
HAL Id: inria-00275184
https://hal.inria.fr/inria-00275184

Submitted on 22 Apr 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Privacy-Aware Service Integration
Pierre Parrend, Stéphane Frénot, Sebastian Hoehn

To cite this version:
Pierre Parrend, Stéphane Frénot, Sebastian Hoehn. Privacy-Aware Service Integration. 2nd IEEE
International Workshop on Services Integration in Pervasive Environments, Jul 2007, Istanbul, Turkey.
�inria-00275184�

https://hal.inria.fr/inria-00275184
https://hal.archives-ouvertes.fr


Privacy-Aware Service Integration

Pierre Parrend, Stephane Frenot

INRIA ARES/CITI, INSA-Lyon

21, Av. Jean Capelle

F-69621 Villeurbanne, France

pierre.parrend@insa-lyon.fr

stephane.frenot@insa-lyon.fr

Sebastian Höhn

Albert-Ludwig University

Institute of Computer Science and Social Studies

Dept. of Telematics

Friedrichstr. 50

79098 Freiburg, Germany

sebastian.hoehn@iig.uni-freiburg.de

Abstract

Privacy mechanisms exist for monolithic systems. How-

ever, pervasive environments that gather user data to sup-

port advanced services provide little control over the data

an individual releases. This is a strong inhibitor for the de-

velopment of pervasive systems, since most users do not ac-

cept that their personal information is sent out to the wild,

and potentially passed over to third party systems.

We therefore propose a framework to support user con-

trol over the data made available to service providers in

the context of an OSGi based Extensible Service Systems.

A formal privacy model is defined and service and policy

descriptions are deduced. Technical system requirements

to support these policies are identified. Since guaranteeing

privacy inside the system is of little help if any malicious en-

tity can break into it, a security architecture for OSGi based

Extensible Service Systems is also defined.

1 Pervasive Service Systems

In order to evolve from rigid systems or research tools to-

wards dynamic service environments suitable for commer-

cial systems, pervasive systems need to provide security and

privacy during service discovery and execution. Users do

not want their private data to be passed on to third parties,

or extensive profiling to be performed on the basis of the

data they send to perform single requests. Such a control is

extremely difficult to achieve in the case of open pervasive

systems, i.e. systems where unknown providers can offer

their services. Fortunately, this generic case does not match

the current business models of pervasive systems. The latter

can be defined as follows: one Service Provider is respon-

sible for making services available to users and for ensur-

ing that they are allowed to access them. The master Ser-

vice Provider typically calls on subcontractors to advertise

a large set of services. He is responsible for the publication

of services and for the quality of service (and hence also

privacy and security requirements).

Among possible use cases are automotive telematic sys-

tems [5, 12], which allow drivers to find their way using real

time traffic information, to be informed of nearby restau-

rants or to use on-board information systems. A second

example are Home Gateway systems [9], which let users

manage their home appliances and install new software ex-

tensions. A third is the retail store, which uses RFID chips

to track supplies bought by the customers and provides ad-

ditional commercial information or for instance vocal infor-

mation on available products for the visually impaired.

The services in such pervasive systems are made avail-

able under two complementary forms: either remotely ac-

cessible services (e.g. Web Services ), or downloadable

(OSGi) code bundles, which provide services that are lo-

cally accessible. These we call Pervasive Service Systems.

Privacy can be achieved in this context by controlling the

data that is collected by all (remote and local) services and

the propagation of this data. Therefore, the privacy proper-

ties of each service must be published as service meta-data.

Trustworthiness of meta-data can be achieved in business

scenarios because one single provider is responsible for

publishing the services and their meta-data. The providers

have therefore a strong incentive to publish correct declara-

tions, in order to maintain their business relationships. Fur-

thermore, meta-data can be considered a legal contract and

law suits are initiated if these contracts are not respected

[14].

The goal of this paper is to provide a framework for mon-

itoring the privacy properties of Pervasive Service Systems,

along with the technical requirements it implies. The frame-

work is a compound of two elements: an architecture for

secure interactions between the users and the pervasive sys-

tem and a meta-data language that expresses privacy prop-



erties of services and user-defined policies.

