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A marked point process of rectangles and segments
for automatic analysis of Digital Elevation Models.

Mathias Ortner, Xavier Descombes and Josiane Zerubia

Abstract—This work presents a framework for automatic
feature extraction from images using stochastic geometry.
Features in images are modeled as realizations of a spatial
point process of geometrical shapes. This framework allows the
incorporation of a priori knowledge on the spatial repartition
of features. More specifically, we present a model based on the
superposition of a process of segments and a process of rectangles.
The former is dedicated to the detection of linear networks of
discontinuities, while the latter aims at segmenting homogeneous
areas. An energy is defined, favoring connections of segments,
alignments of rectangles, as well as a relevant interaction
between both types of objects. The estimation is performed
by minimizing the energy using a simulated annealing algorithm.

The proposed model is applied to the analysis of Digital
Elevation Models (DEMs). These images are raster data
representing the altimetry of a dense urban area. We present
results on real data provided by the IGN (French National
Geographic Institute) consisting in low quality DEMs of various
types.

Index Terms—Image processing, Poisson point process,
stochastic geometry, dense urban area, Digital Elevation Models,
land register, building detection, MCMC, RJMCMC, simulated
annealing.

I. INTRODUCTION

A. Dense urban areas and building reconstruction

As cities are the place of increasing concentrations of people
they are the centers of numerous interests: economical, mili-
tary, environmental, to name a few. 3D cities representations
are of first interest for different communities (telecommuni-
cation, security, etc...). However, automatically obtaining such
representations is still an open issue.

The remote sensing community provides various sensors
and techniques to accumulate data on a specific urban area.
In particular, the advent of high resolution data (HR) in
remote sensing has given aerial and satellite images a primary
role in analyzing urban areas. Other imaging techniques like
LASER or LIDAR sensors provide different data. However,
the complexity of urban areas make the data challenging for
automatic analysis.

In this work, we focus on the analysis of Digital Elevation
Models (DEMs). DEMs are raster data representing the altime-
try of an urban area. They consist of 2D images such that the
gray level of a pixel describes the height of the corresponding
point in the scene. This type of data is obtained through
different sensors and processing techniques (e.g. stereovision,
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LASER sensing, etc...). The sample presented in Figure 11 is
a typical example of a Digital Elevation Model obtained by
aerial stereovision.

Extraction of buildings from urban data has been subject
to a corpus of literature. General overviews can be found
in [1], [2] or in the introduction of [3]. Automatic methods are
mostly made up of three steps. The focalization step selects
a relevant area that supposedly corresponds to a building. A
pre-segmentation (ground/above ground) or the incorporation
of external vectorial data (e.g. a land register) are usual ways
of achieving this pre-selection. The two next steps, namely the
primitive detection and the building reconstruction are usually
closely linked. The bottom up process creates aggregations of
primitives (illustrated for instance, in [1]), while the top-down
procedure matches the obtained aggregation hypothesis with
building models. The association of hypothetical aggregations
with pre-defined building models is a combinatorial problem
and thereby concentrates most of the computational load of
the procedure.

As the structure of dense urban areas is tremendously
complex, there is a huge need for incorporating as much
information as possible. The fusion of different types of data
is a first possibility. Many proposed methods tend to increase
the variety of data used by including multiple color images,
LASER clouds of points, register maps or hyperspectral im-
ages (see examples in [3]–[5]). Additional information can
also be integrated as a priori knowledge. Proposing a set of
possible building shapes is a first way of incorporating prior
knowledge. Our approach allows going further. We propose to
incorporate knowledge on the patterns of the primitives to be
extracted in terms of interactions between objects.

B. Our approach: spatial point process models

Our approach consists in modeling an urban area by a set
of an unknown number of interacting particles, where each
particle stands for a building element. A particle is eventually
a geometrical object that can be compared to the data.

In [6] we presented an original approach and model cities as
realizations of a spatial point process of rectangles. For each
rectangle a data energy was defined, correlating possible rect-
angle hypothesis with the data. A regularizing energy acting on
the spatial pattern of rectangles was incorporated, favoring for
instance alignments between buildings. This model is robust
with respect to the type and the quality of the data, but fails
to process very noisy data.

In this paper, we extend our previous work [6] by examining
the possibility of dealing with such noisy data. Our previous
work showed robustness, due to the type of prior used acting
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on the spatial patterns of extracted features. We show in this
paper that the point process approach allows the fusion of
different information. We focus on the example of homoge-
neous regions and linear discontinuities, and propose a model
of interacting point processes of rectangles and segments. We
extend the work we presented in [7] by providing details on
both models and algorithms as well as results on different real
data.

