
HAL Id: inria-00277378
https://hal.inria.fr/inria-00277378

Submitted on 6 May 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Lock-based Protocol for Software Transactional
Memory

Damien Imbs, Michel Raynal

To cite this version:
Damien Imbs, Michel Raynal. A Lock-based Protocol for Software Transactional Memory. [Research
Report] PI 1893, 2008, pp.26. �inria-00277378�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50265895?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00277378
https://hal.archives-ouvertes.fr


I  
 R

   I
   S

   A
IN

S
T
IT

U
T
 D

E
 R

E
C

H
E
R

C
H

E
 E

N
 IN

FO

R
M

ATIQ
UE E

T S
YSTÈMES ALÉATOIRES

P U  B  L  I  C  A  T  I  O  N
I  N  T  E  R  N  E
No

I R I S A
CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCEIS

S
N

 1
16

6-
86

87

1893

A LOCK-BASED PROTOCOL
FOR SOFTWARE TRANSACTIONAL MEMORY

D. IMBS M. RAYNAL





INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTÈMES ALÉATOIRES

Campus de Beaulieu – 35042 Rennes Cedex – France
Tél. : (33) 02 99 84 71 00 – Fax : (33) 02 99 84 71 71

http://www.irisa.fr

A Lock-based Protocol
for Software Transactional Memory

D. Imbs* M. Raynal**

Systèmes communicants
Projet ASAP

Publication interne n ˚ 1893 — Mai 2008 — 23 pages

Abstract: The aim of a software transactional memory (STM) system is to facilitate the design of concur-
rent programs, i.e., programs made up of processes (or threads) that concurrently access shared objects. To
that end, a STM system allows a programmer to write transactions accessing shared objects, without having
to take care of the fact that these objects are concurrently accessed: the programmer is discharged from the
delicate problem of concurrency management. Given a transaction, the STM system commits or aborts it.
Ideally, it has to be efficient (this is measured by the number of transactions processed per time unit), while
ensuring that as few transactions as possible are aborted. From a safety point of view (the one addressed in
this paper), a STM system has to ensure that, whatever its fate (commit or abort), each transaction always
operates on a consistent state.

STM systems have recently received a great attention. Among the proposed solutions, lock-based sys-
tems and clock-based systems have been particularly investigated. This paper presents a new lock-based
STM system designed from simple basic principles. Its main features are the following: it (1) does not re-
quire the shared memory to manage several versions of each object, (2) uses neither timestamps, nor version
numbers, (3) aborts a transaction only when it conflicts (with some other live transaction), (4) never aborts
a write only transaction, (5) employs only bounded control variables, and (6) has no centralized contention
point.

Key-words: Atomic operation, Commit/abort, Concurrency control, Consistent global state, Lock, Opacity,
Shared object, Software transactional memory, Transaction.

(Résumé : tsvp)

* IRISA, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France damien.imbs@irisa.fr
** IRISA, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France, raynal@irisa.fr

Centre National de la Recherche Scientifique Institut National de Recherche en Informatique
(UMR 6074) Université de Rennes 1 – Insa de Rennes et en Automatique – unité de recherche de Rennes



Un protocole pour les mémoires transactionnelles fondé sur les verrous

Résumé : Ce rapport présente un protocole fondé sur les verrous pour les mémoires transactionnelles.

Mots clés : Atomicité, Contrôle de la concurrence, Etat global cohérent, Mémoire transactionnelle, Object
partagé, Opacité, Transaction, Verrou.



A Lock-based Protocol for Software Transactional Memory 3

1 Introduction

Software transactional memory Recent advances in technology, and more particularly in multicore pro-
cessors, have given rise to a new momentum to practical and theoretical research in concurrency and syn-
chronization. Software transactional memory (STM) constitutes one of the most visible domains impacted
by these advances.

Being that concurrent processes (or threads) that share data structures (base objects) have to synchronize,
the transactional memory concept originates from the observation that traditional lock-based solutions have
inherent drawbacks. On one side, if the set of data whose accesses are controlled by a single lock is too
large (large grain), the parallelism can be drastically reduced, while, on another side, the solutions where a
lock is associated with each datum (fine grain), are difficult to master and error-prone. Moreover, finding
solutions that are neither large grain nor fine grain-based, usually rests on tricks from which no general
solution can be extracted (when looking for a solution that could provide a general framework from which
simple customized solutions could be derived).

The software transactional memory (STM) approach has been proposed in [21]. Considering a set of
sequential processes that accesses shared objects, it consists in decomposing each process into (a sequence
of) transactions (plus possibly some parts of code not embedded in transactions). This is the job of the
programmer. The job of the STM system is then to ensure that the transactions are executed as if each was
an atomic operation (it would make little sense to move the complexity of concurrent programming from the
fine management of locks to intricate decompositions into transactions). So, basically, the STM approach is
a structuring approach. (STM borrows ideas from database transactions; there are nevertheless fundamental
differences with database transactions that are examined below [10].)

Of course, as in database transactions, the fate of a transaction is to abort or commit. (According to its
aim, it is then up to the issuing process to restart -or not- an aborted transaction.) The great challenge any
STM system has to take up is consequently to be efficient (the more transactions are executed per time unit,
the better), while ensuring that few transactions are aborted. This is the fundamental tradeoff each STM
system has to address. Moreover, in the case where a transaction is executed alone (no concurrency) or in
the absence of conflicting transactions, it should not be aborted. Two transactions conflict if they access the
same object and one of them modifies that object.

Consistency of a STM In the past recent years, several STM concepts have been proposed, and numerous
STM systems have been designed and analyzed. On the correctness side (safety), an important notion
that has been introduced very recently is the concept of opacity. That concept, introduced and formalized
by Guerraoui and Kapałka [12], is a consistency criterion suited to STM executions. Its aim is to render
aborted transactions harmless.

The classical consistency criterion for database transactions is serializability [17] (sometimes strength-
ened in “strict serializability”, as implemented when using the 2-phase locking mechanism). The serializ-
ability consistency criterion involves only the transactions that are committed. Said differently, a transaction
that aborts is not prevented from accessing an inconsistent state before aborting. In a STM system, the code
encapsulated in a transaction can be any piece of code and consequently a transaction has to always operate
on a consistent state. To be more explicit, let us consider the following example where a transaction contains
the statement x ← a/(b − c) (where a, b and c are integer data), and let us assume that b − c is different
from 0 in all the consistent states. If the values of b and c read by a transaction come from different states,
it is possible that the transaction obtains values such as b = c (and b = c defines an inconsistent state).
If this occurs, the transaction raises an exception that has to be managed by the process that invoked the

PI n ˚ 1893



4 D. Imbs & M. Raynal

corresponding transaction1 . Such bad behaviors have to be prevented in STM systems: whatever its fate
(commit or abort) a transaction has to always see a consistent state of the data it accesses. The important
point is here that a transaction can (a priori) be any piece of code (involving shared data), it is not restricted
to predefined patterns. This also motivates the design of STM protocols that reduce the number of aborts
(even if this entails a slightly lower throughput for short transactions). Roughly speaking, opacity extends
serializability to all the transactions (be them committed or aborted). Of course, a committed transaction
is considered entirely. Differently, only an appropriately defined subset of an aborted transaction has to be
considered.

Opacity (like serializability) states only what is a correct execution, it is a safety property. It does not
state when a transaction has to commit, i.e., it is not a liveness property. Several types of liveness properties
are investigated in [20].

Context of the work Among the numerous STM systems have been designed in the past years, only three
of them are considered here, namely, JVSTM [8], TL2 [9] and LSA-RT [19]. (These three systems are
briefly described in Appendix A.) This choice is motivated by (1) the fact that (differently from a lot of
other STM systems) they all satisfy the opacity property, and (2) additional properties that can be associated
with STM systems.

Before introducing these properties, we first consider underlying mechanisms on which the design of
STM systems are based.
• From an operational point of view, locks and (physical or logical) clocks constitute base synchroniza-

tion mechanisms used in a lot of STM systems. Locks allow mutex-based solutions. Clocks allow to
benefit from the progress of the (physical or logical) time in order to facilitate the validation test when
the system has to decide the fate (commit or abort) of a transaction. As a clock can always increase,
clock-based systems require appropriate management of the clock values.