This paper is set out as follows. Section 2 presents the

security architecture for Pervasive Service Systems and sec-

tion 3 the privacy model for such systems. Section 4 dis-

cusses the technical requirements of the end-user execution

platform for privacy policy enforcement.

2 Secure Architecture for Pervasive Services

Provisioning

The security architecture is a strong requirement for

privacy-aware systems: if an attacker can gain access to per-

sonal information all other countermeasures become use-

less.

First, the service publication and provisioning processes

are defined. Secondly, a security analysis of this architec-

ture is performed.

2.1 Architectural Overview

Highly dynamic systems need to support runtime exten-

sion: in the case of automotive services, the change of local-

ization often implies the modification of available services;

in the case of Home Services, new devices are bought by

the users and their functionalities need to be supported; in

the case of the Future Supermarket, the user can go to one

or another store, or specific shelves may be bound to spe-

cific services within the same store. Two complementary

mechanisms can be used to support the runtime extensibil-

ity of such systems: (1) the discovery of remote services

(as in SOA systems), and (2) the runtime extension feature

provided by the OSGi platform, which makes it possible

to install new applicative bundles without perturbating the

running services (in particular without the need to reboot).

Two steps are necessary to enable the end-user take ad-

vantage of the services: the publication of those services

(in the form of bundles or of remote services), and their

provisioning by the user. The provisioning means the pro-

cess of discovery, selection, validation and integration of

the services in the user system. The end-user can either act

directly to obtain new services or the system performs this

operation automatically to update the services, adapt them

to an evolving context or ensure the continuity in front of

changing services.

Two protocols are defined: one for the discovery and

provisioning of remote services and the other for bundles.

The protocols are parallel: the client system gets the list

of available services and automatically selects the ones that

are compliant with local policies. The users can select the

services/bundles they actually want to use. In the case of

bundles, these latter are downloaded and installed. The ap-

plications can then be used. Figure 1 shows this protocol in

the case of OSGi bundles.

Service Provider:Client:

getBundleList()

selectPolicyCompliantBundles()

selectBundlesToInstall()

getBundles()

installBundles()

runApplication()

Figure 1. Bundle Discovery and Provisioning

The monitoring of privacy in highly dynamic systems is

based on two fundamental requirements. First, the architec-

ture needs to be protected against external aggressions and

malicious actors. Then, a framework for ensuring policy-

compliant service behavior inside the system is required.

2.2 Security Analysis

The protection of the Pervasive Service Architecture is

achieved through two complementary elements: a service

supplier side security control and a client side security con-

trol. The security modules on the client execution platform

are also presented. The reference security properties for a

distributed system are confidentiality, integrity and avail-

ability [7]. These properties must be enforced on the sup-

plier side as well as on the client side.

The service providers must ensure that the services they

propose use secure communication channels for service ac-

cess and for bundle deployment. This enforces the prop-

erty of confidentiality and integrity of the communication

against eavesdropping and man-in-the-middle attacks. It

must also guarantee that the users that access the services

are allowed to do so. Next, to limit the potential reliabil-

ity weaknesses that could result in security breaches on the

client side, the provider must guarantee that the remote ser-

vices and bundles do not introduce reliability weaknesses.

This is typically achieved through extensive testing or use of

fuzzing techniques, i.e. giving random data as service input

to stress them. Lastly, the service provider is responsible for

providing security and privacy meta-data for the services. In

the considered use cases, a single service provider manages

the system. It is considered as trusted with regard to meta-

data publication, since the commercial service provider will

not provoke inconsistency in the behavior of services.

2



The client execution environment must supervise these

properties on its own side. The communication channel

must be protected to ensure confidentiality and integrity.

The remote servers must be authenticated to prevent the use

of malicious services or installation of malicious bundles.

Moreover, the client platform must check the compliance

of advertised services with local security policies. Lastly,

the client platform should have satisfactory reliability prop-

erties and be robust against ill-formed bundles and services.

