
HAL Id: inria-00210704
https://hal.inria.fr/inria-00210704

Submitted on 21 Apr 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design and Implementation of Open-MX:
High-Performance Message Passing over generic

Ethernet hardware
Brice Goglin

To cite this version:
Brice Goglin. Design and Implementation of Open-MX: High-Performance Message Passing over
generic Ethernet hardware. Workshop on Communication Architecture for Clusters, held in con-
junction with IPDPS 2008, Apr 2008, Miami, United States. �10.1109/IPDPS.2008.4536140�. �inria-
00210704�

https://hal.inria.fr/inria-00210704
https://hal.archives-ouvertes.fr

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

Design and Implementation of Open-MX:
High-Performance Message Passing over generic Ethernet hardware

Brice Goglin

Laboratoire Bordelais de Recherche en Informatique
INRIA Bordeaux - Sud-Ouest – France

Brice.Goglin@inria.fr

Abstract

Open-MX is a new message passing layer implemented
on top of the generic Ethernet stack of the Linux ker-
nel. It provides high-performance communication on top
of any Ethernet hardware while exhibiting the Myrinet Ex-
press application interface. Open-MX also enables wire-
interoperability with Myricom’s MXoE hosts.

This article presents the design of the Open-MX stack
which reproduces the MX firmware in a Linux driver.
MPICH-MX and PVFS2 layers are already able to work
flawlessly on Open-MX. The first performance evaluation
shows interesting latency and bandwidth results on 1 and
10 gigabit hardware.

1 Introduction

The emergence of 10 gigabit ETHERNET hardware raises
the usual question of whether it may replace dedicated hard-
ware such as IB or MYRI-10G as a high-speed interconnect
for clusters. Several advanced features such as the offload-
ing of checksum computation, TCP segmentation (TSO)
or large receive (LRO) enabled high-performance commu-
nication with TCP/IP but are still restricted to specifically
tuned configurations and lead to a high CPU load.

Meanwhile, ETHERNET appears as an interesting net-
working layer within local networks for various protocols
such as FIBRECHANNEL and ATA. The increasing impor-
tance of ETHERNET in high-performance computing is also
revealed by its interoperability with high-speed intercon-
nects such as MYRI-10G and QSNET III. However, these
technologies still require dedicated interfaces on the nodes.
This makes them impossible to use on regular hardware.

This research is supported by a collaboration between INRIA and
MYRICOM, Inc.

In this paper, we present the design and implementa-
tion of a message passing layer for any generic hardware.
OPEN-MX is a port of the Myrinet Express [6] protocol
on top of the generic ETHERNET layer of the LINUX ker-
nel. The MX application interface and wire protocol have
been designed for high-performance message passing and
should provide the same abilities on top of generic ETHER-
NET hardware. OPEN-MX also enables interoperability be-
tween any hosts, even when running the native MXoE stack
(Myrinet Express over Ethernet) on MYRICOM’s MYRI-
10G boards. This project is expected to provide the net-
working layer for PVFS2 [7] in the BLUEGENE/P systems.
We will detail the design of OPEN-MX in Section 2, before
highlighting some implementation aspects of the memory
copy avoidance in Section 3 and presenting early perfor-
mance evaluations in Section 4.

2 Design of Open-MX

2.1 Emulating the MX firmware

The Myrinet Express software stack has been designed
for high-performance message passing [6]. It exposes
the capabilities of MYRINET and MYRI-10G hardware
and firmware at the application level while providing low-
latency and high bandwidth (2µs and 1250 MB/s data rate).
To do so, OS-bypass communication is used for small mes-
sages and zero-copy for large messages. The operating sys-
tem is not involved during communication, only the initial-
ization phase and the memory registration of large messages
require its assistance (see Figure 1). All the actual commu-
nication management is implemented in the user-space li-
brary and in the firmware. The MX firmware is also respon-
sible for using ETHERNET headers when talking to regu-
lar ETHERNET switches (MXoE mode, MX over Ethernet),
to MYRINET specific headers when talking to MYRICOM
switches (native MX mode).