C. Point processes in image processing

Point process models in image processing can be seen
as a natural extension of Markov Random Field approaches
(MRFs). In the early eighties, MRFs have been introduced in
the computer vision community through the works of Besag
[8] and Geman and Geman [9]. In a Markov Random Field
representation, an image is modeled as a realization of a
collection of random values associated with each pixel in the
image. Although these pixel-based approaches proved to be
powerful for the analysis of dense urban areas at medium
resolutions (e.g. classification of textures [10]), the advent of
HR data has strengthened the need for approaches amenable
to the consideration of the geometrical nature of urban scenes.

Point process models - that can be considered as a part
of the wider “stochastic geometry” field, allow the modeling
of images as random configurations of geometric shapes and
provide a natural setup for the inclusion of a prior knowledge
on the spatial pattern of features. Such models were first used
in image processing by A. Baddeley and M.N.M. van Lieshout
in [11]. Further work has been performed by H. Rue [12], [13]
and Green [14] while more complex applications, like road
or building extraction, have been studied in [6], [15]–[18].
Different ideas have been explored by Grenander, Miller and
Sivrastava under the name of “pattern theory” (see [19] and
reference therein), although the objects were not interacting.

D. Outline

In Section II we provide a general discussion on point
process models for automatic image feature extraction. We
propose a generic model amenable to the inclusion of a
prior knowledge on the pattern of features. In Section III,
we then present the specific segment and rectangle point
process models we adopted. Segments are used for detect-
ing discontinuities, while rectangles are used for segmenting
homogeneous areas. In Section IV, we provide an overview
of the employed Reversible Jump Monte Carlo Markov Chain
(RJMCMC) algorithm. We finally present and discuss results
obtained on HR real data in Section V.

II. POINT PROCESS MODELS FOR IMAGE FEATURE

EXTRACTION

A. Introduction to point processes

1) Support, images and DEMs: We model images as a
continuous bounded set K = [0, X1max

] × [0, X2max
], and

note x = (c1, c2) a point of K. A Digital Elevation Model
can therefore be described as a function associating a height
with points of K. In the following, we note by H such a
function: H : K → [0,∞[.

2) Random configuration of points: A configuration of
points x in K (noted in bold) is a unordered set of points
x = {x1, . . . ,xn(x)}, where xi ∈ K and n(x) = card(x)
denotes the number of points in the configuration. We note
C the set of all possible finite configurations. Let consider a
mapping from an abstract probability space (Ω,A,P) to the
set of configurations C. Due to the finiteness of the considered
configurations along with the boundedness of K, the σ-algebra
associated with C is well defined (see [20] for details.) A
point process X of points in K is a measurable mapping
that associates with an event ω ∈ Ω a configuration of points
X(ω) = {x1, . . . , xn, . . . } xi ∈ K. Accordingly, a point
process is a random variable whose realizations are random
configurations of points.

3) Poisson point process: The most random point process
(in the entropy sense) is the Poisson point process. Let ν(.)
be a positive measure on K. A Poisson point process X with
intensity ν(.) verifies the following properties:

• for every Borel set A ⊂ K, the random variable NX(A),
giving the number of points of X falling in the set A,
follows a discrete Poisson distribution with mean ν(A)

(i.e. P(NX(A) = n) = e−ν(A) ν(A)n

n! ),
• and for every finite sequence of non intersecting Bore-

lian sets B1, . . . , Bp the corresponding random variables
NX(B1), . . . , NX(Bp) are independent.

Poisson point processes are usefull in our setup due to their
analog role to Lebesgue measures on R

d. As we detail it later,
it is indeed possible to define point processes by their density
with respect to the distribution of a reference Poisson point
process.

4) Marked point process: The configurations of points
described so far only include simple points of R

2. To describe
random configurations of geometrical objects, random marks
are added to each point.

For instance, let consider the following mark set Mr =
]− π

2 , π
2 ]× [Lr

min, Lr
max]× [lrmin, lrmax]. Noting by x elements

of Sr = K ×Mr, we consider the following parameterization
describing rectangles x = (c1(x), c2(x), θ(x), L(x), l(x)),
where (c1(x), c2(x)) stands for the center position, θ(x), for
the orientation, L(x) for the length and l(x) to the width of
the rectangle x. A marked point process X of rectangles is a
point process on Sr = K × Mr 1. This parameterization is
illustrated on Figure 1.

Similarly, we define a mark set Ms to describe segments
Ms = [−π

2 , π
2 ) × [Ls

min, Ls
max]. We note y an element of

Ss = K × Ms representing a segment y ∈ Ss, y =
(c1(y), c2(y), θ(y), L(y)), and use Y to denote a point process
of segments.