3 Privacy Model

The Privacy Model for Pervasive Service Systems sup-

ports the expression of the data available and of their manip-

ulation. It is based on a formal representation, and imple-

mented as two complementary data sets: the privacy related

behavior of the services, and the user policies that describe

the acceptable behavior of the services used.

3.1 Formal Foundation

Several formal models for describing privacy require-

ments and obligations have been developed. The most ade-

quate ones [1, 3] are based on temporal logic and are very

well suited to describe privacy requirements in general. An

integration of two things is currently missing: (1) attributes

and their association to individuals and (2) the context of

the administrative domains the different service are operat-

ing in.

Attributes are at the center of privacy and hence its for-

mal models because each data profile consists of a collec-

tion of attributes from a given individual. What becomes

more important in service-oriented systems is distribution

of the services and their providers. Current models focus on

an e-business scenario where one provider interacts with the

users and collects, stores and processes data. This bilateral

relationship is no longer common to the upcoming architec-

tures: services are provided by a plethora of providers and

a plethora of services from one provider is consumed. So

the underlying privacy model must be adapted to this new

scenario. The different providers and their administrative

domain must become part of the model. Privacy threats in

general can only arise from the providers’ view on the data,

if we assume that it is too costly to merge databases that

arise from different administrative domains or if we deploy

protocols to ensure unlinkable transactions [15].

The different entities of this privacy model is a finite set

Id of users identified by a unique name. A set of local ac-

tions Acti details the way these users interact with the sys-

tem. The information that is collected about a specific user

is a set of attributes A. This set is allocated to the individ-

uals in a given context. That means there exists a relation

Id × A which associates these attributes to the individuals.

If we consider the consumers’ point of view in this ap-

proach, we need a notion of administrative domains. Other

models lack this point of view because they either take the

service providers’ point of view or a global one. Both of

them are not very well suited to describe privacy require-

ments of individuals in a rather complex scenario. An ad-

ministrative domain encompasses a collection of attributes

that the individuals share with this domains’ systems. If we

consider two services that are provided by the same service

provider, we realize that the attributes shared with each of

the services can easily be linked and added to the profile

by the provider. Although the architecture encompasses a

single “master provider” that guarantees the quality of the

meta-data presented to the user, this provider will certainly

have subcontractors fulfill certain tasks. These subcontrac-

tors are to be modeled very closely in order to make state-

ments on the users’ privacy policies. There exists a finite

set of administrative domains D. Each of these domains

d ∈ D has a dataset κd, which consists of the attributes the

systems of this domain have collected over time. κd is a

subset of a × Id, the set of attributes of given users. There

may also exist a membership relation between the individ-

uals and the administrative domains: the set of members of

an administrative domain Md is a subset of D × Id.

Each action Acti that is performed takes place in an ad-

ministrative domain d. We denote this as @d[Acti]. This is

important because individuals might change their member-

ship within an administrative domain and hence can spread

their knowledge.

The dataset of a given domain is not static. As the mem-

bers of the different domains start interacting with each

other, i.e. they share messages on different attributes of in-

dividuals, they spread these attributes throughout the differ-

ent datasets. Furthermore it is possible for the providers of

the datasets to derive new information from a given subset

of attributes. For example, if we know the birthday of an

individual, we might easily calculate its age. In real sce-

narios this is a lot more complex: we assume that attributes

are rather complex and possibly contain unique identifiers.

These complex attributes can be linked together and the

evolution of these attributes over time reveals new infor-

mation, i.e. additional attributes of the individuals. For de-

riving new attributes from the current dataset we define a

set of production rules for each of the datasets. Where each

of these rules intuitively consists of an “if part” and a “then

part”. The “if part” is Pif is a subset of the attributes Pi of

an individual i: Pif ⊆ Pi. The “then part” is one of the

individual’s attributes ai. The set of the production rules is

hence defined as Rp ⊆ Pif × ai.

3



3.2 Implementation of Meta-data and
Policies

The formalization presented above brings us into a po-

sition where we can express the parts of a service-oriented

system: (1) services are the actions (2) an individual user

can perform. (3) data attributes and (4) administrative do-

mains are explicitly modeled. Together with the produc-

tion rules and formulae given in an adequate logical rep-

resentation, we can express privacy requirements. Produc-

tion rules are necessary because we must assume that the

attacker will use data mining techniques to aggregate the

information that is needed for a given exploit.