An important design principle that differentiates STM systems is the way they implement base objects.
More specifically we have the following.
• Two types of implementation of base objects can be distinguished, namely, the single version im-

plementations, and the multi-version implementations. The aim of the latter is to allow the commit
of more (mainly read only) transactions, but requires to pay a higher price from the shared memory
occupation point of view.

On a “property” side, a STM implementation can be characterized by the fact it satisfies or not important
additional properties. We consider here the visibility/invisibility of the read operations, and the progressive-
ness property.
• Let us consider the read operations on the shared objects issued by the transactions. These read op-

erations are invisible if their implementation never entails updates of the underlying control variables
(kept in shared memory). It follows that, when the read operations are invisible, it is not possible for
an observer -that would observe the shared memory updates- to know if a transaction has read or not
some object. This property can be useful from a transaction confinement point of view.

• The progressiveness notion, introduced in [12], is a safety property from the commit/abort termination
point of view: it defines an execution pattern that forces a transaction not to abort another one.

As already indicated, two transactions conflict if they access the same base object and one of them
updates it. The STM system satisfies the progressiveness property, if it “forcefully aborts T1 only
when there is a time t at which T1 conflicts with another concurrent transaction (let T2) that is not
committed or aborted by time t” [12].

1Even worse undesirable behaviors can be obtained when reading values from inconsistent states. This occurs for example when
an inconsistent state provides a transaction with values that generate infinite loops.

Irisa



A Lock-based Protocol for Software Transactional Memory 5

ET1

T1

T2 T2

X.read()

X.write() X.write()

X.read()

Time t Time t

ET2ET2

T1

BT2
BT2

ET1
BT1

BT1

Figure 1: The progressiveness property

As an example, let us consider Figure 1 where two patterns are depicted. Both involve the same
conflicting concurrent transactions T1 that writes X , and T2 that reads X (each transaction execution
is encapsulated in a rectangle). On the left side, T2 has not yet terminated when T1 reads X . In that
case, the progressiveness property does not prevent T 1 from being aborted due to T2. On the right side,
T2 has terminated when T1 reads X . In that case, if the STM system guarantees the progressiveness
property, T1 cannot be aborted due a conflict with T2.

Finally a last criterion to compare STM systems lies in the way they cope with lower bound results
related to the cost of read and write operations.
• Let k be the number of objects shared by a set of transactions. A theorem proved in [12] states the

following. For any STM protocol that (1) ensures the opacity consistency criterion, (2) is based on
single version objects, (3) implements invisible read operations, and (4) ensures the progressiveness
property, each read/write operation issued by a transaction requires Ω(k) computation steps in the
worst case. This theorem shows an inescapable cost associated with the implementation of invisible
read operations as soon as we want single version objects and abort only due to conflict with a live
transaction.

Considering the previous list of items (base mechanisms, number of versions, additional properties,
lower bound), Table 1 indicates how each of the TL2, LSA-RT and JVSTM, behaves. While traditional
comparisons of STM systems are based on efficiency measurements (usually from benchmark-based simu-
lations), this table provides a different view to compare STM systems.

System TL2 [9] LSA-RT [18] JVSTM [8] This paper

Clock-free no no no yes
Lock-based yes no yes yes

Single version yes no no yes

Invisible read operations yes yes yes no
Progressiveness no yes no yes

Circumvent the Ω(k) lower bound yes no yes yes

Table 1: Properties ensured by protocols (that satisfy the opacity property)

Content of the paper The Ω(k) lower bound states an inherent cost for the STM systems that want to
ensure invisible read operations and progressiveness while using a single version per object. When looking
at Table 1, we see that, while both TL2 and JVSTM implement invisible read operations, each circumvents
the Ω(k) lower bound in its own way. JVSTM uses several copies of each object and does not ensure the
progressiveness property. TL2 does not ensure the progressiveness property either (it has even scenarios in
which a transaction is directed to abort despite the fact it has read consistent values).
PI n ˚ 1893



6 D. Imbs & M. Raynal

Progressiveness is a noteworthy property. As already indicated, it states circumstances where transac-
tions must commit2. Considering consequently progressiveness as a first class property, this paper presents
a new STM system that circumvents the Ω(k) lower bound and satisfies the progressiveness property. To
that end it employs a single version per object and implements visible read operations. Moreover, differently
from nearly all the STM systems proposed so far, whose designs have been driven mainly by implementa-
tion concerns and efficiency, the present paper strives for a protocol with powerful properties that can be
formally proved. Its formal proof gives us a deeper understanding on how the protocol works and why it
works. Combined with existing protocols, it consequently enriches our understanding of STM systems.

Finally, let us notice that the proposed protocol exhibits an interesting property related to contention
management. The shared control variables associated with each object X (it is their existence that make
the read operations visible) can be used by an underlying contention manager [11, 22]. If the contention
manager is called when a transaction is about to commit, it can benefit from the content of these variables
to decide whether to accept the commit or to abort the transaction in case this abort would entail more
transactions to commit3.

Roadmap The paper is made up of 5 sections. Section 2 describes the computation model, and the safety
property we are interested in (opacity, [12]). The proposed protocol is presented incrementally. A base
protocol is first presented in Section 3. This STM protocol (also called STM system in the following)
associates a lock and two atomic control variables (sets) with each object X . It also uses a global control
variable (a set denoted OW ) that is accessed by all the update transactions (when they try to commit). This
protocol is proved in Section 4. Then, Section 5 introduces the final version of the protocol. The resulting
STM system has the following noteworthy features. It (1) does not require the shared memory to manage
several versions of each object, (2) does not use timestamps, (3) satisfies the progressiveness property, (4)
never aborts a write only transaction, (5) employs only bounded control variables, and (6) has no centralized
contention point.

2 Computation model and problem specification

2.1 Computation model

Base computation model: processes, base objects, locks and atomic registers The base system (on
top of which one has to build a STM system) is made up of n asynchronous sequential processes denoted
p1, . . . , pn (a process is also sometimes denoted p) that cooperate through read/write base objects, locks,
and atomic registers. The shared objects are denoted with upper case letters (e.g., the base object X). A
lock, with its classical mutex semantics, is associated with each base object X .

Each process p has a local memory (a memory that can be accessed only by p). Variables in local
memory are denoted with lower case letters indexed by the process id (e.g., lrsi is a local variable of pi).

High (user) abstraction level: transactions From a structural point of view, at the user abstraction level,
each process is made up of a sequence of transactions (plus some code managing these transactions). A
transaction is a sequential piece of code (computation unit) that reads/writes base objects and does local
computations. At the abstraction level at which the transactions are defined, a transaction sees only base
objects, it sees neither the atomic registers nor the locks. (Atomic registers and locks are used by the STM
system to correctly implement transactions on top of the base model).

2This can be particularly attractive when there are long-lived read-only transactions
3Such a contention manager has to be fed with inputs (set of transactions) in order to select which transaction has to preferably

be aborted. It seems more difficult to benefit from time-based STM protocols to feed a contention manager.

Irisa



A Lock-based Protocol for Software Transactional Memory 7

A transaction can be a read-only transaction (it then only reads base objects), or an update transaction (it
then modifies at least one base object). A write-only transaction is an update transaction that does not read
base objects. A transaction is assumed to be executed entirely (commit) or not at all (abort). If a transaction
is aborted, it is up to the invoking process to re-issue it (as a new transaction) or not. Each transaction has
its own identifier, and the set of transactions can be infinite.

2.2 Problem specification

Intuitively, the STM problem consists in designing (on top of the base computation model) protocols that
ensure that, whatever the base objects they access, the transactions are correctly executed. The following
property formulates precisely what “correctly executed” means in this paper.

Safety property Given a run of a STM system, let C be the set of transactions that commit, and A the
set of transactions that abort. Let us assume that any transaction starts with an invocation event (BT ) and
terminates with an end event (ET ).

Given T ∈ A, let T ′ = ρ(T ) be the transaction built from T as follows (ρ stands for “reduced”). As
T has been aborted, there is a read or a write on a base object that entailed that abortion. Let prefix (T )
be the prefix of T that includes all the read and write operations on the base objects accessed by T until
(but excluding) the read or write that provoked the abort of T . T ′ = ρ(T ) is obtained from prefix (T )
by replacing its write operations on base objects and all the subsequent read operations on these objects, by
corresponding write and read operations on a copy in local memory. The idea here is that only an appropriate
prefix of an aborted transaction is considered: its write operations on base objects (and the subsequent read
operations) are made fictitious in T ′ = ρ(T ). Finally, let A′ = {T ′ | T ′ = ρ(T ) ∧ T ∈ A}.

