

software components from a variety of sources is addressed.

Building a system out of components has the potential to re-

duce the development cost and, at the same time, to enhance

its flexibility and maintainability. The components are con-

sidered as black-boxes described by interfaces expressing

their visible behavior. Components are connected through

required and provided interfaces. Interoperability is only

guaranteed if the required interfaces correctly implement

the provided interfaces of the connected components [5].

In most cases, an adapter (i.e., a piece of glue code, ex-

pressing the mapping between a required and a provided

interface) has to be introduced [21]. In previous works,



we have used the B method and its refinement and assem-

bling mechanisms to model component interfaces as well

as patterns for adapters, allowing the interoperability to be

checked with tool support [20]. Our verification and testing

techniques complement each other. Verification techniques

enable early checks of important properties, whereat test-

ing checks the real implementation. The application of both

techniques ensures a high-quality development and a com-

prehensive quality assurance with reliable results.

The first problem we address in this paper is testing the

input-output behavior of a system under test in the context

of a component-based development. Now, the system under

test becomes a component under test, and we assume it to

be connected to other system components. In this setting,

we additionally check if the component under test correctly

implements the provided interfaces of the connected com-

ponents. We accomplish this by checking the outputs of

the component under test at its required interfaces against

the specified protocols of the corresponding provided inter-

faces of connected components. The protocols are specified

by protocol state machines. We do not address the problem

of integration testing; we still focus on one component un-

der test. Our extension allows early checks of interoperabil-

ity on the level of unit testing with insignificant additional

effort compared to the primary test approach.

Furthermore, we address the problem of selecting rele-

vant input sequences during test case generation for testing

reactive systems. In general, the set of possible input se-

quences for reactive systems is infinitely large. To generate

test cases, we have to select a finite subset. Specifying the

behavior at the interfaces of components provides a appro-

priate basis for input selection. The component under test

must work correctly in environments behaving according to

the specified behavior at the provided interfaces of the com-

ponent. Thus, it is worthwhile to select test inputs on the

basis of these descriptions. We use protocol state machines

to specify restricted environment models and to select rele-

vant input sequences. Moreover, we propose two extensions

of protocol state machines. First, we extend them by the

ability to specify probabilistic behavior. Second, we enable

the use of feedback from the system under test when testing

non-deterministic systems.

The contribution of this paper is the integration of proto-

col state machines into our existing test approach as a uni-

form notation and their use to address two important prob-

lems in testing, namely interoperability and input selection.

The rest of the paper is organized as follows. In Sec-

tion 2, we briefly introduce both variants of UML state ma-

chines and review our test approach for conformance test-

ing. In Section 3, we present our extension for checking the

interoperability of two connected components. In Section 4,

we present our approach to select relevant input sequences,

including the two possible extensions to the notation of pro-

tocol state machines. In Section 5, we conclude our work

and discuss prospects for future work.

2 Foundations

UML state machines are used to model the discrete reac-

tive behavior of a system or a system component through

finite state transition systems [30]. They come in two

flavors: behavioral state machines and protocol state ma-

chines. Behavioral state machines specify the states a sys-

tem or a system component can take and the actions it can

execute during its lifetime in response to external and in-

ternal events. They are an object-oriented extension of the

classical Harel-Statecharts [13]. The semantics is adapted

from the STATEMATE semantics [14] to fit into the object-

oriented paradigm. Protocol state machines are used to ex-

press usage protocols of a system or a system component

by expressing legal interaction sequences, which consists

of either events or method calls.

2.1 Behavioral State Machines

Behavioral state machines are mathematical models with

a graphical representation: the nodes depict simple or com-

posed states of a system and the labeled edges depict transi-

tions between these states (see Figure 1 for an example).

Composite states are used to hierarchically and orthogo-

nally structure the model, thus reducing its graphical com-

plexity. Labels express conditions under which transitions

can be taken and the actions which will be executed when

the transitions are taken. Events are used as triggers to acti-

vate transitions and can be parameterized to exchange data.

Optionally, every behavioral state machine has a data space

which can be read and manipulated by the state machine

during execution. More precisely, it is possible to read data

values to describe specific conditions when a transition can

be taken or to manipulate data values and exchange infor-

mation within the actions. A transition consists of a source

state, a trigger event, an optional guard, an optional effect

(which comprises a sequence of actions), and a target state.

We also write a transition as follows:

source
trigger[guard]/effect

−−−−−−−−−−−−→ target (1)

With the optional guard, a fine-grained condition to en-

able the transition can be described depending on the sys-

tem’s state. Hence, the activation of the source state, the

trigger event and the guard condition evaluating to true con-

stitute the condition which must be fulfilled to enable the

transition. An action can either be a statement manipulating

the data space or the generation of new events. The action

sequence and the subsequently active target state constitute



a / send(aa)

a / send(ba)

b / send(ab)

b / send(bb)

BA

BSM−C1

Figure 1. Behavioral state machine for C1.

the effect of the transition. In opposite to the classical Stat-

echarts [13], the event processing takes place in a so-called

run-to-completion step [30]. This asynchronous event pro-

cessing demands the processing of the previous event to be

completely finished before the next event can be processed.