To efficiently establish the model, meta-data must be re-

duced to a smaller number of possible elements. It is not

reasonable, though formally correct, to define each of the

services as one action. This definition would not allow for a

semantic interpretation of the model unless a detailed ser-

vice description is provided with each of these services.

Since the evaluation of the impact on the users’ privacy can-

not be inferred automatically (unless these descriptions are

modeled once again and we get into a recursive situation

here), we do not get one step ahead from the current situa-

tion (where we have written privacy policies and someone

must read them and judge the impact on the users’ privacy).

To this end, it is necessary to define a subset of actions that

are suited to harm the users’ privacy. This is reading, writ-

ing, modification and sending of personal data. Each of

the services contains in its meta-data the actions it performs

with the personal data.

The same considerations hold for the data attributes.

Data attributes are a lot more complicated because they are

domain specific. We will certainly not be able to define a

generic set of attributes that can be collected on people. To

this end, it is necessary to define an application specific set

of attributes. This is not a new issue as this definition has

successfully been implemented in the area of identity man-

agement for several years [15]. The predefined set of at-

tributes then has a clear semantics to the end users (e.g their

birthdays) and they can easily estimate the impact their dis-

closure might have.

Administrative domains are once again rather generic.

There exists a set of domains (for example, named accord-

ing to their providers). Each of these domains has a distinct

level of trust. This trust is specific for each of the users

and cannot (and need not) be part of the model. Trust de-

pends on many factors, for example, if a contract between

the user and the provider exists or a subcontract from the

“main provider” only.

We can then provide the users with a realistic estima-

tion of the data profiles saved with each of the different

providers. This information must be visualized in an ade-

quate manner because it can be rather complex. A summary

can easily be prepared if we once again consider the partial

identities we gathered from the identity management mech-

anisms we have at hand. As long as the data distribution

corresponds to the partial identities provided by the user,

there is no need to react. As soon as one of the providers is

able to bring together different attributes from different in-

teractions and establish a profile that is larger than the par-

tial identities used by the client, there is possibly a need to

react (or at least a need to review the situation).

For automating the analysis of privacy requirements, the

question arises as to how this information can be securely

integrated in current architectures. It is infeasible to man-

ually collect all the information needed to perform the dif-

ferent privacy checks. Although this might be possible in

static (or slowly evolving) systems, it is certainly a daunting

and error-prone task. This is overly true if services are ag-

gregated dynamically and used only once. To this end, it is

necessary to provide this information as a part of the service

description. Together with the syntactic description of the

services (e.g. given in WSDL), we provide these meta-data

in an adequate XML syntax. This allows for an automated

evaluation of meta-data without manual interaction from the

users.

4 Discussion: System Requirements

No full control can realistically be performed to verify

that the advertised privacy behavior of the services is en-

forced. However, to provide no control at all is not really

a deterrent for dishonest service providers. Technical mea-

sures are necessary to increase the degree of trust a user can

put in the system and to make unfair data handling more

difficult.

The following assertions are made: two technical im-

plementations of services exist: code bundles and Remote

(Web) Services. Firstly, no control is possible on remote

services. Service Providers have to be trusted to behave as

they claim to. External code audit and legal obligations are

the main incentives for correct behavior. Secondly, the lo-

cally executed bundles can be checked and controlled, as far

as suitable technologies are available and compatible with

the resources of the users’ terminals.

4.1 Requirements of the Remote Service
Implementation

The reliability of remote service implementations is a

very complex task to tackle. Although different approaches

to express the requirements a service complies with exist

(such as EPAL 1 or P3P2), it is still an open question as

1http://www.zurich.ibm.com/security/enterprise-privacy/epal/
2http://www.w3.org/P3P/

4



to how this compliance can be enforced or at least be ob-

served. To this end, we propose a transparency approach

implemented with the formalization: the users are able to

realize what profiles the different service providers might

aggregate over time. This will help them understand where

privacy issues might arise and which transactions they per-

form only with providers they really trust or which transac-

tions do not pose large privacy issues.