MX Library

MX

Driver

Generic Ethernet Layer

Open−MX Library

Open−MX

Driver

Application

Ethernet Driver

MXoE Firmware Ethernet Board

Ethernet Wires

O
S

 B
y

p
a

s
s

Figure 1. Design of the native MX and generic
Open-MX software stacks.

We chose a similar design for the first OPEN-MX im-
plementation while keeping the opportunity to diverge from
this model later if necessary (see for instance Section 3.3).
However, OPEN-MX cannot rely on any specific hardware
features since only the generic ETHERNET software stack
is available. OPEN-MX is thus implemented on top of the
ETHERNET layer of the LINUX kernel and has to emulate
the native MX firmware (see Figure 1). The OPEN-MX
stack is therefore composed of a user-space library (simi-
lar to the native MX one), and a kernel driver which takes
care of initialization, memory registration and also pass-
ing and receiving raw ETHERNET messages (Socket Buffers,
skbuff).

Since these skbuffs are managed by the ETHERNET layer
in the kernel, OS-bypass is impossible. While MX uses
PIO from user-space, OPEN-MX relies on a system call
which places the application data in a skbuff and passes it to
the ETHERNET driver for sending. Section 3.1 will describe
with more details how socket buffers are used and all data
movements in OPEN-MX.

2.2 MX compatibility

OPEN-MX firstly aims at providing a high-performance
message passing implementation over generic ETHERNET
hardware. Secondly, it enables interoperability between
this hardware and MYRI-10G hardware running the native
MXoE stack. OPEN-MX interoperability with MX actu-
ally focusses on three points. Firstly, OPEN-MX offers the
same application programming interface even though the
underlying implementation differs. Any existing MX appli-
cation such as MPICH or PVFS can be compiled on top of
OPEN-MX.

Secondly, OPEN-MX is wire-compatible with MXoE

so that any generic hardware running OPEN-MX may be
interconnected with a MYRI-10G hardware running MXoE
(see the next Section). Finally, we are planning to have
the OPEN-MX library expose the same binary interface
so that existing MX applications may be relinked without
being recompiled.

2.3 Wire protocol

Wire compatibility is a key feature of OPEN-MX, it is
under experimentation at the Argonne National Laboratory
to provide a PVFS2 transport layer between BLUEGENE/P
compute and I/O nodes. The compute nodes running OPEN-
MX are connected through a BROADCOM 10 gigabit ETH-
ERNET interface to I/O nodes with a MYRI-10G interfaces
running the native MXoE stack.

Apart from some control packets for connection, retrans-
mission and rendezvous, the MX wire protocol is based on
four different communication modes. Large messages (>
32 kB) are processed through zero-copy after a rendezvous
and memory pinning. The sender passes a window handle
to the receiver which pulls data from it by 32 kB fragments.
All other messages use a eager protocol, with either a sin-
gle packet if the length is smaller than the MTU (4 kB) or
up to 8 fragments. Medium messages (from 129 bytes) are
copied in a statically pinned buffer on both sides and the
hardware will transfer them using DMA. Small messages
(below 128 bytes) are optimized on the send side by writ-
ing data in the NIC using a PIO. There also exists a ultra-
optimized mode called Tiny where the control header (also
written by PIO) contains the data (up to 32 bytes) so that a
single PIO is used on the send side.

The wire protocol only enforces the message types,
lengths and fragmentation. It does not force OPEN-MX to
use a similar PIO or DMA implementation. We will detail
in Section 3 how we translated the MX implementation into
OPEN-MX.

2.4 Interrupt-driven model

The main specificity of the OPEN-MX design consists
in the interrupt-driven model that the LINUX kernel ETH-
ERNET layer enforces. While the native MX implementa-
tion may switch between interrupts and polling at runtime
depending on the application behavior, OPEN-MX has to
rely on a interrupt-driven model to receive events. Indeed,
incoming packets are notified to OPEN-MX through a call-
back from the underlying ETHERNET drivers. No polling is
possible.

This callback is responsible for reporting an event and
storing the data in a user-space ring. The library then takes
care of matching incoming messages with posted receives
and of transferring the data to the application buffers. The

library may also sleep until the next event arrives. This sleep
is however very cheap since it only adds a system call and a
rescheduling of the process. It does not add any interrupt as
it does on a native high-performance interconnect. It means
that the latency does not vary significantly when switching
from polling to sleeping on OPEN-MX while it jumps from
roughly 2 to at least 5µs with the native MX.