As announced in the Introduction, the safety property considered in this paper is opacity (introduced in
[12] with a different formalism). It expresses the fact that a transaction never sees an inconsistent state of
the base objects. With the previous notation, it can be stated as follows:

• Opacity. The transactions in C ∪ A′ are linearizable (i.e., can be totally ordered according to their
real-time order [13]).

This means that the transactions in C ∪A′ appear as if they have been executed one after the other, each one
being executed at a single point of the time line between its invocation event and its end event.

The commit/abort vs efficiency tradeoff While both abort or commit terminate a transaction, an abort
can be considered as an unsuccessful termination, while a commit can be considered as a successful termi-
nation. But, on one side, a STM system aborting all transactions would trivially satisfy the opacity property,
while on another side, a STM protocol that would allow a single transaction to execute at a time would easily
commit all transactions, but would be very inefficient and practically irrelevant.

Unfortunately, except for trivial cases such as concurrency-free executions, it seems very difficult to
characterize in a general way (i.e., independently of the behaviors imposed by particular protocols), the
cases in which a transaction should necessarily commit without compromising efficiency. The statement of
such a general specification of a STM system remains an open problem [3]. It may not even be possible to
find such a general formulation capturing all the cases where a transaction must commit. Hence, except for
the progressiveness property, this paper restricts its analysis to protocol-dependent scenarios.

PI n ˚ 1893



8 D. Imbs & M. Raynal

3 A lock-based STM system: base version

This section presents a base protocol that builds a STM system on top of the base system described in Section
2.1. Without ambiguity, the same identifier T is used to denote both a transaction itself and its unique name.

3.1 The STM system interface

The STM system provides the transactions with three operations denoted X.readT (), X.writeT (), and
try to commitT (), where T is a transaction, and X a base object.

• X.readT () is invoked by the transaction T to read the base object X . That operation returns a value
of X or the control value abort. If abort is returned, the invoking transaction is aborted.

• X.writeT (v) is invoked by the transaction T to update X to the new value v. That operation never
forces a transaction to immediately abort.

• If a transaction attains its last statement (as defined by the user) it executes try to commitT (). That
operation decides the fate of T by returning commit or abort. (Let us notice, a transaction T that
invokes try to commitT () has not been aborted during an invocation of X.readT ().)

3.2 The STM system variables

To implement the previous STM operations, the STM system uses a lock per base object X , and the follow-
ing atomic control variables that are sets (all initialized to ∅).

• A read set RSX is associated with each object X . This set contains the id of the transactions that read
X . A transaction adds its id to RSX to indicate a possibility of conflict.

• A set OW , whose meaning is the following: T ∈ OW means that the transaction T has read an
object Y and, since this reading, Y has been updated (so, there is a conflict).

• A set FBDX per base object X (FBDX stand for ForBiDen). T ∈ FBDX means that the transaction
T has read an object Y that since then has been overwritten (hence T ∈ OW ), and the overwriting of
Y is such that any future read of X by T will be invalid (i.e., the value obtained by T from Y and any
value it will obtain from X in the future cannot be mutually consistent): reading X from the shared
memory is forbidden to the transactions in FBDX .

An example explaining the meaning of FBDX is described in Figure 2. On the left side, the execution
of three transactions are depicted (as before, each rectangle encapsulates a transaction execution). T1 starts
by reading X , executes local computation, and then reads Y . The execution of T1 overlaps with two trans-
actions, T2 that is a simple write of Y , followed by T3 that is a simple write of X . It is easy to see that the
execution of these three transactions can be linearized: first T2, then T1 and finally T3. In this execution,
FBDX does not include T1.

In the execution on the right side, T2 and T3 are combined to form a single transaction T4. It is easy to
see that this concurrent execution of T1 and T4 cannot be linearized. Due to its access to X , the STM system
(as we will see) will force T4 to add T1 to FBDY , entailing the abort of T1 when T1 will access Y (if T1

would not access Y , it would not be aborted). Let us observe that the same thing occurs if, instead of T4, we
have (with the same timing) a transaction made up of X.write() followed by another transaction including
Y.write().

The STM system also uses the following local variables (kept in the local memory of the process that
invoked the corresponding transaction). lrsT is a local set where T keeps the ids of all the objects it reads.
Similarly, lwsT is a local set where T keeps the ids of all the objects it writes. Finally, read onlyT is a
boolean variable initialized to true .

Irisa



A Lock-based Protocol for Software Transactional Memory 9

X.write()

T1

T2

T3

X.read()

T4

T1

X.read()

Y.write()

X.write()

Y.read() Y.read()

Y.write()

Figure 2: Meaning of the set FBDX

The previous sets can be efficiently implemented using Bloom filters (e.g., [2, 7, 15]). In a very interest-
ing way, the small probability of false positive on membership queries does not make the protocol incorrect
(it can only affect its efficiency by entailing non-necessary aborts).

Let us recall that a process is sequential and consequently executes transactions one after the other. As
local control variables are associated with a transaction, the corresponding process has to reset them to their
initial values between two transactions. Similarly, if a transaction creates a local copy of an object, that copy
is destroyed when the transaction terminates (a given copy of an object is meaningful for one transaction
only).

3.3 The algorithms of the STM system

The three operations that constitute the STM system X.readT (), X.writeT (v), and try to commitT (), are
described in Figure 3.

The operation X.readT () The algorithm implementing this operation is pretty simple. If there is a local
copy of X , its value is returned (lines 01 and 07). Otherwise, space for X is allocated in the local memory
(line 02), X is added to the set of objects read by T (line 03), T is added to the read set RSX of X , and the
current value of X is read from the shared memory and saved in the local memory (line 04).

Due to asynchrony, it is possible that the value read by T is overwritten before T uses it. The predicate
T ∈ FBDX is used to capture this type of read/write conflict. If this predicate is true, T is aborted (line 06).
Otherwise, the value obtained from X is returned (line 07). It is easy to see that any object X is read from
the shared memory at most once by a transaction.

The operation X.writeT () The text of the algorithm implementing the operation X.writeT () is even sim-
pler than the text of X.readT (). The transaction first sets a flag to record that it is not a read-only transaction
(line 08). If there is no local copy of X , corresponding space is allocated in the local memory (line 09); let
us remark that this does not entail a reading of X from the shared memory. Finally, T updates the local copy
of X (line 10), and records that it has locally written the copy of X (line 11).

It is important to notice that an invocation of X.writeT () is purely local: it involves no access to the
shared memory, and cannot entail an immediate abort of the corresponding transaction.

The operation try to commitT () This operation works a follows. If the invoking transaction is a read-
only transaction, it is committed (lines 12-13). So, a read-only transaction can abort only during the invoca-
tion of a X.readT () operation (line 05 of that operation).

If the transaction T is an update transaction, try to commitT () first locks all the objects accessed by T
(line 14). (In order to prevent deadlocks, it is assumed that these objects are locked according to a predefined
total order, e.g., their identity order.) Then, T checks if it belongs to the set OW . If this is the case, there

PI n ˚ 1893



10 D. Imbs & M. Raynal

operation X.readT ():
(01) if (there is no local copy of X) then
(02) allocate local space for a copy;
(03) lrsT ← lrsT ∪ {X};
(04) lock X; local copy of X ← X; RSX ← RSX ∪ {T}; unlock X;
(05) if (T ∈ FBDX ) then return(abort) end if
(06) end if;
(07) return(value of the local copy of X)
=======================================================
operation X.writeT (v):
(08) read onlyT ← false;
(09) if (there is no local copy of X) then allocate local space for a copy end if;
(10) local copy of X ← v;
(11) lwsT ← lwsT ∪ {X}
=======================================================
operation try to commit

T
():

(12) if (read onlyT )
(13) then return(commit)
(14) else lock all the objects in lrsT ∪ lwsT ;
(15) if (T ∈ OW ) then release all the locks; return(abort) end if;
(16) for each X ∈ lwsT do X ← local copy of X end for;
(17) OW ← OW ∪

�
∪X∈lwsT RSX � ;

(18) for each X ∈ lwsT do FBDX ← OW end for;
(19) release all the locks;
(20) return(commit)
(21) end if

Figure 3: A lock-based STM system

is a read-write conflict: T has read an object that since then has been overwritten. T consequently aborts
(after having released all the locks, line 15). If the predicate T ∈ OW is false, T will necessarily commit.
But, before committing (at line 20), T has to update the control variables to indicate possible conflicts due
to the objects it has written, the ids of which have been kept by T in the local set lwsT during its execution.