Figure 1 shows a behavioral state machine for a com-

ponent named C1 as an example. The top-level composite

state BSM-C1 is refined into two simple states, namely A

and B, whereat state A is marked as the default state. The

four transitions specify the behavior of C1. There are two

possible input events, namely a and b, and four possible

output events, namely aa, ab, bb and ba. The output

events indicate the source state and the target state of a taken

transition. For example, an observation ba indicates a tran-

sition from state B to state A. For simplification, the state

machine neither contains orthogonal regions nor complex

guards and actions reading and manipulating data values.

Furthermore, the state machine is completely determinis-

tic. For more information on the syntax and semantics of

behavioral state machines we refer the interested reader to

[25, 30].

The semantic model of behavioral state machines builds

on the semantic steps a state machine can execute during its

lifetime. Such a step moves the state machine from one se-

mantic state to another semantic state while receiving events

from and emitting events to the environment. A semantic

state (a status) comprises three components: a configura-

tion (a maximal set of active states), an event queue, and all

variable assignments. We denote a semantic step as follows:

[[c,q,d ]]
in,out
−−−→ [[c′,q′,d′ ]] (2)

Based on this definition, we describe the execution runs

of a state machine as the concatenation of semantic steps

and call them computations:

[[c1,q1,d1 ]]
in1,out1−−−−→ . . .

inn−1,outn−1
−−−−−−−→ [[cn,qn,dn ]] (3)

2.2 Protocol State Machines

Protocol state machines are attached to interfaces1 and

specify their legal usage protocol. In most applications,

protocol state machines are used to specify which opera-

tions (call events) can be called in which state, under which

condition and what result is expected from their use. In our

context of testing reactive systems, we use protocol state

machines to specify legal event sequences (signal events)

and pre- and postconditions. This involves to specify which

events can be processed in which state, under which condi-

tion and what result is expected from their processing.

The notation of protocol state machines is very similar to

that of behavioral state machines. The keyword {protocol}
placed close to the name of the state machine differentiates

protocol state machine diagrams graphically. The states of a

protocol state machine present an external view of the com-

ponent. The two differences that exist for states in protocol

state machines are as follows: first, there exist no entry-,

exit- or do-actions and second, invariants can be attached

to states in protocol state machines. Protocol transitions

specify that the referenced trigger event can be processed

in the source state under the precondition, and that at the

end of the transition, the target state will be reached under

the postcondition. They are labeled with an optional guard

(i.e., the precondition), the trigger event, and an optional

postcondition. They do not comprise explicit actions:

source
[precondition] trigger/ [postcondition]

−−−−−−−−−−−−−−−−−−−−−→ target (4)

Figure 2 shows a composite structure diagram for two

components, namely C1 and C2. They are connected via

the required interface of C1 and the provided interface of

C2. The associated protocol state machines specify the le-

gal behavior at the interfaces. For example, component C2

expects at its provided interface that when an event ab oc-

curs, only the event sequence bb·ba·aa can follow.

If two components A and B are connected, then the pro-

tocol state machine of the required interface of A must con-

form to the protocol state machine of the provided interface

of B. In other words, the specification given by a protocol

state machine is a requirement to the environment external

to that component: it is legal to send events to the com-

ponent only under the conditions specified by this protocol

state machine.

2.3 Conformance Testing

In previous works we designed a comprehensive ap-

proach for conformance testing based on UML state ma-

chines [26, 25]. In this approach, a UML state machine

1In this paper we do not differentiate between interfaces and ports and

use the term interface for both meanings.



1

2

3

4

aa

aa ab

bb
ba

1a

b

1

aa

bbab

ba

Provided Interface of C1

Provided Interface of C2

PSM−RI−C1 {protocol}

C1 C2

Required Interface of C2

Required Interface of C1

PSM−PI−C1 {protocol}

PSM−PI−C2 {protocol}

Figure 2. Connected components C1 and C2.

model [30] serves as the formal specification of the system

under test. To enable an automated test case generation,

we first formalized a substantial subset of UML state ma-

chines. This subset includes all relevant aspects to seriously

study automated test case generation and evaluation based

on state machines. In contrast to other approaches we use a

precisely defined semantics for UML state machines includ-

ing data. We do not restrict state machines to ease test case

generation. Instead, we follow the semantics description

of the UML standard [30] as much as possible. Only mis-

leading or conflicting statements are clarified. We address

all semantic details which arise from the different sources

of non-determinism. In particular we address the problem

of asynchronous communication which is introduced to the

run-to-completion semantics.