Finally, we note Cr and Cs the sets of finite configurations
of rectangles and segments.

5) Density of a spatial point process: An attractive feature
of spatial point processes is the possibility of defining a
point process distribution by its probability density function
(pdf). A Poisson point process can indeed play the analog

1There is actually a further requirement that the restriction of X to K,
noted X|K , should also be a point process on K. In our case, this technical
condition on the measurability of the mapping X is satisfied since the sets
K and Sr are bounded, see [20] for details.
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Fig. 1. Parameterizations of segments and rectangles

role to Lebesgue measure on R
d. Consider the distribution

μ(.) of a Poisson point process defined by its non atomic
intensity measure ν(.) and a mapping h(.) from the space of
configurations of points C to [0,∞[. We consider the function
Z(μ, h) defined as Z =

∫
C

h(x)dμ(x). If Z < ∞, the function
h(x)/Z(μ, h) can be seen as the density of a point process X

with respect to the reference Poisson process (see [20]).
For instance, assume that h(x) =

∏n(x)
i=1 β(xi) where β(.)

is an intensity function from S to ]0,∞[. A point process X

defined by this density turns to be a Poisson point process
with intensity

ν′(A) =

∫
A

β(u)dν(u). (1)

In this simple case, the probability density function
h(.)/Z(μ, h) allows a change of intensity measure. This exam-
ple actually belongs to the more general class of exponential
families. Let t(.) be a mapping from C to R

k. It is possible to
describe a class of point process densities by using a parameter
θ ∈ R

k together with the scalar product < ., . > and setting
h(x) = e−<θ,t(x)>. Of course, the density is well defined if
and only if Z(μ, h) < ∞. In this work we use such models
to introduce a density where points are not independent like
in the Poisson case but are correlated by means of interaction
energies.

6) Estimator and MCMC: In [21] we presented an MCMC
algorithm generating samples of a point process X defined
by an unnormalized density h(.) along with a reference
Poisson point process distribution. The obtained algorithm
produces a Markov Chain (Xt)t≥0 ergodically converging to
the distribution of X.

The procedure permits the computation of Monte Carlo
values. Another possibility is to use the sampler within a
simulated annealing framework providing a global maximum
of the density h(.) as described in [22]. The estimator ob-
tained is consequently the maximum density estimator x̂ =
Argmax h(.) The algorithm is detailed in Section IV.

7) A short example : the Strauss process: Consider a pro-
cess of disks for wich h(x) ∝ exp(−θt(x)), where t(x) counts
the number of disk intersections within the configuration x.
For θ > 0, overlapping disks are penalized. This model
was used by Strauss in [23] to model patterns of trees. The
sampling algorithm is based on an iterative process that tries
to add or remove points in the configuration. The addition of a
disk in the neighborhood of others will likely be rejected for
θ large enough, while the deletion of an interaction will be
favored. After enough iterations corresponding to a Markov

Chain convergence, the process will favor configurations of
disks without overlapping pairs.

B. Configurations of objects, image and energy

In this section, we define a suitable class of densities for
the extraction of features in Digital Elevation Models. As
mentioned previously, we focus on two types of elements:
segments and rectangles. Our goal is to use the segments
for detecting discontinuities and the rectangles to detect
rectangular homogeneous areas standing for buildings. We
therefore need to define a density making the objects fit the
data (homogeneity for rectangles, discontinuity for segments)
as well as favoring some patterns (connections of segments,
interactions between segments and rectangles). In this section,
we focus on generic modeling issues while the specific models
are detailed in section III.

Let consider a point process X of features (e.g. either seg-
ments or rectangles). We recall here the strategy we adopted
in [6] to define a suitable unnormalized density h(.). In image
processing, two main types of models are generally used. The
first approach, Bayesian modeling, is known to be powerful but
requires to exhibit a likelihood function describing the distri-
bution of an image I for a fixed configuration x of features
(conditional distribution). The second approach uses the Gibbs
distribution associated with a suitable energy function - as we
describe it later. In our framework, the Bayesian approach
would necessitate to accurately describe the distribution of
heights in every pixel of the DEM for a fixed configuration of
elements. This is a hard task, since by definition a feature only
contains a small part of the image information. Examples of
Bayesian point process models are given in [14] or [12]. They
rely on the use of foreground and background models of grey
level distribution. In [24] we proposed a Bayesian model for
building extraction based on a point process of 3D buildings.
The computational price for having a complete conditional
description of the image is too heavy as it requires too many
random parameters.