So, after it has updated the shared memory with the new value of each object X ∈ lwsT (line 16), T
computes the union of their read sets; this union contains all the transactions that will have a write/read
conflict with T when they will read an object X ∈ lwsT . This union set is consequently added to OW (line
17), and the set FBDX of each object X ∈ lwsT is updated to OW (line 18). (It is important to notice that
each set FBDX is updated to OW in order not to miss the transitive conflict dependencies that have been
possibly created by other transactions). Finally, before committing, T releases all its locks (line 19).

On locking As in TL2 [9], it is possible to adopt the following systematic abort strategy. When a trans-
action T tries to lock an object that is currentlty locked, it immediately aborts (after realeasing the locks it
has, if any).

3.4 On the management of the sets RSX , FBDX and OW

Let us recall that these sets are kept in atomic variables.

Management of RSX and FBDX The set RSX is written only at line 04 (readT () operation), and (due
to the lock associated with X) no two updates of RSX can be concurrent; so, no update of RSX is missed.
Its only read (line 16) is protected by the same lock. So, there is no concurrency problem for RSX .

Irisa



A Lock-based Protocol for Software Transactional Memory 11

The set FBDX is read at line 06 (readT () operation), and its only write (line 18, try to commitT ()
operation) is protected by a lock. As it is an atomic variable, there is no concurrency problem for FBDX .

Management of the set OW This set is read and written only in the operation try to commitT (). It is
read at lines 15 and 17, and written at line 17 (its read at line 18 can benefit from a local copy saved at
line 17).

Concurrent invocations of try to commitT () can come from transactions accessing distinct sets of ob-
jects. When this occurs, the set OW is not protected by the locks associated with the objects and can
consequently be concurrently accessed. As OW is kept in an atomic variable there is no concurrency prob-
lem for the reads. Differently, writes of OW (line 17) can be missed. Actually, when we look at the update
of the atomic set variable OW , namely OW ← OW ∪

(
∪X∈lwsT RSX

)
(line 17), we can observe that this

update is nothing else than a Fetch&Add() statement that has to atomically add ∪X∈lwsT RSX to OW . If
such an operation on a set variable is not provided by the hardware, there are several ways to implement it.
One consists in using a lock to execute this operation is mutual exclusion. Another consists in using spe-
cialized hardware operations such as Compare&swap() (manipulating a pointer on the set OW , or LL/SC
(load-linked/store-conditional) [14, 16]. Yet, another possible implementation consists in considering the
set OW as a shared array with one entry per process, pi being the only process that can write OW [i]. More-
over, for efficiency, the current value of OW [i] can be saved in a local variable owi. A write by pi in OW [i]
then becomes owi ← owi ∪X∈lwsT RSX followed by OW [i]← owi; while the atomic read of the set OW

is implemented by a snapshot operation on the array OW [1..n] [1] (there are efficient implementations of
the snapshot operation, e.g., [4, 5]).

Differently from the pair of sets RSX and FBDX , associated with each object X , the set OW constitutes
a global contention point. This contention point can be suppressed by replacing OW by independent boolean
variables (see Section 5). We have adopted here an incremental presentation, to make the final protocol easier
to understand.

3.5 Early abort and contention manager

When the predicate T ∈ OW is satisfied, the transaction T has read an object that since then has been
overwritten. This fact is not sufficient to abort T if it is a read-only transaction. Differently, if T is an
update transaction, it cannot be linearized; consequently, it will be aborted when executing line 15 of
try to commitT (). It is possible to abort such an update transaction T earlier than during the execution
of try to commitT (). This can be simply done by adding the statement “if T ∈ OW then return(abort)
end if” just before the first line of the operation writeT (). Similarly, the statement “if T ∈ FBDX then
return(abort) end if” can be inserted between the first and the second line of the operation readT ().

Interestingly, it is important to notice that the sets RSX , FBDX , and OW can be used by an under-
lying contention manager [11, 22] to abort transactions according to predefined rules (namely, there are
configurations where aborting a single transaction can prevent the abort of other transactions).

4 Proof of the base protocol

4.1 Base formalism and definitions

Events and history at the shared memory level An event is associated with the execution of each oper-
ation on the shared memory (base object, lock, set variable). We use the following notation.

PI n ˚ 1893



12 D. Imbs & M. Raynal

• Let BT denote the event associated with the beginning of the transaction T , and ET the event associ-
ated with its termination. ET can be of two types, namely AT and CT , where AT is the event “abort
of T ” (line 05 or 15), and CT is the event “commit of T ” (line 20).

• Let rT (X)v denote the event associated with the read of X from the shared memory issued by the
transaction T ; v denotes the value returned by the read. Given an object X , there is a most one event
rT (X)v per transaction T . If any, this read occurs at line 04 (operation X.readT ()).

• Let wT (X)v denote the event associated with the write of the value v in X . Given an object X , there
is a most one event wT (X)v per transaction T . If any, it corresponds to a write issued at line 16 in the
try to commitT () operation. If the value v is irrelevant wT (X)v is abbreviated wT (X).
Without loss of generality we assume that no two writes on the same object X write the same value.
We also assume that all the objects are initially written by a fictitious transaction.

• Let ALT (X, op) denote the event associated with the acquisition of the lock on the object X issued
by the transaction T during an invocation of op where op is X.readT () or try to commitT ().
Similarly, let RLT (X, op) denote the event associated with the release of the lock on the object X
issued by the transaction T during an invocation of op.

Given an execution, let H be the set of all the events generated by the shared memory accesses issued
by the STM system described in Figure 3. As these shared memory accesses are atomic, the previous events
are totally ordered. Consequently, at the shared memory level, an execution can be represented by the pair
Ĥ = (H,<H) where <H denotes the total ordering on its events. Ĥ is called a shared memory history.

As <H is a total order, it is possible to consider each event in H as a date of the time line. This “date”
view of a sequential history on events will be used in the proof.

History at the transaction level Given an execution, let TR be the set of transactions issued during that
execution. Let →TR be the order relation defined on the transactions of TR as follows: T1 →TR T2 if
ET1 <T BT2 (T1 has terminated before T2 starts). If T1 6→TR T2 ∧ T2 6→TR T1, we say that T1 and T2
are concurrent (their executions overlap in time). As the transaction level, that execution is defined by the
partial order T̂R = (TR,→TR), that is called a transaction level history.

The read-from relation between transactions, denoted →rf , is defined as follows: T1
X
→rf T2 if T2

reads the value that T1 wrote in the object X .
A transaction history ŜT = (ST ,→ST ) is sequential if no two of its transactions are concurrent. Hence,

in a sequential history, T1 6→ST T2 ⇔ T2 →ST T1, thus →ST is a total order. A sequential transaction
history is legal if each of its read operations returns the value of the last write on the same object (because
the history is sequential and transactions are executed sequentially, no two operations can overlap).

A sequential transaction history ŜT is equivalent to a transaction history T̂R if (1) ST = TR (i.e., they
are made of the same transactions -same invocations and same replies- in ŜT and in T̂R), and (2) the total
order→ST respects the partial order→TR (i.e.,→TR⊆→ST ).

A transaction history ÂA is linearizable if there exists a history ŜA that is sequential, legal and equiva-
lent to ÂA.

Let ρ̂(TR) denote the transaction history obtained from the history T̂R as described in Section 2.2.

This means that ρ̂(TR) includes all the transactions of T̂R that commit, and contains ρ(T ) for each trans-
action T ∈ T̂R that aborts. As defined in Section 2.2, a transaction history T̂R is opaque if there exists a

transaction history ŜT that is sequential, legal and equivalent to ρ̂(TR).

