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ON THE ROLE OF DIFFERENTIAL ALGEBRA IN

BIOLOGICAL MODELING

FRANÇOIS BOULIER

Differential algebra is an algebraic theory for studying systems of

polynomial ordinary differential equations (ODE). Among all the meth-

ods developed for system modeling in cellular biology, it is particularly

related to the well-established approach based on nonlinear ODE. A sub-

theory of the differential algebra, the differential elimination, has proved

to be useful in the parameters estimation problem. It seems however still

more promising in the quasi-steady state approximation theory, recent re-

sults show.

1. Background

Differential algebra [15, 19] is an algebraic theory for studying systems of poly-

nomial ordinary differential equations (ODE). Among all the methods devel-

oped for system modeling in cellular biology, it is particularly related to the

well-established approach based on nonlinear differential equations [10, 16]. A

very classical way for deriving a system of polynomial ODE from a genetic

circuit consists in first, translating the circuit as a system of generalized chemi-

cal reactions, second translating the chemical system as a system of polynomial

ODE by means of the mass-action law.

The parametric ODE systems derived from these generalized chemical re-

action systems are often too complicated for further analysis and need to be
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reduced. They are often overparameterized, which makes fitting methods to de-

termine the parameters values heavy to carry out and unreliable: the parameters

values which reproduce a behaviour of interest are usually far from unique. See

the impressive analysis of [23] about their own outstanding work on the Seg-

ment Polarity Network. Moreover, the large number of parameters and variables

makes their qualitative analysis difficult to achieve: many important dynamical

properties of polynomial ODE systems do not depend on precise values of the

parameters [11]. Discussing the presence of these properties in terms of the pa-

rameters values becomes dramatically difficult as the number of parameters and

variables increases.

For the important purpose of understanding which parts of the system con-

tribute the most to some property of interest [14], it is preferable to deal with

smaller systems. More conceptually, reducing the size of a model is one way to

achieve the important goal: a model should not involve more information than

the biological data it comes from.

2. Applications to the model reduction problem

The model reduction problem is well-known in biological modeling. Though

not formulated in these terms, all the approaches listed in [11] address this

issue. Even in the particular case of polynomial ODE models derived from

generalized chemical reactions systems, many methods [18] exist (lumpings,

sensitivity analysis, multiple time-scales analysis, . . . ).

Among all these ones, the quasi-steady state approximation (QSSA) theory

relies on the assumption that some of the chemical reactions are much faster than

the other ones. The idea of quasi-steady state approximation is simple: study

the dynamics of the slow reactions, assuming that the fast ones are at quasi-

equilibrium, thereby removing from the ODE system, the differential equations

which describe the evolution of the variables at quasi-equilibrium. Quasi-steady

state approximation has two advantages:

1. it reduces the number of ODE occuring in the system under study ;

2. it transforms stiff ODE systems as nonstiff ones.

It was extensively studied [18, 22, 24] and references therein. All these ap-

proaches turn out to be equivalent. All amount to a two time-scales analysis.

None of them is formulated in algorithmic terms.

The differential algebra [15, 19] theory makes the quasi-steady state ap-

proximation algorithmic, in the particular setting of ODE systems derived from

generalized chemical reactions systems, as shown for the first time by [6]. Ob-

serve that, for general systems of ODE, the QSSA is not algorithmic. The
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method over which this new algorithm relies is the differential elimination the-

ory [4, 5, 13, 21], pioneered by Prof. G. Carrà-Ferro [9]. After the quasi-steady

state approximation step, the reduced model is still overparameterized (it is a

raw reduced model). The differential algebra theory then permits to reduce the

set of parameters of the raw reduced model, leading to a reduced model. This

exact simplification can be algorithmically performed by determining Lie sym-

metries of the system [20].

The sketched above method (model reduction by QSSA followed by reduc-

tion of the parameter set) was recently applied over a family of models [7, 8],

giving conditions for the presence of oscillations.

3. Applications to the optimisation theory

Differential elimination helps solving the following problem [2, 3, 17]: given a

parametric ODE system and experimental data for some of the variables, how to

estimate the parameters values ?

The idea consists in eliminating the variables for which no experimental data

are available (non observed variables) then in applying linear least squares to

compute a first estimate of the observed variables. This first estimate can be used

as a starting point for a nonlinear least squares methods such as the Levenberg-

Marquardt algorithm [12]. The first estimate is usually not very precise because

it requires the numerical computation of derivatives of the observed variables

from the experimental data.

Put in a nutshell, differential elimination transforms nonlinear least squares

problems into linear ones. It is not practical in cellular biology because it re-

quires too accurate experimental data. However, whenever it applies, it im-

proves the classical Newton-like methods by guessing a starting point.

In the particular case of generalized chemical reactions systems, another

improvement can be imagined using the algorithm obtained in the quasi-steady

state approximation theory. In the nonlinear fitting methods, the parameters are

the variables. The sets of large and small parameters have to change during the

process. Because of these changes of parameters, the ODE systems to numeri-

cally integrate, in order to compute the error, often get stiff at runtime: stiffness

is often caused by the presence of different time scales in the ODE systems.

Stiffness considerably slows down the whole optimisation problem. The algo-

rithm for performing the quasi-steady state approximation could then be applied

in order to replace at runtime the stiff ODE systems by nonstiff ones. The error

computation of the nonlinear fitting methods could then be performed over the

reduced system, speeding up the overall process.
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4. Conclusion

Differential algebra has indeed a role to play for system modeling in cellular

biology. However, this role is local: differential algebra tools must be used

in connection with many other tools. This motivates the development of stan-

dalone, easy to plug-in software. The BLAD libraries [1], developed by the

author, are an attempt in that direction.
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