In this work, we use the second class of widely used models
and define a density under its Gibbs form

h(.) =
1

Z
e−U(x) U(x) = Uint(x) + ρUext(x). (2)

The energy is divided into two parts. The internal field
Uint(x) favors specific spatial structures in the configuration
x, while the external field Uext(x) quantifies the quality of the
configuration with respect to the data. The positive parameter
ρ allows the tuning of the relative weights between the two
terms.

The simplest way of specifying a data term is to expand it
as a sum over the objects in a configuration

Uext(x) =
∑
u∈x

Ud(u). (3)

The definition of a data term for the whole configuration
is thereby reduced to the definition of a data term for one
object which is faster from a computational point of view.
The mapping Ud(.) from S = Sr ∪ Ss to R quantifies the
relevance of an object with respect to the data. Note that a
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Bayesian modeling with respect to the data image I would
result in a log-likelihood −Uext(x|I) that has no reasons to
be expandable over the objects and that would be heavy from
a computational point of view.

If the data energy of an object u is negative (Ud(u) ≤ 0),
we say that the object is attractive. Care is needed to avoid
superpositions of points. From equation (3) it is obvious that if
Ud(u) ≤ 0, then successive additions of clones of u decrease
the overall data energy Uext(x ∪ u ∪ u) ≤ Uext(x ∪ u) ≤
Uext(x). As a consequence, a repulsive term avoiding such
superpositions is needed, and we eventually add an exclusion
term Uexcl(x) to the energy

U(x) = ρ
∑
u∈x

Ud(u) + Uint(x) + Uexcl(x), (4)

such that U(x ∪ u ∪ u) > U(x ∪ u), for all (u,x) ∈ S × C.

C. Internal field

The purpose of the internal field is to favor pre-defined
patterns of objects. In the specific case of segments and rect-
angles, our purpose is to favor paving patterns of rectangles,
connections of segments, and completion between rectangles
and segments.

The simplest Gibbs point process with non-independent
points is the Strauss process. Let consider a point process
X in K describing random configurations of simple points
X(ω) = {x1, . . . , xn(X(ω))} with xi = (ci

1, c
i
2) ∈ R

2.
The Strauss process is based on the energy U(x) = γs(x).

The function s(x) counts the number of pairs of points that
are closer than a parameter δ, while γ > 0 is a real parameter
tuning the importance of the interaction term. In view of
Equation (2) the Strauss process penalizes configurations with
too many close points. Note that the process can alternatively
be seen as a process of disks with radius δ/2, and s(x)
counting the number of intersections between disks.

Strauss processes were originally introduced [23] for model-
ing patterns of trees, and the repulsive nature of the interaction
was obviously suitable to that particular application. In our
case, we would like to favor some clusters (e.g. segment
connections). An naive solution would be to take a similar
model and set γ < 0. However, in that case, the process is not
defined (Z = ∞). The behavior of s(x) is indeed in n(x)2

(see [25] or [21] for more details).
1) Definitions: For a given relation ∼ on S, let note R(x)

the set of interacting couples of x

R(x) = {(u, v) : u ∈ x, v ∈ x, u 	= v u ∼ v} . (5)

The relation ∼ can be symmetric, but it is not required
(see [26] for theoretical ramifications regarding non-symmetric
neighbor relations). We define the neighborhood N (x, u) of a
point u in x as the set of points in x that are in relation with
u

N (u,x) = {v ∈ x : u ∼ v}. (6)

Let consider the function V (x, u) = 1(N (u,x) 	= ∅) which is
null only if u has no neighbors in x. This function is included
in the model in order to favor or penalize the presence of an
interacting pair of points.

We are also interested in ordering interactions with respect
to a quality function (see [18]). We suppose that for each
type of interaction, a function Ψ(., .) from S × S to [−1, 1]
quantifies the quality of the interaction between interacting
objects (intuitiveley Ψ(u, v) close to 1 (resp. −1) means that
the interaction is good (resp. bad) while Ψ(u, v) = 0 whenever
(u, v) do not interact).

Care is needed with the incorporation of those Ψ functions
in the configuration energy. Similarly to the attractive Strauss
model, summing the Ψ values over the interacting couples
would result in a non integrable h(.). Again, since an object
is possibly involved into several interactions, the number of
interacting couples can evolve with a n(x)2 behavior. As
a consequence, we propose to compute for each object the
maximum reward value

W (x, u) =

{
maxv∈N (x,v) Ψ(u, v) if N (x, u) 	= ∅,
0 otherwise.

The function W (u,x) is the reward function of the best
interaction among those involving u. Note that for a repulsive
interaction it might be better to compute the worst one
(minimizing Ψ).