The precise semantics is a necessary prerequisite for test

automation. Furthermore, we need to specify conformance

in relation to state machine specifications (to enable auto-

mated test evaluation). A system under test conforms to

its specification, if the observations for the input sequences

on the system under test can be related to the possible ob-

servations on the specification. Therefore we compare the

observed outputs of the system under test with the pre-

calculated possible correct observations (the test oracle) of

the specification:

I ≤out S ⇔∀σ : seqES • out(I,σ) ⊆ out(S,σ) (5)

An implementation I conforms to its specification S, if

and only if, for all input sequences σ over the event set ES

of the specification S, the output sequences of the system

under test, out(I,σ), are included in the set of all possible

output sequences of the specification, out(S,σ). Accord-

ing to this notion of conformance we generate test cases

on the basis of the computations and the corresponding ob-

servations (cf. Definition 3) calculated in a stepwise explo-

ration of the state machine’s state space for selected input

sequences. Test execution includes stimulating the system

under test with those input sequences, observing the out-

puts of the system under test and comparing them to the

pre-calculated possible correct observations.

For example, with respect to the behavioral state ma-

chine presented in Figure 1, we could choose to test the sys-

tem under test with the input sequence !a!b!b!a!a!b2.

For this input sequence we calculate the possible cor-

rect observations. Due to the fact that the state machine

in Figure 1 specifies only deterministic behavior, we ob-

tain as the test oracle the single observation sequence

?aa?ab?bb?ba?aa?ab.

In general, the generated test cases include input se-

quences to stimulate the system under test as well as test

oracles to automatically evaluate test execution. A test ora-

cle is a deterministic acyclic acceptance graph, accepting

all possible correct observation sequences. When a sys-

tem under test is stimulated with an input sequence of a

test case, it must show exactly one complete observation

sequence of the test oracle to pass the test. Note that for

the sake of simplicity, we did not illustrate all state machine

features that make automated test case and test oracle gen-

eration a challenge. In particular, the various sources of

non-determinism, mainly caused by the asynchronous event

processing, by the multiple possible sets of firing transitions

and different possible orders of firing transitions, introduce

complex behaviors in state machine models and make the

computation of test oracles a particular challenge [26]. To

evaluate and to show the practicability of our approach we

implemented the TEAGER tool suite [27, 24]. TEAGER con-

sists of an environment to automatically generate and exe-

cute test cases, and of an environment to execute state ma-

chine specifications. The latter we use to analyze the execu-

tion behavior and the testability of a state machine, and to

measure coverage on a state machine specification to eval-

uate the quality of generated test suites. The test execution

includes both: stimulating the system under test and com-

paring the observation to the computed possible correct be-

havior in the acceptance graphs. The communication with

the system under test takes place over a socket connection

using pre-implemented adapters. This concept offers a flex-

ible way to connect the system under test. It also offers the

2In test cases we mark inputs with exclamation marks and outputs with

question marks. This may seem complementary to other literature nota-

tions. The reason for this annotation is that the outputs of a test case cor-

respond to the inputs of a system under test and the outputs of a system

under test correspond to the inputs of a test case.



possibility to use our State Machine Executor as a system

under test stub.

3 Testing Interface Interoperability

In the previous section we reviewed our approach to test

the behavioral conformance of a system under test with re-

spect to a behavioral state machine specification. Now we

consider the system under test as a component of a larger

system and we address the problem of additionally checking

the interoperability of this component with other compo-

nents (i.e., protocol conformance). Protocol conformance

testing is mainly known from testing communication sys-

tems [3, 28, 17, 9, 23] and SDL specifications [19, 12].

With our work we focus on interoperability and confor-

mance of classes in an object-oriented programming envi-

ronment based on UML descriptions.

For example, in Figure 2 the system under test (hence-

forth the component under test) is component C1. For test-

ing C1 we embed it in a test environment. The test environ-

ment is connected to the provided interface of C1 to allow

the sending of inputs to C1. The required interface of C1 is

also connected to the test environment to allow the observ-

ing of outputs of C1. In this test setting, we assume that

the required interface of C1 is intended to be connected to a

provided interface of another component — in this example

component C2. Without loss of generality, we demonstrate

the approach with one interface for sending inputs and one

interface for observing outputs of the component under test.

The approach is also applicable to a larger number of inter-

faces.

The problem we address here is that component C2 may

require a special protocol at its provided interface. Connect-

ing C1 to C2 is only possible if C1 respects this protocol.

The required protocol is specified by a protocol state ma-

chine — in Figure 2, namely PSM-PI-C2. To test whether

C1 respects this protocol we extended our conformance test

approach by checking the observations of C1 against the

protocol state machine of C2. In particular, we test for ev-

ery observation sequence made on C1, if the protocol state

machine of C2 can process these observations (i.e., can fire

transitions triggered by these observations).