It is obvious that meta-data provided with the services

must be correct. The compliance of the meta-data with the

actual data transfered can be observed by technically inter-

ested users. This means that ways to observe the correctness

exist. Although they might not be accessible for everyone,

due to a lack of technical knowledge, this can be seen as

a trust building mechanism. On the one hand, users can

trust that someone with a better technical background will

find the flaws, on the other hand, caring users might ask a

trusted third party to check the meta-data for compliance.

So the requirements for remote service implementations are

rather low, if we are to implement the observability of pri-

vacy issues only. If we also wish to take into account the

enforcement part, this is still an open research question. For

an overview of the issues that arise, see the excellent classi-

fication and discussion in [3].

4.2 Requirements of the User Platform

The requirements of the OSGi user platform are as fol-

lows. First, the platform must prevent actions that are not

compatible with the defined policy. Secondly, services need

to be isolated from each other. Thirdly, local sniffers should

not be able to interact with trusted services, even when they

are installed on the user platform.

Unauthorized action prevention can be performed

through Java Permissions. For instance, network access or

file system access can be forbidden to specific bundles. The

limitation of Java Permissions is that they must be set at

launch time of the virtual machine and cannot be dynami-

cally modified. Since the OSGi platform support the addi-

tion and removal of code bundles without system restart, oc-

casional reboot cannot be an option of updating the permis-

sion configuration. Permissions can be set according to the

code location or according to the signer of the code. Since

code location is dynamic in OSGi based systems, digital

code signature should be used to bind bundles with suitable

permissions. This means that permission profiles must be

defined beforehand and that the Service Provider signs each

bundle with the signature for this permission profile. A risk

exist that a given bundle does not exactly match a defined

profile and must thus be granted more permissions than it

actually needs.

The second privacy requirement is that services cannot

access each other without control. Controlling whether a

given bundle can provide or look up services is a default

behavior of the OSGi Platform [8]. However, no mech-

anism currently exist to control the services a bundle (or

the services it provides) can access. This clearly makes

the enforcement of the policies defined in section 3.2 cur-

rently not possible. A radical solution is to provide strong

namespace isolation between the services, as proposed in

the Virtual OSGi approach [13]. However, no fine-grained

control is possible, since all interactions between services

are prevented. Therefore, the approach is used to support

multi-provider environments. For fine grained isolation, ad-

ditional mechanisms are required. They are defined in sec-

tion 4.3.

The last privacy requirement is the protection against lo-

cal sniffers: Unidentified code should not be able to access

services that are regularly installed. Such alien code should

be rejected at install time through the security mechanisms

(see section 2). If they are not, fine-grained service isola-

tion mechanisms should prevent them from accessing other

resources.

4.3 Isolation between Bundles

To support privacy policies, a fine-grained isolation

mechanism must be defined. Two possible approaches ex-

ist. First, the OSGi platform is to be modified to control

the service resolution and to check its compatibility with

the defined policy. Secondly, it is possible to adapt the ex-

isting Service Binding mechanisms to provide this isolation

without modifying the framework itself.

The mechanism that supports service publication and

resolution in the OSGi framework is the Bundle Context.

This context must therefore be modified so as to support

isolation between the advertised services. The Bundle Con-

text is accessed through an inversion of control mechanism,

i.e. each bundle has a reference to the Context and uses

this reference to perform service management operations.

Consequently, when the Context performs a service lookup,

it cannot easily identify the bundle (or the service) on be-

half of which the lookup is performed. The Context itself

needs to be modified: a bundle should be able only to look

up services it is allowed to access. This can be achieved

through a RestrictedContext, which is generated at the in-

stallation of the bundle and contains a list of the services

that can be resolved at lookup. When the bundle is started

through its Activator class, it gets a RestrictedContext, in-

stead of a BundleContext instance. Inheritance is exploited

to preserve transparency for the bundle code. The regis-

terService, getServiceReference and getServiceReferences

methods are overwritten to enforce the policy. Since a spe-

cific RestrictedContext instance exist for each bundle, pol-

icy runtime update is possible. For the same reason, all

services provided by a given bundle must share the same

5



privacy profile.