Irisa



A Lock-based Protocol for Software Transactional Memory 13

4.2 Principle of the proof of the opacity property

According to the algorithms implementing the operations X.readT () and X.writeT (v) described in Figure
3, we ignore all the read operations on an object that follow another operation on the same object within the
same transaction, and all the write operations that follow another write operation on the same object within
the same transaction (these are operations local to the memory of the process that executes them). Building
ρ(TR) from TR is then a straightforward process.

To prove that the protocol described in Figure 3 satisfies the opacity consistency criterion, we need to
prove that, for any transaction history T̂R produced by this protocol, there is a sequential legal history ŜT

equivalent to ρ̂(TR). This amounts to prove the following properties (where Ĥ is the shared memory level
history generated by the transaction history T̂R):

1. →ST is a total order,

2. ∀T ∈ TR :
(
T commits⇒ T ∈ ST

)
∧

(
T aborts⇒ ρ(T ) ∈ ST

)
,

3. →ρ(TR)⊆→ST ,

4. T1
X
→rf T2 ⇒ @T3 such that

(
T1 →ST T3 →ST T2

)
∧

(
wT3 (X ) ∈ H

)
,

5. T1
X
→rf T2 ⇒ T1 →ST T2 .

4.3 Definition of the linearization points

ST is produced by ordering the transactions according to their linearization points. The linearization point
of the transaction T is denoted `T . The linearization points of the transactions are defined as follows :

• If a transaction T aborts, `T is the time just before T is added to the set OW (line 17 of the
try to commitT() operation that entails its abort).

• If a read only transaction T commits, `T is placed at the earliest of (1) the occurrence time of the
test during its last read operation (line 05 of the X.read() operation) and (2) the time just before it is
added to OW (if it ever is). (An example is depicted in Figure 4.)

• If an update transaction T commits, `T is placed immediately after the execution of line 17 by T
(update of OW ).

The total order <H (defined on the events generated by T̂R) can be extended with these linearization points.
Transactions whose linearization points happen at the same time (for example, in multi-core systems) are
ordered arbitrarily.

4.4 Proof of the opacity property

Let T̂R = (TR,→TR) be a transaction history. Let ŜT = (ρ(TR),→ST ) a history whose transactions are
the transactions ρ(TR), and such that→ST is defined according to linearization points of each transaction in
ρ(TR). If two transactions in ρ(TR) have the same linearization point, they are ordered arbitrarily. Finally,
let us observe that the linearization points can be trivially added to the sequential history Ĥ = (H,→H)

defined on the events generated by the transaction history T̂R. So, we consider in the following that the set
H includes the linearization points of the transactions.

Lemma 1 →ST is a total order.

PI n ˚ 1893



14 D. Imbs & M. Raynal

`T3
;CT3

T1

T2

T3

rT1
(X) rT1

(Y )

CT2

wT3
(Y )

wT2
(X)

RSX ← RSX ∪ {T1}

OW ← OW ∪ {T1} OW ← OW ∪ {T1}

RSY ← RSY ∪ {T1}

BT1
”Event/time line”BT3

CT1
BT2

`T1
;`T2

;CT2

Figure 4: An example of linearization points

Proof Trivial from the ordering of the linearization points. 2Lemma 1

Lemma 2 →ρ(TR)⊆→ST .

Proof This lemma follows from the fact that, given any transaction T , its linearization point is placed within
its lifetime. Therefore, if T1→ρ(TR) T2 (T1 ends before T2 begins), then T1→ST T2. 2Lemma 2

Let ow(T, t) be the predicate “at time t, T belongs to OW ”.

Lemma 3 ow(T, t)⇒ `T <H t.

Proof We show that the linearization point of a transaction T cannot be after the time at which the transac-
tion’s id is added to OW . There are three cases.

• By construction, if T aborts, its linearization `T is the time just before its id is added to OW , which
proves the lemma.

• If T is read-only and commits, again by construction, its linearization `T point is placed at the latest
just before the time at which its id is added to OW (if it ever is), which again proves the lemma.

• If T writes and commits, its linearization point `T is placed during its try to commit() operation,
while T holds the locks of every object that it has read. If T was in OW before it acquired all the
locks, it would not commit (due to line 15). Let us notice that T can be added to OW only by an
update transaction holding a lock on a base object previously read by T . As T releases the locks just
before committing (line 19), it follows that `T occurs before the time at which its id is added to OW

(if it ever is), which proves the last case of the lemma.
2Lemma 3

Let rsX (T, t) be the predicate “at time t, T belongs to RSX ”.

Lemma 4 TW
X
→rf TR ⇒ @T ′

W such that
(
TW →ST T ′

W →ST TR

)
∧

(
wT ′

w
(X) ∈ H

)
.

Proof By contradiction, let us assume that there are transactions TW , T ′

W and TR and an object X such
that:

Irisa



A Lock-based Protocol for Software Transactional Memory 15

• TW
X
→rf TR,

• wT ′

W
(X)v′ ∈ H ,

• TW →ST T ′

W →ST TR.

As both TW and TW ′ write X in shared memory, they have necessarily committed (a write in shared
memory occurs only at line 16 during the execution of try to commit(), abbreviated ttc in the following).
Moreover, their linearization points `TW

and `T ′

W
occur while they hold the lock on X (before committing),

from which we have the following implications:

TW →ST T ′

W ⇔ `TW
<H `T ′

W
,

`TW
<H `T ′

W
⇒ RLTW

(X, ttc) <H ALT ′

W
(X, ttc),

RLTW
(X, ttc) <H ALT ′

W
(X, ttc) ⇒ wTW

(X)v <H wT ′

W
(X)v′,

(
TW

X
→rf TR

)
∧

(
wTW

(X)v <H wT ′

W
(X)v′

)
⇒ wTW

(X)v <H rTR
(X)v <H wT ′

W
(X)v′.

A transaction T that reads an object X always adds its id to RSX before releasing the lock on X . There-
fore, the predicate rsX (T ,RLT (X ,X .readT ())) is true. Using this observation, we have the following:

rTR
(X)v <H wT ′

W
(X)v′ ∧ rsX (TR,RLTR

(X ,X .readTR
()) ⇒ rsX (TR,ALT ′

W
(X , ttc)),

rsX (TR,ALT ′

W
(X , ttc)) ∧

(
wT ′

W
(X)v′ ∈ H

)
⇒ ow(TR, `T ′

W
),

(Due to Lemma 3) ow(TR, `T ′

W
) ⇒ `TR

<H `T ′

W
,

(and finally) `TR
<H `T ′

W
⇔ TR →ST T ′

W ,

which proves that, contrarily to the initial assumption, T ′

W cannot precede TR in the sequential transaction
history ŜT . 2Lemma 4

Let fbdX (T, t) be the predicate “at time t, T belongs to FBDX ”.

Lemma 5 TW
X
→rf TR ⇒ TW →ST TR.

Proof The proof is made up of two parts. First it is shown that TW
X
→rf TR ⇒ ¬ow(TR, `TW

), and then it

is shown that ¬ow(TR, `TW
) ∧ TW

X
→rf TR ⇒ TW →ST TR.

Proof of TW
X
→rf TR ⇒ ¬ow(TR, `TW

). Let us assume by contradiction that ow(TR, `TW
) is true. Due

to line 18 we have
ow(TR, `TW

)⇒ fbdX(TR, RLTW
(X, ttc)).

If the read of X from shared memory by TR is before the write by TW , we cannot have TW
X
→rf TR.

So, in the following we consider that the read of X from shared memory by TR is after its write by TW . We
have then RLTW

(X, ttc) <H ALTR
(X,X.readTR

()), and consequently

fbdX(TR, RLTW
(X, ttc))⇒ fbdX(TR, ALTR

(X,X.readTR
())).

As Tr ∈ FBDX when it locks X , it follows that Tr aborts at line 05 and consequently we cannot have

TW
X
→rf TR. Summarizing the previous reasoning we have (ow(TR, `TW

)⇒ ¬(TW
X
→rf TR)), and taking

the contrapositive we finally obtain

TW
X
→rf TR ⇒ ¬ow(TR, `TW

).