To identify failures in the specified protocol we need to

define some semantic variation points of protocol state ma-

chines. The interpretation of the reception of an event in

an unexpected situation (unexpected current state, violated

state invariant or precondition) is a semantic variation point:

the event can be ignored, rejected, or deferred; an excep-

tion can be raised; or the application can stop on an error.

It corresponds semantically to a precondition violation, for

which no predefined behavior is defined in the UML stan-

dard. The interpretation of an unexpected resulting behav-

ior, that is an unexpected result of a transition (wrong final

state or final state invariant, or postcondition) is also a se-

mantic variation point, that should be interpreted as an error

of the implementation of the protocol state machine [30].

We interpret both, event reception in unexpected situations

and unexpected behavior as violations of the specified pro-

tocol. Thus, we can give a precise definition of protocol

conformance:

I ≤protocol(Sb,Sp) ⇔

∀σ : seqESb
• ∀ω : out(I,σ) • Sp

ω
==⇒

(6)

An implementation I conforms to a protocol specifica-

tion Sp, if and only if for all input sequences σ over the

event set E of a behavioral specification Sb, all output se-

quences ω in out(I,σ) of the implementation, can trigger

the protocol specification Sp. The fact that a sequence γ can

trigger a state machine SM is defined as follows:

SM
γ

==⇒ =def

∃ [[c1,q1,d1 ]]
in1,out1−−−−→ . . .

inn−1,outn−1
−−−−−−−→ [[cn,qn,dn ]]•

in1
a · · ·a inn−1 = γ

(7)

Here, we identify SM with its initial status and require

the existence of a computation of SM, such that the se-

quence of inputs of this computation is equal to the given

sequence γ .

As an example, we demonstrate our approach to check

protocol conformance by means of two exemplary test cases

in the test set up presented in Figure 2 and Figure 1.

First, we consider the test case from the previous exam-

ple. We do not encounter a violation, since for the sequence

?aa?ab?bb?ba?aa?ab, there exists a valid computation

in PSM-PI-C2. Second, we choose !a!b!b!b!a!b as

input sequence to C1. With respect to this input sequence

we observe the sequence ?aa?ab?bb?bb?aa?ab at the

required interface of C1. If we send this sequence as input

to PSM-PI-C2 we encounter a violation. The sequence

?aa?ab?bb is accepted by PSM-PI-C2, changing its

state to state (3). In state (3), the state machine expects the

reception of event ba. There is no transition that is triggered

by the event bb. This is a violation of the specified proto-

col. Consequently, we can state that component C1 and C2

are not interoperable in an environment showing behavior

(i.e., triggering C1) according to PSM-PI-C1.

Interpreting Test Results If we encounter a violation of

the required protocol during protocol testing of a compo-

nent A under test against the required protocol of a compo-

nent B, then the general consequence is that it is impossible

to connect component A with component B in the assumed



environment. There could exist several reasons why two

components are not interoperable.

The simplest reason could be that the two interfaces do

not fit. That means that a component A sends events to

a component B which are not ”understood” by B. In such

cases, it is possibly feasible to use adapters to translate, ab-

stract or put events into a concrete form [20]. Thus, from a

technical point of view, interoperability could be made pos-

sible. More problematic is that a component A can show be-

havior at its required interface which is in general not inter-

operable with respect to the required protocol of a compo-

nent B (independently from the way component A is used).

Without changing the internal behavior of component A or

without using more ”intelligent” adapters, A and B cannot

be connected. But the reasons could also be that the way

component A is used leads to a violation of the required

protocol of a component B. In the reverse, that means that

for some inputs to A, interoperability with B is possible

since the behavior of A for those inputs produces outputs

that conform to the required protocol of B.

In particular from the latter reason it follows that the

question of protocol conformance must always be seen in

conjunction with the assumed environment. A component

must not generally conform to the required protocol of an-

other component. Only in the special situation that it should

be connected to the other component, and only in the as-

sumed environment. Consequently, the question whether

we can restrict the general environment of a component A

in such way that A meets the required protocol of a com-

ponent B becomes immanent in this context. In general, an

environment like that is not guaranteed to exist. Usually,

domain experts must define which behavior at a provided

interface must be or should be allowed, and thereby disal-

low input sequences that lead to a violation of a required

protocol. This could be done by restricting the allowed pro-

tocol at provided interfaces (i.e., by restricting the behav-

ior of the associated protocol state machines). Restricting

a protocol state machine means restricting the set of valid

input sequences.

For example, Figure 3 shows a possible restriction of

PSM-PI-C1 in the protocol state machine PSM-PI-C1’

(we will explain the remaining picture in the next section).