An alternative to BundleContext modification is the def-

inition of a Secure Service Binding, which would be based

on the OSGi service binder [2]. A third party bundle is used

to perform the linking between the client service and the

‘servant’, i.e. the service that is advertised. The privacy pol-

icy could easily be enforced in the Service Binder. More-

over, different implementations of the Service Binder could

provide different types of access control policies: Role

Based Access Control, Mandatory Access Control, Discre-

tionary Access Control, and so on. However, there is an

important limitation to this approach: the service binder is

an optional layer to OSGi and making it mandatory would

prevent all bundles that are not specifically developed for it

to be used (at least without modification).

5 Conclusion and Perspectives

We have presented a security architecture, formalization

and classification of meta-data for hybrid service systems.

We could furthermore show that different requirements for

remote services and downloadable bundles exist. To this

end, it is necessary to find integrated approaches that can

cope with the issues related to remote services as well as

with those related to downloadable bundles.

These results form the basis for a closer investigation of

the complex interplay of static security requirements and

dynamic ones arising from the dynamic aggregation of code

from different sources and the usage of remote services.

References

[1] A. Barth, A. Datta, J. C. Mitchell, and H. Nissenbaum. Pri-

vacy and contextual integrity: Framework and applications.

In SP ’06: Proceedings of the 2006 IEEE Symposium on Se-

curity and Privacy (S&P’06), pages 184–198, Washington,

DC, USA, 2006. IEEE Computer Society.

[2] H. Cervantes and R. S. Hall. Automating service depen-

dency management. in a service-oriented component model.

In ICSE CBSE, 2003.

[3] M. Hilty, D. Basin, and A. Pretschner. On obligations. In

10th European Symposium On Research In Computer Secu-

rity, LNCS. Springer, September 2005.

[4] S. Höhn. Bringing the user back into control: A new

paradigm for usability in highly dynamic systems. In Trust

and Privacy in Digital Business, Lecture Notes in Computer

Science, pages 114–122. Springer Verlag, 2006.

[5] S. Merk, K. Scheidemann, M. Rudorfer, T. Stauner, J. Gru-

enbauer, G. Popp, and G. Wimmel. Security for download-

able automotive services. In ESCAR Conference, 2004.

[6] G. Müller. Privacy and security in highly dynamic systems:

Introduction. Commun. ACM, 49(9):28–31, 2006.

[7] G. Müller and A. Pfitzmann, editors. Multilateral Security

in Communications. Informationsecurity. Addison-Wesley,

3. edition, 1999.

[8] OSGi Alliance. Osgi service platform, core specification

release 4. Draft, July 2005.

[9] P. Parrend and S. Frenot. A security analysis for home gate-

way architectures. In International Conference on Cryptog-

raphy, Coding & Information Security, CCIS 2006, Novem-

ber 24-26, Venice, Italy, November 2006.

[10] Rafael Accorsi. On the Relationship of Privacy and Secure

Remote Logging in Dynamic Systems. In Proceedings of

the International Information Security Conference Security

and Privacy in Dynamic Environments, 2006.

[11] Rafael Accorsi and Adolf Hohl. Delegating Secure Logging

in Pervasive Computing Systems. In Proceedings of the In-

ternation Conference on Pervasive Computing, 2006.

[12] J. Raue. B2v palace – presence and location awareness in

a collaborative environment. Technical report, BMW Re-

search and Albert-Ludwig-University Freiburg, 2007.

[13] Y. Royon, S. Frenot, and F. LeMouel. Virtualization of ser-

vice gateways in multi-provider environment. In Component

Based Software Engineering, 2006.

[14] S. Sackmann, J. Strüker, and R. Accorsi. Personalization

in privacy-aware highly dynamic systems. Commun. ACM,

49(9):32–38, 2006.

[15] S. Wohlgemuth and G. Müller. Privacy with delegation of

rights by identity management. In G. Müller, editor, ETRICS

2006, volume 3995 of Lecture Notes in Computer Science,

pages 175–190. Springer Verlag, 2006.

6