PI n ˚ 1893



16 D. Imbs & M. Raynal

Proof of ¬ow(TR, `TW
)∧TW

X
→rf TR ⇒ TW →ST TR. As defined in Section 4.3, the linearization point

`TR
depends on the fact that TR commits or aborts, and is a read only or an update transaction. The proof

considers the three possible cases.
• If TR is an update transaction that commits, its linearization point `TR

(that is defined as line 17 when
it updates the set OW ) occurs after its invocation of try to commit(). Due to this observation, the

fact that TW releases its locks after its linearization point, and TW
X
→rf TR, we have `TW

<H `TR
,

i.e., TW →ST TR.

• If TR is a (read only or update) transaction that aborts, its linearization point `TR
is the time at which

TR is added to OW . Because TW
X
→rf TR we have ¬ow(TR, `TW

). Moreover, due to ¬ow(TR, `TW
)

and the fact that TR aborts, we have `TW
<H `TR

, i.e., TW →ST TR. It follows that TW
X
→rf TR ⇒

TW →ST TR.

• If TR is a read only transaction that commits, its linearization point `TR
is placed either at the time

at which it is added to OW (then the case is the same as a transaction that aborts, see before), or at
the time of the test during its last read operation (line 05). In the latter case, we have wTW

(X)v <H

`TW
<H RLTW

(X, ttc) <H ALTR
(X,X.readTR

()) <H rTR
(X)v <H `TR

, from which we have
`TW

<H `TR
, i.e., TW →ST TR.

Hence, in all cases, we have TW
X
→rf TR ⇒ TW →ST TR. 2Lemma 5

Theorem 1 Every transaction history T̂R produced by the protocol described in Figure 3 satisfies the opac-
ity consistency criterion.

Proof The proof follows from the construction of the set ρ(TR) (Section 4.1), the definition of the lin-
earization points (Section 4.3), and the Lemmas 1, 2, 4 and 5. 2Theorem 1

4.5 On the termination of transactions

It is easy to see that each transaction terminates. Concerning the fact that a transaction terminates success-
fully (commit) or not (abort), we have the following properties.
• If a transaction T1 entails the abort of a transaction T2, then T1 necessarily commits.

This is because the abort of T2 occurs at line 05 (test T2 ∈ FBDX ) or at line 15 (test T2 ∈ OW ). In
both cases the addition of T2 to the set FBDX or OW is done by a transaction T1 while it executes
the lines 17 or 18, i.e., just before T1 commits at line 20.

• If none of the values it has read is overwritten, an update transaction cannot abort. Moreover, a
write-only transaction never aborts.

• A transaction that reads an object X , is not necessarily aborted, despite the fact that it has previously
read an object Y that is now overwritten, as long as the values of X and Y it has obtained belong to
the same consistent state.

5 A lock-based STM system: final version

5.1 The improvements

From transaction ids to process ids While this is not necessary from a correctness point of view, it is
desirable that the identities of transactions that have terminated (committed or aborted) be suppressed from

Irisa



A Lock-based Protocol for Software Transactional Memory 17

the sets RSX , FBDX , and OW . Moreover, the fact that the domain of these identities is unbounded can
become a real drawback. As there a is a fixed number of processes, and each process issues one transaction
at a time, a solution consists in using the id of the issuing process as the id of the corresponding transaction.
From the point of view of transaction ids, this means that they are now recyclable. This recycling can be
obtained with an appropriate update of the relevant control variables each time a transaction terminates.

Eliminating the contention point OW The set OW can actually be replaced by a set of atomic boolean
variables, one per process pi. The boolean associated with pi, denoted OWi , has the following meaning:
OWi = true means that the current transaction issued by pi has read an object whose value is no longer up
to date.

The resulting improvement It follows from the previous improvements that all the shared control vari-
ables do have a bounded domain. They are either boolean variables, or set variables that contain at most n
process ids. Let us remark that there are very efficient management algorithms for such sets.

5.2 The final (improved) STM system

The algorithms implementing the X.readi(), X.writei(v) and try to commiti() operations of the improved
system are described in Figure 5. To emphasize the incremental presentation, the lines that are not modified
(but for the use of the process id) have the same number in Figure 3 and Figure 5. Differently, the lines that
are modified keep the same number but are postfixed with a letter.

The three operations use the id i of the invoking process pi as the transaction id. They also use an
internal operation denoted initi() the aim of which is to reset control variables and suppress the id i of
the invoking process from the sets it belongs to. The local variables lwsi , lrsi and read onlyi replace their
counterparts used in the base algorithms. Once this replacement has been done, the algorithms for X.read i()
and X.writei(v) are verbatim the same as before.

The code of the try to commiti() operation is the same as in Figure 3 with three modifications. The
first concerns line 15: the test T ∈ OW is replaced by the test of the boolean OWi (line 15.a). The second
modification concerns the update of the set OW (line 17 in Figure 3). This update now consists in setting
to true the boolean OWj associated with each process pj that belongs to the read sets RSX of the objects
X written by pi. This modified update appears at line 17.a of Figure 5. The last modification concerns the
sets FBDX associated with the objects written by pi (line 18 in Figure 3). These updates are now based on
the booleans OWj instead of the set OW ; they appear at lines 18.a, 18.b and 18.c in Figure 5.

Finally, the lines A1-A3 describe the internal initi() operation.

Acknowledgments

We would like to thank Pascal Felber for providing us with good advices and nice food on STM systems.

References
[1] Afek Y., Attiya H., Dolev D., Gafni E., Merritt M. and Shavit N., Atomic Snapshots of Shared Memory. Journal

of the ACM, 40(4):873-890, 1993.
[2] Almeida P.SD., Baquero C., Preguiça N. and Hutchinson D., Scalable Bloom Filters. Information Processing

Letters, 101(6):255-261, 2007.
[3] Attiya H., Needed: Foundations for Transactional Memory. ACM Sigact News, Distributed Computing Column,

39(1):59-61, 2008.

PI n ˚ 1893



18 D. Imbs & M. Raynal

operation X.readi():
(01) if (there is no local copy of X) then
(02) allocate local space for a copy;
(03) lrsi ← lrsi ∪ {X};
(04) lock X; local copy of X ← X; RSX ← RSX ∪ {i}; unlock X;
(05) if (i ∈ FBDX ) then initi(); return(abort) end if
(06) end if;
(07) return(value of the local copy of X)
=======================================================
operation X.writei(v):
(08) read onlyi ← false;
(09) if (there is no local copy of X) then allocate local space for a copy end if;
(10) local copy of X ← v;
(11) lwsi ← lwsi ∪ {X}
=======================================================
operation try to commit

i
():

(12) if (read onlyi)
(13) then return(commit)
(14) else lock all the objects in lrsi ∪ lwsi ;
(15.a) if OWi then release all the locks; initi(); return(abort) end if;
(16) for each X ∈ lwsi do X ← local copy of X end for;
(17.a) for each j ∈

�
∪X∈lwsi RSX � do OWj ← true end for;

(18.a) for each X ∈ lwsi do
(18.b) for each j such that OWj do FBDX ← FBDX ∪ {j} end for
(18.c) end for;
(19) release all the locks;
(20.a) initi(); return(commit)
(21) end if
=======================================================
operation initi():
(A1) for each X ∈ lrsi do RSX ← RSX \ {i} end for;
(A2) OWi ← false; lwsi ← ∅; lrsi ← ∅; read onlyi ← true ;
(A3) for each X such that (i ∈ FBDX ) do FBDX ← FBDX \ {i} end for

Figure 5: The improved STM system (bounded variables and no centralized contention point)

[4] Attiya H., Guerraoui R. and Ruppert E., Partial Snapshot Objects. Proc. 20th ACM Symposium on Parallel
Algorithms and Architectures (SPAA’08), ACP Press. To appear, 2008.

[5] Attiya H. and Rachman O., Atomic Snapshots in O(n logn) Operations. SIAM Journal on Computing,
27(2):319-340, 1998.

[6] Avni H. and Shavit N., Maintaining Consistent Transactional States without a Global Clock. Proc. 15th Collo-
quium on Structural Information and Communication Complexity (SIROCCO’08), To appear, 2008.

[7] Bloom B.H., Space/Time Tradeoffs in Hash-coding with Allowable Errors. Communications of the ACM,
13(7):422-426, 1970.

[8] Cachopo J. and Rito-Silva A., Versioned Boxes as the Basis for Transactional Memory. Science of Computer
Programming, 63(2):172-175, 2006.