This protocol state machine allows less input sequences that

are still valid with respect to the protocol state machine

PSM-PI-C1 (i.e., is a sub-behavior). The input sequence

of our second test case (!a!b!b!b!a!b) is not a valid

input sequence with respect to the protocol state machine

PSM-PI-C1’. Instead, selecting inputs according to the

restricted protocol description and testing a component un-

der test only capable of showing behavior according to be-

havioral state machine BSM-C1, will not encounter a vio-

lation of the required protocol at the provided interface of

C2. Note, PSM-PI-C1’ does not describe the maximal

1a

b

1

2

3

4
b

a b

a

1

2

(0.3,a)

(0.1,b)

(0.7,b)

(0.9,a)

1

23

a | b

aa ab

b a

PSM−PI−C1 {protocol}

PSM−PI−C1’’’ {protocol}PSM−PI−C1’’ {protocol}PSM−PI−C1’ {protocol}

Figure 3. Specialized environments.

set of valid input sequences. In this simple example, we

could have used the protocol state machine PSM-PI-C2 at

the provided interface of C1 to describe the maximal set of

valid inputs, whereat we have to replace aa and ba with a,

and bb and ab with b.

These considerations lead to two further applications of

the results of protocol conformance checks. First, we can

use the results of protocol conformance tests in analyzes to

specify valid environments for connected components and

thus, by explicitly requiring the specification of valid en-

vironments, to support the assembling of a system out of

pre-fabricated components. Second, it improves the moti-

vation for selecting inputs according to restricted environ-

ments (i.e., to exclude disallowed or unwanted input se-

quences from the test case generation process). We discuss

this subject in the following section.

4 Input Selection

Testing consists of executing experiments with the sys-

tem under test. For these experiments we have to choose

the inputs for the stimulation of the system under test. If

the domains of the inputs are not finite, or if the number

of values in the domains is pretty large, it is impractical to

test with all possible values. Even in our case, where the

number of events is finite, we have to deal with sequences

of inputs which are not restricted in their length. This is due

to the fact that most reactive systems are designed as non-

terminating systems which continuously process inputs.

Various strategies are studied in the literature for select-

ing a finite number of test cases [2, 22, 1, 32, 11, 7]. They

range from analyzes of the structure or the data-flow of sys-

tems under test, via dedicated fault models or explicit test

case specifications to the idea of choosing test cases accord-

ing to statistical data. All have their assets and drawbacks.

Automated techniques allow selecting inputs in systematic

and efficient way, while domain experts are able to select



”interesting” or ”relevant” inputs, but mostly less system-

atic and with more time needed [2, 1].

We address the problem of selecting ”interesting” or

”relevant” input sequences within an automated input selec-

tion process. We use environment models to describe usage

patterns of the system under test. A usage pattern can de-

scribe heavily used cases of the system under test, but also

sequences of interest to achieve a special test purpose. The

motivation for using such test case specifications is that we

eventually use the results of testing the system under test

to evaluate its quality. Therefore it is essential to execute

adequate test cases. Since our environment models usually

do not ensure finite behavior, we have to combine their us-

age with other test case selection strategies as cited at the

beginning of this section.

In the previous sections we described that the protocol

state machine associated with the provided interface of the

component under test specifies the valid behavior of its en-

vironment. The component under test is assumed to or must

work correctly in an environment behaving like this. Conse-

quently, such protocol state machines specify the most gen-

eral environments for which this component must work cor-

rectly. Hence, we can use it as a basis to select relevant input

sequences. Benefits of doing so are that the graphical nota-

tion eases the understanding of the described behavior, and

that it is possible to describe sequences of inputs. Compared

to, for example, choosing input sequences only on the ba-

sis of the event set, invalid or unlikely input sequences can

be avoided. This becomes especially necessary if it cannot

be assumed that the system under test is input enabled (i.e.,

is not blocking for all inputs in all states). To use protocol

state machines for input selection we execute them and se-

lect the next input according to the fire-able transitions. For

example, in Figure 3, PSM-PI-C1 describes the behavior

of the most general environment. In the initial state (1)

both transitions can be fired. Hence we can choose for the

next input either a or b and thus input sequences containing

a’s and b’s in an arbitrary order.

Further on, we restrict the behavior of an environ-

ment to select test cases according to specific system uses

(i.e., according to a specific test purpose). For example,

PSM-PI-C1’ restricts the behavior of PSM-PI-C1 in a

way that a correct implementation of C1 can comply with

the specified protocol of component C2. It also forms the

basis to select input sequences to test for protocol confor-

mance. In the initial state of PSM-PI-C1’ we can only

choose b as the next input followed by b, then a, then a,

then b, and so on. It is not possible to generate input se-

quences starting with a. Thus, in the context of connect-

ing C1 and C2, invalid input sequences for C1 are avoided.

The initial protocol state machine describes the most gen-

eral environment in which the system under test is assumed

to work correctly. So it follows that all restrictions must be

a sub-behavior of the initial one.