2.5 Retransmission and Progression

The OPEN-MX user-space library provides the same
features that are available in the native MX library. It
first matches incoming messages against posted receive and
makes communication progress in case of rendezvous. Sec-
ondly, it manages retransmission by acknowledging or re-
sending messages if necessary. This work is done when any
function of the interface is invoked, which means the appli-
cation or the middleware has to explicitly help OPEN-MX
to progress. In the future, we also plan to add an optional
thread to enforce progression and retransmission when the
application does not invoke OPEN-MX often enough.

3 Memory Copy Avoidance

High-performance interconnects try to avoid memory
copy as much as possible to reduce cache pollution, to im-
prove bandwidth and to decrease CPU consumption. These
zero-copy strategies are implemented thanks to the ability
of both the hardware and driver to manipulate all the host
physical memory in a very flexible way. Even if some of
these advanced features have been transfered into the high-
end ETHERNET hardware, it remains less flexible and thus
brings several issues that are presented in this section.

3.1 Socket Buffer Management

The OPEN-MX stack emulates all the MX communi-
cation modes by using the ETHERNET layer of the LINUX
kernel instead of the native MXoE firmware. While MX
uses PIO and DMA to transfer data on the sender side, and
DMA on the receiver side, OPEN-MX has to rely on the
Socket Buffers (skbuff) that all ETHERNET drivers manip-
ulate. The LINUX kernel provides two ways to associate
some data with a skbuff: copying into a linear skbuff or at-
taching physical pages. We now explain how OPEN-MX
tries to achieve high-performance even if the skbuff inter-
face is limited.

Sender side. When the application submits a send re-
quest, the OPEN-MX stack may either copy the data or at-
tach the buffer physical pages to a new skbuff. The under-
lying driver will then actually send it. This raises the ques-
tion of which strategy is faster and less expensive. Since

attaching physical pages first requires to pin the application
buffers into physical memory, this translates to the usual
choice between copy and memory registration on high-
speed interconnects.

MX switches from copy to registration when passing
32 kB buffers. We took the same decision for the first
OPEN-MX implementation: small buffers are copied into
a linear skbuff while large buffers are pinned and attached.
Since most recent ETHERNET drivers and hardwares are
able to setup DMA transfer from skbuffs, large buffers are
then sent without any copy. Figure 2 summarizes the current
OPEN-MX send implementation. It uses as many memory
copies as the native MX, i.e. one for small and medium
messages1, and no copy for large messages.

skbuff skbuff skbuff

large

pinning

small medium

copy

copy

attach
attach

library

driver

statically
pinned ring

OPEN-MX MX
Library Driver Library NIC

Small × Copy PIO ×
Medium Copy Attach Copy DMA

Large Pin Attach Pin DMA

Figure 2. Open-MX send strategies and com-
parison with MX.

We actually observed that memory pinning and trans-
lating virtual addresses into physical is not very ex-
pensive in OPEN-MX. Regular LINUX routines such as
get_user_pages are used for both pinning pages and
translating addresses at once. This is far less expensive than
memory registration than in native high-speed interconnects
such as INFINIBAND because OPEN-MX does not have
to store the address translations into the network interface.
This way, pinning, translating and unpinning in OPEN-MX
costs about 200 ns on an Intel XEON E5345 2.33 GHz pro-
cessor while copying a page costs about 2µs.

We are thus planning to diverge from the MX implemen-
tation by reducing the copy/pin threshold and start attaching
pinned pages at 4 kB instead of 32 kB. Moreover, such a
zero-copy strategy would enable a wider use of registration

1Tiny and Small messages are implemented the same way in OPEN-MX
since there is no notion of single or multiple PIO per send. See Section 2.3
for details about the wire protocol.

cache techniques [11], possibly reducing even more the ap-
parent cost of pinning.