[9] Dice D., Shalev O. and Shavit N., Transactional Locking II. Proc. 20th Int’l Symposium on Distributed Comput-
ing (DISC’06), Springer-Verlag, LNCS #4167, pp. 194-208, 2006.

[10] Felber P., Fetzer Ch., Guerraoui R. and Harris T., Transactions are coming Back, but Are They The Same? ACM
Sigact News, Distributed Computing Column, 39(1):48-58, 2008.

[11] Guerraoui R., Herlihy M.P. and Pochon S., Towards a Theory of Transactional Contention Managers. Proc. 24th
ACM Symposium on Principles of Distributed Computing (PODC’05), ACM Press, pp. 258-264, 2005.

[12] Guerraoui R. and Kapałka M., On the Correctness of Transactional Memory. Proc. 13th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (PPoPP’08), ACM Press, pp. 175-184, 2008.

Irisa



A Lock-based Protocol for Software Transactional Memory 19

[13] Herlihy M.P. and Wing J.M., Linearizability: a Correctness Condition for Concurrent Objects. ACM Transac-
tions on Programming Languages and Systems, 12(3):463-492, 1990.

[14] Jayanti P. and Petrovic S., Efficient and Practical Constructions of LL/SC Variables. Proc. 22th ACM Symp. on
Principles of Dist. Computing (PODC’03), ACM Press, pp. 285-294, 2003.

[15] Mitzenmatcher M., Compressed Bloom Filters. IEEE Transaction on Networks, 10(5):604-612, 2002.
[16] Moir M., Practical Implementation of Non-Blocking Synchronization Primitives. Proc. 16th ACM Symposium

on Principles of Distributed Computing (PODC’97), ACM Press, pp. 219-228, 1997.
[17] Papadimitriou Ch.H., The Serializability of Concurrent Updates. Journal of the ACM, 26(4):631-653, 1979.

[18] Riegel T., Felber P. and Fetzer C. A Lazy Snapshot Algorithm with Eager Validation. Proc. 20th Int’l Symposium
on Distributed Computing (DISC’06), Springer-Verlag, LNCS #4167, pp. 284-298, 2006.

[19] Riegel T., Fetzer C. and Felber P., Time-based Transactional Memory with Scalable Time Bases. Proc. 19th
annual ACM Symposium on Parallel Algorithms and Architectures (SPAA’07), ACM Press, pp. 221-228, 2007.

[20] Scott L.M., Sequential Specification of Transactional Memory Semantics. Proc. First ACM SIGPLAN Workshop
on Languages, Compilers, and Hardware Support for Trans. Computing (TRANSACT’06), ACM Press, 2006.

[21] Shavit N. and Touitou D., Software Transactional Memory. Distributed Computing, 10(2):99-116, 1997.

[22] Scherer W.N.III and Scott M.L., Advanced Contention Management in Dynamic Software Transactional Mem-
ory. Proc. 24th ACM Symp. on Principles of Dist. Computing (PODC’05), ACM Press, pp. 240-248, 2005.

A A quick view of JVSTM, TL2 and LSA-RT

Numerous STM protocols have been proposed. This section presents the principles that underlie the three
of them that appear in Table 1, namely, JVSTM, TL2 and LSA-RT. All satisfy the opacity property (it is
interesting to notice that they have all been defined before the opacity property has been stated). Differently,
only LSA-RT satisfies the progressiveness property.

The JVSTM system [8] This system uses a logical clock to timestamp the transactions and allow them to
read an appropriate version of an object. As just indicated, JVSTM satisfies the progressiveness property.

The validation phase of the transactions (i.e., the part corresponding to the try to commit() operation)
is executed in mutual exclusion: they are encapsulated with the “synchronized” construct provided by
JAVA, the implementation of which is lock-based. Interestingly (due to the multiplicity of versions), the
read only transactions are never aborted.

Each object is implemented by a list of versions. JVSTM provides a garbage collector mechanism that
discards the versions older than the oldest transaction still in the system.

The TL2 system [9] This system aims at reducing the synchronization cost due to the read, write and
validation (i.e., try to commit()) operations. To that end, it associates a lock with each data (object) and
uses a logical global clock (integer) that is read by all the transactions and increased by each writing trans-
action that commits. This global clock is basically used to validate the consistency of the state of the data
a transaction is working on. The TL2 protocol is particularly efficient when there are few (or no) conflicts
between concurrent transactions. This clock is a shared control variable that constitutes a centralized con-
tention point. This drawback is eliminated in an improved version of the protocol described in [6], called
TLC4.

4In the protocol described in [6], each process p manages a local clock and maintains a clock array with an entry per process q.
That entry contains the greatest clock value used by q as known by p. A process associates its current clock value (timestamp) with
each value its writes. A process p updates its local clock array entry associated with q when it reads a value written by q. Let us
observe that the timestamp value it reads is smaller or equal to q’s actual clock value.

PI n ˚ 1893



20 D. Imbs & M. Raynal

On the safety side, both TL2 and TLC ensure the opacity property. On the liveness side, the performance
study depicted in [9] (based on a red-black tree benchmark) shows that the TL2 protocol is pretty efficient.
It has nevertheless scenarios in which a transaction is directed to abort despite the fact it has read values
from a consistent state5. Its distributed clock version [6] is less efficient, but this is not counter-intuitive
as some price has to be paid for eliminating the global clock. Due to the management of the distributed
clock, there are cases where this protocol directs a transaction to abort despite the fact that it is executed in
a concurrency-free context.

The LSA-RT system [18, 19] This system associates a time interval with each transaction. The idea is
here to use time to reason on the consistency of the data accessed by a transaction by associating a time in-
terval with each transaction. This time interval is updated (shrunk) when the transaction accesses an object
(an object keeps the date of its last update). Basically, a transaction has to abort when its interval becomes
empty. The protocol described in [18] presents a lazy snapshot algorithm (called LSA) that efficiently con-
structs an always consistent snapshot for transactions. This protocol is based on a logical global clock that
counts the number of writing transactions that have been committed so far. The protocol described in [19]
(called LSA-RT) replaces the logical clock (counter) with (externally synchronized) real-time clocks. More-
over, the LSA-RT protocol manages several versions of each data in order to have invisible read operations,
and abort transactions only in case of conflicts.

B A short algorithmic description of TL2

A very schematic description of the X.readT (), X.writeT (v) and try to commitT () operations used in
TL2 [9] are described in Figure 6 for an update transaction and in Figure 7 for a read only transaction (a
transaction that starts as a read only transaction and finally issues a write can be aborted). As indicated
previously, the protocols implementing these operations are based on a global (logical) clock and a lock per
object.

The global clock is denoted Clock . It is increased (with an atomic Fetch&Increment() operation) each
time an update transaction T invokes try to commitT () (line 13). Moreover, when a transaction starts it
invokes the additional operation beginT () to obtain a birthdate (defined as the current value of the clock).

At the implementation level, an object X is made up of two fields: a data field X.value containing the
current value of the object, and a control field X.date containing the date at which that value was created
(see line 14 of try to commitT ()).

The case of an update transaction Each transaction T manages two sets (as in the proposed protocol): a
local read set lrsT , and a local write set lwsT .

As far as a X.readT () is concerned we have the following. If, previously, a local copy lx of the object
X has been created by an invocation of X.writeT (v) issued by the same transaction, its value is returned
(lines 01-02). Otherwise, X is read from the shared memory, and X’s id is added to the local read set
lrsT (line 04). Finally, if the date associated with the current value of X is greater than the birthdate of T ,
the transaction is aborted (line 05). (This is because, T has possibly read other values that are no longer
consistent with the value of X just obtained.) If the date associated with the current value of X is not greater
than the birthdate of T , that value is returned by the X.readT () operation. (In that case, the value read is
consistent with the values previously read by T .)

5These scenarios depend on the value of the global clock. They can occur when, despite the fact that that all the values read by
a transaction T are mutually consistent, one of them has been written by a transaction concurrent with T .