We extend the protocol state machine notation by two

variants to allow a finer description of environments: first,

by using probabilities for choosing the next input from the

set of possible inputs, and second, by using feedback from

the system under test to allow adapting the behavior of the

environment according to this feedback. The latter is used

when testing non-deterministic systems on-line.

4.1 Input Probabilities

A statistical test case generation usually aims at select-

ing data values for input variables using a statistical distri-

bution. In model-based testing it is also used to generate

input sequences from environment models. For example,

Markov chain models are widely used to specify usage pro-

files [18]. This is especially useful as the system under test

moves from one state to another one and thus, the probabil-

ity of applying an input can change. Whittaker and Thoma-

son [31] proposed an approach for test input selection based

on usage profiles described by Markov chains. They use fi-

nite states, discrete parameters, time homogeneous Markov

chains. We transfer the representation of Markov chains as

finite state machines with probabilities attached to the tran-

sitions to our protocol state machines describing the behav-

ior of the environment. This allows to express that in some

states some inputs are more likely than others. It also allows

to use all the theories around Markov chains to perform an-

alyzes of the testing process [8, 18].

In the previous section we selected inputs according to

fire-able transitions. There all transitions are equiprobable.

We can only express that in some states it is not possible

to choose some inputs (i.e., their probability to be chosen is

equal to zero). To allow the expressing of varying probabil-

ity distributions in different states, we extend the label no-

tation of protocol state machine such that it is a tuple (pi, i),
comprising a real value pi (i.e., the input’s probability) and

the input i. The value for a pi must be between zero and

one (0 < pi ≤ 1) and the sum of all input probabilities in a

state must be equal to one (∑pi = 1). Thus, input sequences

can be generated by traversing the protocol state machine,

where the random choice of the next transition (i.e., input)

is made using the probability distribution of the outgoing

transitions.

For example, PSM-PI-C1’’ in Figure 3 uses this ex-

tended labeling to specify different probability distribu-

tions. In state (1), choosing as the next input a has a

probability of 0.3. Choosing as the next input b has a prob-

ability of 0.7. Consequently, if we select input sequences

for several test cases, input sequences starting with b are

more likely than input sequences starting with a. Hence,

this behavior is tested more intensively than others (which

was the intention of using this profile). In particular, the la-



bels of the two transitions in state (1) form two intervals,

in fact [0,0.3) for a and [0.3,1) for b. Thus, for implement-

ing this strategy we just need to choose a random number p

with 0 ≤ p < 1. Given a random number of 0.56, we would

choose for the next input a b. If the random number is uni-

formly distributed the order of the particular intervals does

not influence the specified probability distribution. It is only

required that the order at a state is fixed.

With this label extension, we are not only able to specify

the valid behavior of environments, we are also able to spec-

ify which parts are more likely than others. Consequently,

we are able to select ”interesting” test cases with respect to

our intended test purpose (e.g., a specific usage profile).

4.2 Using Feedback

Observing the behavior of environments and users in

practice shows that their behavior changes depending on the

reactions of the system. A common example for that is the

behavior when doing a phone call. If you lift the receiver,

the probability that you will dial a number is dependent of

hearing the dial tone. Dialing a number is more likely if you

hear the dial tone, or, hang up the receiver is more likely if

you hear the busy tone. Therefore it would be advantageous

to use such information for test input selection.

Note that if the system reaction to all inputs is determin-

istic, there is no need to analyze the system reactions for

input selection. From the previous input it exactly follows

in which state the system under test resides (related to the

specification). Therefore, we use feedback information only

for systems which are non-deterministic in their observable

reactions to inputs.

To consider feedback from a system under test, we again

slightly change the labels in protocol state machines. We

differentiate two disjoint subsets among the label set. The

first subset contains all inputs to the system under test, in-

cluding input events as well as input events extended with

probabilities. The second subset contains all reactions of

the system under test (i.e., all possible observations at its

required interface). When we traverse such extended proto-

col state machines to generate input sequences we have two

options in each state. We can either choose to select the next

input as described in the previous section or we can process

output of the system under test.

Protocol state machine PSM-PI-C1’’’ in Figure 3

shows the principle of this strategy. In state (1) we could

choose a or b as the next input. When we trigger the sys-

tem under test and observe ab as reaction we change to state

(2). If the system reaction is aa we change to state (3).

For the next input we can choose a or b as the next input

depending on the actual state.

The described strategy requires to process system reac-

tions during test input generation. However, a specific sys-

tem reaction is only available during run-time (i.e., when

executing the system under test). Our current off-line test

generation approach calculates all possible correct system

reactions for a given input sequence and then continues with

the next input sequence. Considering feedback in this off-

line process would consequently require to consider all pos-

sible system reactions to each input separately. The result-

ing test case would have a tree structure with determined

system reactions on each path. The effort needed to calcu-

late such test cases would be enormous.