Receiver side. While skbuff management on the sender
side remains simple, the receiver side of OPEN-MX brings
several important issues. Firstly, the OPEN-MX stack can-
not decide where incoming data will be stored by the hard-
ware. The ETHERNET driver is responsible for allocating its
own skbuff and passing it to OPEN-MX once the hardware
has filled it. It makes zero-copy impossible on the receiver
side. This problem is actually not OPEN-MX specific since
any other ETHERNET-based protocol suffers from the same
issues. It led to the design of RDMA-enabled NIC with
modified TCP/IP stacks such as iWARP [8] which lets the
hardware place the data in the right receive buffer. Unfortu-
nately, the interesting performance improvements achieved
through these stacks cannot be obtained with regular ETH-
ERNET hardware due to the aforementioned problem.

Secondly, the interrupt-driven model causes the incom-
ing messages to be processed in the bottom half which is
outside of the application context. Indeed, the underlying
ETHERNET driver takes care of running its receive path in
the bottom half (possibly with multiple instances in parallel
when using some advanced drivers). Once a driver bottom
half completed the skbuff, it immediately calls the OPEN-
MX callback in the same context. It makes memory man-
agement complex since the target page table is not available.

skbuff

large

pinning

skbuff

small medium

library

driver

copy

copy

copy

statically
pinned ring

OPEN-MX MX
Driver Lib NIC Lib

Small Copy Copy DMA Copy
Medium Copy Copy DMA Copy

Large Copy Pin DMA Pin

Figure 3. Open-MX receive strategies and
comparison with MX.

To circumvent these problems, our first OPEN-MX im-
plementation follows the MX receive model: small mes-
sages are received into a statically allocated user-space ring
(the library will copy the data back to the application buffers
after the matching), while large messages are only trans-

ferred after a rendezvous (hence when we know where to
receive them). This solution enables the copy of any in-
coming skbuff at a known location that is already pinned in
physical memory and thus available to the receive callback.
However, it involves two memory copies for small messages
and one for large messages, as summarized on Figure 3.

3.2 Memory Copy Offload with I/O AT

Having one or two memory copies on the receiver side is
an important bottleneck, we will present the corresponding
performance in the next section. We plan to investigate the
offloading of memory copies through the I/O AT hardware
(Intel I/O Acceleration Technology). It is known to help the
receiver side of the TCP stack [12] by reducing the CPU
overhead and cache pollution. We expect it to suit the cur-
rent OPEN-MX model very well since it requires memory
buffers to be pinned in physical memory which is already
the case on our receiver side. We thus plan to use I/O AT
to offload the copy between skbuff and either the user-space
ring for small messages, or pinned large receive buffers.

However, the I/O AT model will bring some new issues
regarding the notification of receive events since it requires
the driver to explicitly poll for offloaded copy completions.
We plan to also offload the copy of the corresponding event
in the user-space ring so that the library retrieves it auto-
matically after the data has been copied. Unfortunately, the
case of an application sleeping until an event occurs will
remain problematic. We might need to implement some pe-
riodic polling on the I/O AT subsystem in order to wakeup
the application when needed.

3.3 Deporting the Matching in the Driver

Having two memory copies for small messages on the
receiver side (see Section 3.1) is caused by the receive call-
back in the driver not knowing where the data should be
copied in the application. Indeed, the target buffer is de-
cided through the matching of incoming messages in the
OPEN-MX user-space library, after the receive callback was
invoked in the driver. We plan to investigate the deporting of
the matching in the driver. If the receive callback can match
incoming messages before copying them, it will be able to
copy them directly at the right location in the application
(instead of in the user-space ring).

However, once more, the receive callback is not guar-
anteed to be running inside the application memory con-
text. Receive buffers will thus have to either be pinned in
physical memory, or the matching and copy will have to
be deported to a dedicated kernel thread. However, doing
so might be bad for small message latency because of the
cost of scheduling this new thread. A compromise might
then be needed between additional copies for small mes-

sages and deported thread with less copies for medium and
large messages.

Another problem that will have to be tackled is unex-
pected messages. Even if this model ensures that matching
will occur in the right software layer, it cannot guarantee
that a matching receive buffer has already been posted by
the application. We will then have to decide between keep-
ing the skbuff in the driver (with a possible memory star-
vation), passing it to a temporary buffer in user-space, or
storing the receive event and letting retransmission resend
the data later.