Irisa



A Lock-based Protocol for Software Transactional Memory 21

operation T.begin
T
(): birthdate ← Clock

================================================================
operation X.readT ():
(01) if (there is a local copy of X)
(02) then return (lx.value) % the local copy lx was created by a write of X %
(03) else tlcx← copy of X read from the shared memory;
(04) lrsT ← lrsT ∪ {X};
(05) if tlcx.date > birthdate then return (abort) else return (tlcx.value) end if
(06) end if
================================================================
operation X.writeT (v):
(07) if (there is no local copy of X) then allocate local space lx for a copy end if;
(08) lx.value← v;
(09) lwsT ← lwsT ∪ {X}
================================================================
operation try to commit

T
():

(10) lock all the objects in (lrsT ∪ lwsT );
(11) for each X ∈ lrsT do % the date of X is read from the shared memory %
(12) if X.date > birthdate then release all the locks; return (abort) end if
(13) end for;
(14) commit date← Fetch&Increment(Clock);
(15) for each X ∈ lwsT do X ← (lx.value, commit date) end for;
(16) release all the locks;
(17) return (commit)

Figure 6: TL2 algorithm for an update transaction

The operation X.writeT (v) in TL2 and the one in the proposed protocol are similar. If there is no local
copy of X , one is created and its value field is set to v. The local write set lwsT is also updated to remember
that X has been written by T . The lifetime of the local copy lx of X created by a X.writeT (v) operation
spans the duration of the transaction T .

When a transaction T invokes try to commitT () it first locks all the objects in lrsT ∪ lwsT . Then, T
checks if the current values of the objects X is has read are still mutually consistent, and consistent with
respect to the new values it has (locally) written). This is done by comparing the current date X.date of
each object X that has been read to the birthdate of T . If one of these dates is greater than its birthdate,
there is a possible inconsistency and consequently T is aborted (line 12). Otherwise, T can be committed.
Before being committed (line 17), T has to set the objects it has written to their new values (line 15). Their
control part has also to be updated: they are set to the last clock value obtained by T (line 14). Finally, T
releases the locks and commits.
Remark This presentation of the try to commitT () operation of TL2 does not take into account all of its
aspects. As an example, if at line 10, all the locks cannot be immediately obtained, TL2 can abort the
transaction (and restart it later). This can allow for more efficient behaviors. Moreover, the lock of an object
is used to contain its date value (this allows for more efficient read operations.)

The case of a read only transaction If a transaction T does not modify the shared objects, the code of its
X.readT () and try to commitT () operations simplify as shown in Figure 7.

Each time a read only transaction T reads an object X , it obtains its value from the shared memory.
Then, if the date associated with the value it has read is not greater than its birthdate, the read is valid and
the value is returned. Otherwise, T is aborted. Let us notice that a read only transaction does not manage a
local read set.

PI n ˚ 1893



22 D. Imbs & M. Raynal

operation begin
T
(): birthdate ← Clock

=========================================================
operation X.readT ():
(01) lx← copy of X read from the shared memory;
(02) if lx.date > birthdate then return (abort) else return (lx.value) end if
=========================================================
operation try to commit

T
(): return(commit)

Figure 7: TL2 algorithm for a read-only transaction

Finally, the operation try to commitT () always returns commit. This is because, if a read only transac-
tion T has never been aborted when it read base objects, we can conclude that T has read object values that
are mutually consistent. They define a consistent snapshot of the shared objects that have been accessed [1].

C A short algorithmic description of JVSTM

A very schematic description of the X.readT (), X.writeT (v) and try to commitT () operations used in
JVSTM [8] are described in Figure 8 for an update transaction and in Figure 9 for a read only transaction (as
for TL2, a transaction that starts as a read only transaction and finally issues a write can be aborted). These
protocols are very informally described in [8]. These informal descriptions include a lot of improvements
that are not considered here.

As indicated previously, the protocols implementing these operations are based on a global (logical)
clock and a global lock. The global clock, denoted Clock , is increased when an update transaction T
invokes try to commitT () (lines 13 and 15). Since, due to the use of a global lock, the try to commit()
operations are executed in mutual exclusion, there are no concurrent updates of Clock . Moreover, (as in
TL2) when a transaction starts, it invokes the additional operation beginT () to obtain a birthdate (defined as
the current value of the clock).

At the implementation level, an object X is a pointer on a list of records made up of three fields: a data
field X.value containing the current value of the object, a control field X.date containing the date at which
that value was created (see line 15 of try to commitT ()) and a pointer on the next structure in the list.

If Y is a variable containing a pointer, (↓ Y ) denotes the variable pointed by Y . If X is a variable,
(↑ X) denotes a pointer on X .

The case of an update transaction Each transaction T manages two sets (as in the proposed protocol): a
local read set lrsT , and a local write set lwsT .

As far as a X.readT () operation is concerned we have the following. If, previously, a local copy lx of
the object X has been created by an invocation of X.writeT (v) issued by the same transaction, its value is
returned (lines 01-02). Otherwise, X’s id is added to the local read set lrsT (line 04) and the most recent
value, at least as old as the transaction’s birthdate, is fetched from the list of versions of X (lines 05-06) (so
the set of values read is consistent). Let us note that, due the multiplicity of versions, a X.readT () operation
never forces a transaction to abort.

The operation X.writeT (v) in JVSTM and the one in the proposed protocol are similar. If there is no
local copy of X , one is created and its value field is set to v. The local write set lwsT is updated accordingly.
As in the previous protocols, the lifetime of the local copy lx of X created by a X.writeT (v) operation spans
the duration of T .

When a transaction T invokes try to commitT () it first acquires the global lock (line 11). Then, T
checks if the current values of the objects X has read are the most recent, and consistent with respect to the

Irisa



A Lock-based Protocol for Software Transactional Memory 23

operation X.begin
T
(): birthdate ← Clock

============================================================================
operation X.readT ():
(01) if (there is a local copy lx of X)
(02) then return (lx.value)
(03) else lrsT ← lrsT ∪ {X};
(04) x← X; % pointer on the list of versions of the object %
(05) while ((↓ x).date > birthdate) do x← (↓ x).next end while;
(06) return ((↓ x).value)
(07) end if
============================================================================
operation X.writeT (v):
(08) if (there is no local copy of X) then allocate space lx for a copy end if;
(09) lx.value ← v;
(10) lwsT ← lwsT ∪ {X}
============================================================================
operation try to commit

T
():

(11) acquire the lock; % commits are mutually exclusive %
(12) for each X ∈ lrsT do if (↓ X).date > birthdate then release lock; return (abort ) end if end for;
(13) commit date← Clock + 1;
(14) for each lx ∈ lwsT do lx.next ← X; lx.date ← commit date; X ← (↑ lx) end for;
(15) Clock ← commit date;
(16) release the lock;
(17) return (commit)

Figure 8: JVSTM’s algorithm for an update transactions

new values it has (locally) written. This is done by comparing the current date X.date of each object X
that has been read to the birthdate of T (line 12). If one of these dates is greater than its birthdate, there is
a possible inconsistency and consequently T is aborted (line 12). Otherwise, T can be committed. Before
being committed, T has to insert the new versions of the objects it has written into their lists of versions
(line 14). Their control part has also to be updated: they are set to the current clock value obtained by T
(incremented by one as shown in line 13). Finally, T increments the clock, releases the global lock and
commits (lines 15-17).
Remark This presentation of the try to commitT () operation of JVSTM does not take into account all of
its aspects. Among those, there is a mechanism that keeps track of the birthdates of the transactions that are
not committed yet. A transaction that commits then discards all the versions of the objects it writes that are
no longer accessible (that is, that will never be read by any live transaction because they are too old). The
JAVA garbage collector then frees the corresponding memory locations.

operation X.initT (): birthdate ← Clock

================================================
operation X.readT ():
(01) x← X;
(02) while ((↓ x).date > birthdate) do x← (↓ x).next end while;
(03) return ((↓ x).value);
================================================
operation try to commit

T
(): return (commit)

Figure 9: JVSTM’s algorithm for a read-only transactions

PI n ˚ 1893



24 D. Imbs & M. Raynal

The case of a read only transaction If a transaction T does not modify the shared objects, the code of its
X.readT () and try to commitT () operations can be simplified as shown in Figure 9.

Each time a read only transaction T reads an object X , it obtains (from the shared memory) the most
recent value at least as old as the transaction’s birthdate. A read only transaction does not manage a local
read set.

Finally, the operation try to commitT () always returns commit. This is because a read only transaction
can never abort. This is due to the presence of multiple versions which always allow a read only transaction
T to obtain mutually consistent versions of all the objects it has read.

Irisa