The idea of using feedback is similar to classical on-

line-testing approaches (also known as on-the-fly testing)

[10, 6]. In these approaches, test cases are generated at run-

time. The exploration of the specification’s state space is

controlled by the reactions of the system under test. Only

these paths are further processed which show the system re-

actions so far. All the others are discarded. We carry this

idea over to our test approach and the input selection with

protocol state machines. In classical on-the-fly testing, the

feedback is mainly used to avoid state space explosion in

the computation of the test oracle, i.e., for test evaluation. In

our approach, we do not only facilitate test evaluation, but

also use feedback to generate valid input sequences. This

is not straight forward for non-deterministic systems, as it

may depend on system under test’s behavior, which inputs

are processable in the next step. With the extension pre-

sented here, we can generate more specific and valid input

sequences in such a test set-up. Currently, we use feedback

information during on-line testing of requirements [16]. In

this approach we continuously trigger the system under test

and check the system reactions against the explicitly mod-

eled requirements. The inputs to the system under test are

selected on the basis of our extended (protocol) state ma-

chines.

5 Conclusion

In our approach UML behavioral state machines are used

in quality assurance to serve as a formal specification for

the desired reactive behavior of the system. It is possible to

select relevant and interesting inputs for a test case and to

calculate the possible correct observations for given inputs.

They allow to automatically evaluate test executions which

is in general a difficult and time consuming task. With both

extensions to our test approach we still focus on confor-

mance testing at the level of unit testing.

The first extension allows to check the interoperability

of the component under test with other connected compo-

nents based on a precise definition of protocol conformance.

We use UML protocol state machines to specify the pro-

tocol at the provided interface of a connected component,

and check the outputs of the component under test at its

required interface against it. If the component under test



respects the specified protocol of the connected component,

we call them interoperable. During testing we check the ob-

servations of the component under test not only against the

pre-calculated test oracle but also against the protocol state

machine of a provided interface of a connected component.

We only need to check whether there is a legal transition for

the observed outputs. If not, a violation related to the in-

teraction between these components can be reported. This

is done fully automatically and with relatively small exten-

sions to the current framework.

The second extension allows to use protocol state ma-

chines as test input specifications. By restricting the behav-

ior at the provided interface of the component under test,

the set of possible input sequences can be restricted and

thus, relevant input sequences can be specified. Input se-

quences are then selected in combination with classical se-

lection strategies. The two extensions of input probabilities

and the interpretation of feedback of the system under test

allow to describe the desired behavior on a more precise

level. Thus, we can set the focus of the test process to a

specific test purpose.

We use UML state machines as a unified notation for be-

havioral and protocol conformance testing as well as for test

input selection. This considerably eases the work of test en-

gineers. To show the general applicability we implemented

both extensions in our TEAGER tool suite [27, 24] and ap-

plied a case study of a sun blind control [16].

Our approach is also applicable for more comprehensive

protocol state machines. We do not restrict protocol state

machines to a specific subset. But the interpretation of some

notations is not straightforward and needs more experience

with the presented approach. For example, in Section 2 we

described that protocol state machines can also have orthog-

onal regions, or pre- and postconditions at transitions and

state invariants. From orthogonal regions it follows that the

protocol state machine is in multiple active states at a time.

We interpret this in such a way that for the next step the be-

havior (i.e., input) enabled in every region can happen. This

means for input selection that we can choose the next input

depending on the possibilities in every region. But this is

not clear in all situations. Further research must address this

problem in more detail. Another problem is the interpreta-

tion of the mentioned predicates. They are defined on the

basis of the state space of the component the protocol state

machine is associated with, or on the basis of the data events

or parameters can carry along. Since a protocol state ma-

chine only specifies these predicates and does not execute

any code to define the resulting behavior when taking a tran-

sition, these predicates cannot always be evaluated (e.g., if

they relate to the connected component). Thus, when these

predicates should be taken into account, the manipulation

of data (i.e., the evaluation of the associated behavior in the

component) must also be taken into account. Therefore, we

intent also to execute the component’s behavior as far as

possible for the future. In future research we also address

the problem of automatically identifying the valid behav-

ior of the environment of the component under test, if the

component is connected to other components. Further re-

search should also study input selection related to complex

data. We want to select test cases including adequate data

to cover as much as possible of this relevant behavior.

References

[1] B. Beizer. Black-Box Testing: Techniques for Functional

Testing of Software and Systems. Wiley, 1995.

[2] R. V. Binder. Testing Object-Oriented Systems: Models, Pat-

terns, and Tools. Addison Wesley, 1999.

[3] E. Brinksma and J. Tretmans. Testing Transition Systems:

An Annotated Bibliography. Lecture Notes in Computer Sci-

ence, pages 187–195, 2001.

[4] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and

A. Pretschner, editors. Model-Based Testing of Reactive Sys-

tems, volume 3472 of Lecture Notes in Computer Science.