4 Performance Evaluation

We now present an early evaluation of OPEN-MX by
looking at the MPI performance on dual quad-core ma-
chines2. The OPEN-MX driver was loaded into a LINUX
2.6.22 kernel.

4.1 Basic Performance

We measured the performance of OPEN-MX using the
INTEL MPI benchmark (IMB) on various MPICH lay-
ers: MPICH-P4 for regular TCP/IP networking, MPICH-
MX compiled for OPEN-MX, and the regular MPICH-MX
when MX is available on the machine.

 0

 200

 400

 600

 800

 1000

 256 4096 65536 1048576

B
an

dw
id

th
 (M

bi
t/s

)

Message size (bytes)

MPICH-Open-MX
MPICH-P4

Figure 4. Performance of MPICH-Open-MX
and P4 on Gigabit Ethernet with the Intel MPI
Benchmark PingPong.

Figure 4 presents the performance of the IMB PingPong
between 2 machines connected through gigabit ETHERNET
interfaces3. Both P4 and OPEN-MX layers exhibit a good

2Two Intel XEON E5345 2.33 GHz processors.
3Broadcom NetXtreme II BCM5708 Gigabit, bnx2 driver.

PingPong performance, but the latter achieves 20 % more
bandwidth on average, up to roughly the line rate. On the
latency side, both networks reach about 16µs.

 0

 2000

 4000

 6000

 8000

10000

 256 4096 65536 1048576

B
an

dw
id

th
 (M

bi
ts

/s
)

Message size (bytes)

MPICH-Open-MX
MPICH-MX
MPICH-P4

Figure 5. Performance of MPICH-Open-MX,
MX and P4 on Myricom Myri-10G Ethernet in-
terfaces with the Intel MPI Benchmark Ping-
Pong.

Figure 5 presents the same benchmarks over a 10 giga-
bit ETHERNET network. We chose the MYRICOM MYRI-
10G (myri10ge 1.3.1 driver) interfaces since it also en-
ables comparison with the native MXoE stack. The MXoE
latency is 2.4µs, while OPEN-MX reaches 11.8µs and P4
12.1µs. While MXoE nearly reaches the line rate, MPICH-
P4 saturates around 500 MB/s and OPEN-MX achieves
about 700 MB/s.

We observed similar behaviors with the IMB SendRecv
benchmark (bidirectional communication scheme). It has
to be noted that OPEN-MX is slightly slower than P4 on
medium messages (especially near 32 kB). This is proba-
bly caused by the additional memory copy on the receiver
side (see Section 3.1). We expect to largely improve this by
reworking the receive model as explained earlier.

The OPEN-MX performance is limited by the fact that
the underlying myri10ge driver uses a single bottom-half
and thus enforces the processing of all OPEN-MX incoming
packets on a single core, which is overloaded. We are plan-
ning to look at multi-slices ETHERNET drivers where mul-
tiple instances of the bottom half will enable parallelization
of the OPEN-MX receive path.

The current OPEN-MX design already supports such a
parallelization since very few locks are involved on the re-
ceive path. Indeed, apart from the fast RCU locking [5] that
protects against early endpoint closing or interface removal,
at most two locks are taken for each incoming packet. The
first one is used to serialize the in-order notification of

events to the user-library. The second one is associated with
large messages handles (whose retransmission is taken care
of by the driver) to manage the set of pending and missing
fragments. We are in the process of reducing their holding
time as much as possible to provide a good scalability when
OPEN-MX runs on top of multi-slices drivers with parallel
bottom halves.

4.2 Ethernet driver tuning

The interrupt-driven model that the LINUX ETHERNET
layer enforces for OPEN-MX (see Section 2.4) raises some
important latency issues since it prevents active polling
from the application. Moreover, due to the cost of inter-
rupt processing (a couple microseconds), most ETHERNET
drivers use Interrupt Coalescing to defer packet process-
ing in the host by notifying multiple events through a sin-
gle interrupt. While most IP applications do not care about
latency, OPEN-MX suffers from this and thus requires to
configure interrupt coalescing to achieve low latency.