Springer, 2005.

[5] S. Chouali, M. Heisel, and J. Souquières. Proving Compo-

nent Interoperability with B Refinement. Electronic Notes

in Theoretical Computer Science, pages 157–172, 2006.

[6] R. G. de Vries and J. Tretmans. On-the-fly Conformance

Testing using SPIN. STTT, pages 382–393, 2000.

[7] J. W. Duran and S. C. Ntafos. An Evaluation of Random

Testing. IEEE Transactions on Software Engineering, 1984.

[8] W. Feller. An Introduction to Probability Theory and Its

Applications. Wiley, 1968.

[9] J.-C. Fernandez, C. Jard, T. Jeron, and C. Viho. An Ex-

periment in Automatic Generation of Test Suites for Pro-

tocols with Verification Technology. Science of Computer

Programming, pages 123–146, 1997.

[10] J.-C. Fernandez, C. Jard, T. Jeron, and G. Viho. Using

on-the-fly verification techniques for the generation of test

suites. In Computer Aided Verification, pages 348–359.

Springer Verlag, 1996.

[11] J. B. Goodenough and S. Gehart. Towards a Theory of Test-

ing: Data Selection Criteria. In Current Trends in Program-

ming Technology, pages 44–79. Prentice Hall.

[12] J. Grabowski and D. Hogrefe. SDL- and MSC-based Spec-

ification and Automated Test Case Generation for INAP.

Telecommunication Systems, pages 265–290, 2002.

[13] D. Harel. Statecharts: A Visual Formulation for Complex

Systems. Science of Computer Programming, 1987.

[14] D. Harel and A. Naamad. The STATEMATE Semantics of

Statecharts. ACM Transactions on Software Engineering

and Methodology, pages 293–333, 1996.

[15] G. T. Heineman and W. T. Councill. Component-Based Soft-

ware Engineering. Addison Wesley, 2001.

[16] M. Heisel, D. Hartebur, T. Santen, and D. Seifert. Using

UML Environment Models for Test Case Generation. In

Software Engineering 2008 - Workshopband, Lecture Notes

in Informatics, 2008.

[17] G. J. Holzmann. Design and Validation of Computer Proto-

cols. Prentice Hall, Englewood Cliffs, NJ, 1991.



[18] J. G. Kemeny, J. L. Snell, and G. Thompson. Finite Markov

Chains. Springer-Verlag, 1974.

[19] A. Kerbrat, T. Jéron, and R. Groz. Automated Test Gener-

ation from SDL Specifications. In SDL Forum, pages 135–

152, 1999.

[20] A. Lanoix and J. Souquières. A Trustworthy Assembly of

Components using the B Refinement. e-Informatica Soft-

ware Engineering Journal, 2008.

[21] I. Mouakher, A. Lanoix, and J. Souquières. Component

Adaptation: Specification and Verification. In Workshop on

Component Oriented Programming (ECOOP 2006), 2006.

[22] A. J. Offutt, Y. Xiong, and S. Liu. Criteria for Generating

Specification-based Tests. In ICECCS. IEEE Computer So-

ciety, 1999.

[23] K. K. Sabnani and A. T. Dahbura. A Protocol Test Genera-

tion Procedure. Computer Networks, pages 285–297, 1988.

[24] T. Santen and D. Seifert. Teager - Test Automation for UML

State Machines. In Software Engineering 2006, LNI P-79,

pages 73–83. GI, 2006.

[25] D. Seifert. Automatisiertes Testen asynchroner nichtdeter-

ministischer Systeme mit Daten. Shaker Verlag, 2007. Also:

PhD dissertation, Technische Universität Berlin.

[26] D. Seifert. Conformance Testing based on UML State Ma-

chines. Technical Report inria-00268864, DEDALE (LO-

RIA), 2008.

[27] D. Seifert. The TEAGER Tool Suite. Test Execution and

Generation Framework for Reactive Systems, 2008. swt.

cs.tu-berlin.de/∼seifert/teager.html.

[28] X. Sun, C. Feng, Y. Shen, and F. Lombardi. Protocol Con-

formance Testing Using Unique Input/Output Sequences.

Advanced Series in Electrical and Computer Engineering.

World Scientific, 1997.

[29] C. Szyperski. Component Software, Beyond Object-

Oriented Programming. Addison-Wesley, 1998.

[30] UML2. Unified Modeling Language: Infrastructure and Su-

perstructure. Object Management Group, 2007. Version

2.1.1, formal/07-02-03, www.uml.org/uml.

[31] J. A. Whittaker and M. G. Thomason. A Markov Chain

Model for Statistical Software Testing. IEEE Transaction

on Software Engineering, pages 812–824, 1994.

[32] Zhu, Hall, and May. Software Unit Test Coverage and Ade-

quacy. Computing Surveys, 1997.