Interrupt coalescing On Off
MXoE 2.4 2.4

P4 19.5 10.1
OPEN-MX 75.7 9.2

Table 1. Interrupt coalescing influence on MPI
latency (in microseconds) on Myri-10G inter-
faces.

Table 1 presents the MPI latency (measured with IMB
PingPong) between 10 gigabit interfaces. It shows how dis-
abling interrupt coalescing is important for ETHERNET net-
working, while MXoE avoids the problem thanks to the ap-
plication being able to busy poll for receive events.

Unfortunately, disabling coalescing entirely is generally
not a good idea since it increases the host load. One sat-
isfying configuration seems to be setting the coalescing to
the network raw latency. It prevents the OPEN-MX latency
from increasing, and also keeps some coalescing enabled
to reduce the load. In the future, we plan to investigate
the implementation of a protocol-dependent coalescing in
the ETHERNET firmwares and drivers so that OPEN-MX re-
quirements do not impact on other networking stacks such
as TCP/IP. To go further, we even imagine disabling coa-
lescing only for latency-sensitive packets (OPEN-MX small
packets).

5 Related Works

Several research projects did target high-performance
message passing over ETHERNET in the past. The most

popular one is GAMMA [2] which only works on limited
hardware since it uses a modified driver. MULTIEDGE [4]
uses a similar design on recent 1 and 10 gigabit hardware
and thus achieves good bandwidth, but it remains limited to
a pretty high latency. EMP [9] goes even further by modify-
ing the firmware of some programmable boards to achieve
better performance. However, these implementations do not
support any 10 gigabit hardware so far while OPEN-MX re-
lies on the generic ETHERNET layer of LINUX and may thus
use any hardware.

MPI/QMP [1] uses a OPEN-MX-like model, based on
M-VIA, to achieve large bandwidth over multiple regular
ETHERNET connections. PM/ETHERNET-HXB [10] offers
a similar design and supports trunked ETHERNET connec-
tions. They both achieve interesting performance thanks
to multiple underlying ETHERNET connections, but are not
designed for single high-performance connections such as
MYRI-10G. OPEN-MX is designed to efficiently use high
performance ETHERNET hardware and may also transpar-
ently use a trunked connection to aggregate multiple con-
nections.

iWARP has been designed for high-performance TCP/IP
networking, not only for clusters but also for long-
distance connections where the CPU overhead should be
as low as possible. It uses an IB-like model to provide
RDMA semantics at the application level within the TCP
stack. iWARP achieves very good performance on RDMA-
enabled NICs [8]. A software-only implementation is also
available for generic hardware [3] but its performance is
seriously limited since iWARP has been designed mostly
for RDMA-enabled NICs and also because it suffers from
memory copies as OPEN-MX does. We expect future
OPEN-MX implementations to achieve better performance
since it does not suffer from the intrinsic limitations of the
TCP stack and RDMA-enabled NIC model, and can be
optimized for cluster-only environments.

6 Conclusion

In this paper, we presented the design and implementa-
tion of the OPEN-MX software stack. It aims at providing
a high-performance message passing layer over any generic
ETHERNET hardware. OPEN-MX also enables interoper-
ability between such hardware and the MYRICOM’s native
MXoE stack.

Our first OPEN-MX implementation4 is based on the
MX stack with the firmware emulated in a driver in the
LINUX kernel. It already provides interesting perfor-
mance and is able to run MPICH-MX, MPICH2-MX and
PVFS2 applications thanks to the application level com-

4The OPEN-MX source code is available for download from its home-
page at http://open-mx.org/.

patibility. We expect most existing applications that were
designed for MX to work flawlessly on OPEN-MX soon.

The current OPEN-MX design leaves room for large per-
formance improvements. We are profiling the stack under
various benchmarks to locate the bottlenecks such as mem-
ory copies and lock contention. The current sender side re-
mains very simple and enables zero-copy for large messages
at in MX. We firstly plan to diverge from the MX design
for smaller messages to achieve better performance by re-
lying more on memory pining since it is not as expensive
as on high-performance dedicated interconnects. Secondly,
we will investigate the deporting of the matching of incom-
ing messages into the driver to reduce memory copies on
the receiver side. I/O AT will also be studied since it ex-
hibits an interesting model that should suit our receiver side
very well. Thirdly, we are also implementing a pin-down
cache [11] to reduce pinning overhead and increase large
message performance.

We are also working with MYRICOM on the next MX
wire specifications so that OPEN-MX can match line rate
performance more easily. For instance, when wire compat-
ibility with MXoE is enabled, the OPEN-MX bandwidth
currently drops from 700 to about 400 MB/s due to the lim-
ited usage of the MTU (only 4 kB data frame while 9 kB
are available).

Finally, we also plan to look at how to improve the
OPEN-MX latency. A configurable per-ETHERNET-type
or per-packet-type interrupt coalescing should prevent from
increasing the host load uselessly if only OPEN-MX small
packets requires it. In the long term, a challenging idea
would be to modify both software and hardware sides to add
a generic way to poll ETHERNET in order to fill the latency
gap with high-speed interconnects.

References

[1] J. Chen, W. Watson III, R. Edwards, and W. Mao. Message
Passing for Linux Clusters with Gigabit Ethernet Mesh Con-
nections. In IPDPS ’05: Proceedings of the 19th IEEE In-
ternational Parallel and Distributed Processing Symposium
(IPDPS’05) - Workshop 9, Denver, CO, 2005.

[2] G. Ciaccio and G. Chiola. GAMMA and MPI/GAMMA
on gigabitethernet. In Proceedings of 7th EuroPVM-MPI
conference, Balatonfured, Hongrie, Sept. 2000.

[3] D. Dalessandro, A. Devulapalli, and P. Wyckoff. Design
and Implementation of the iWarp Protocol in Software. In
Proceedings of PDCS ’05, Phoenix, AZ, Nov. 2005.

[4] S. Karlsson, S. Passas, G. Kotsis2, and A. Bilas. Multi-
Edge: An Edge-based Communication Subsystem for Scal-
able Commodity Servers. In Proceedings of the 21st In-
ternational Parallel and Distributed Processing Symposium
(IPDPS’07), page 28, Long Beach, CA, Mar. 2007.

[5] P. E. McKenney, J. Appavoo, A. Kleen, O. Krieger,
R. Russell, D. Sarma, and M. Soni. Read-Copy Up-
date. In Ottawa Linux Symposium, July 2001. Avail-

able: http://www.linuxsymposium.org/2001/
abstracts/readcopy.php.

[6] Myricom, Inc. Myrinet Express (MX): A High Performance,
Low-Level, Message-Passing Interface for Myrinet, 2006.
http://www.myri.com/scs/MX/doc/mx.pdf.

[7] The Parallel Virtual File System, version 2. http://www.
pvfs.org/.

[8] M. J. Rashti and A. Afsahi. 10-Gigabit iWARP Ether-
net: Comparative Performance Analysis with Infiniband and
Myrinet-10G. In Proceedings of the International Workshop
on Communication Architecture for Clusters (CAC), held in
conjunction with IPDPS ’07, page 234, Long Beach, CA,
Mar. 2007.

[9] P. Shivam, P. Wyckoff, and D. K. Panda. EMP: Zero-copy
OS-bypass NIC-driven Gigabit Ethernet Message Passing.
In Proceeding of Supercomputing ACM/IEEE 2001 Confer-
ence, Denver, CO, Nov. 2001.

[10] S. Sumimoto, K. Ooe, K. Kumon, T. Boku, M. Sato, and
A. Ukawa. A Scalable Communication Layer for Multi-
Dimensional Hyper Crossbar Network Using Multiple Gi-
gabit Ethernet. In ICS ’06: Proceedings of the 20th In-
ternational Conference on Supercomputing, pages 107–115,
Cairns, Australia, 2006.

[11] H. Tezuka, F. O’Carroll, A. Hori, and Y. Ishikawa. Pin-
down cache: A Virtual Memory Management Technique for
Zero-copy Communication. In Proceedings of the 12th In-
ternational Parallel Processing Symposium, pages 308–315,
Apr. 1998.

[12] K. Vaidyanathan and D. K. Panda. Benefits of I/O Acceler-
ation Technology (I/OAT) in Clusters. In Proceedings of the
International Symposium on Performance Analysis of Sys-
tems and Software, San Jose, CA, Apr. 2007.