2) Local energies: We define the local energy of an object
u ∈ x associated with a specific interaction (i-th) to be a linear
combination of the corresponding functions V and W ,

u ∈ x, U i
loc(x, u) = −

(
aiV i(x, u) + biW i(x, u)

)
.
(7)

Here a and b are two real parameters tuned to favor (a, b >
0) or penalize (a, b < 0) patterns of interest; a favoring the
presence of an interacting object and b weighting the quality
of the best interaction involving u.

We finally define the total interaction energy of the config-
uration as the sum of local energies over the objects

U i(x) =
∑
u∈x

U i
loc(x, u). (8)

3) Generalization: When using several interactions ∼1

, . . . ,∼k, we naturally extend the model by summing Equa-
tion (8) over the different interactions

Uint(x) =
k∑

i=1

U i(x) =
∑
u∈x

k∑
i=1

U i
loc(x, u) (9)

= −
∑
u∈x

k∑
i=1

[aiV i(x, u) + biW i(x, u)]. (10)

The internal field accordingly evolves linearly with the num-
ber of points in the configuration. Combinatorial problems
therefore disappear and the process is well defined. Another
advantage is that the balance between the external field (data
term) and the internal field is eased. An important benefit of
this interaction model is its scale invariance. The weights ai, bi

actually do not depend on the size of the considered area,
provided that the density of objects to be detected is constant,
a point we discuss in Section IV.
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D. Exclusion interaction

Although the attractive interaction model described previ-
ously solves the issue of the model integrability, an exclusion
term penalizing redundant objects is needed. We already
provided an immediate justification for this need through the
discussion on the data term and the definition of attractive
objects. It should also be noticed that attractive interactions
enhance this need. Without an exclusion term, the density
maximum can consist of an infinite accumulation of points,
even if the density is integrable. A last reason for adding
a repulsive interaction comes from a condition to get the
algorithm convergence (see [21]) which requires the energy
variation induced by adding a point to be uniformly bounded.

These three reasons underline the need for an exclusion
term. Since we consider geometrical objects, the simplest
exclusion interaction we can use is the intersection relation
u ∼excl v if and only if Surf(u)∩ Surf(v) 	= ∅ where we note
by Surf(u) the silhouette of the geometrical object u.

To incorporate this interaction as a repulsive one, we use a
simple model, homogeneous to the general interaction model
of Equation (7)

Uexcl(x) = −aexcl
∑
u∈x

Vexcl(x, u) aexcl < 0. (11)

Here |aexcl| is taken large enough so that it is impossible
to have redundant objects in the maximizing configuration.
However, due to the linear property of our attractive model,
the exclusion weight does not need to be too large, resulting
in good mixing properties of the algorithm.

E. Data term

We provide here a generic analysis of the data term Ud(u)
associated with an object u.

a) Attractive objects: A data term Ud : S → R partitions
the set S into the set of attractive objects Ud ≤ 0 and
its complement (repulsive objects). Since the density h is
maximized by a simulated annealing procedure, a repulsive
object cannot be part of the resulting configuration, except if
attractive interactions force its presence. For the sake of clarity,
we avoid that phenomenon by considering attractive interac-
tions among attractive objects only. We note γr

1 ⊂ Sr the set
of attractive rectangles and γr

0 its complement. Similarly the
set of attractive segments is noted γs

1 while the set of repulsive
segments is noted γs

0 .
b) Attractive object ordering: Another interesting feature

of the function Ud is that it allows ordering the objects.
We separate two cases. Among the repulsive objects, we use
this function to favor repulsive objects “close to” the set of
attraction γ1 whereas for attractive objects we use Ud(.) to
favor the specific locations that fit the data the best.

III. SPECIFIC MODEL DEDICATED TO THE ANALYSIS OF

DEMS

The purpose of this section is to present a specific model
for the analysis of Digital Elevation Models. We define the
rectangle and segment processes in terms of their internal field
and data terms. We also present an interaction term to make
both processes interact.

A. Segments and discontinuities

We enumerate here the different parts composing the seg-
ment model. We first explicit the data term, whose goal is
to make the linear network match meaningful discontinuities
of the DEM. We then describe the attractive connection
interactions used along with the corresponding repulsive term.
We conclude this section by presenting a simulated example
of the action of the internal field on the segment point process.

1) Configurations of segments: As mentioned in the previ-
ous section we consider a segment space Ss, product of the
image K and the segment mark space Ss = K × Ms, where
Ms =)− π

2 , π
2 ]× [Lmin, Lmax]. Points in Ss = K ×Ms are

segments parameterized by their center in the image together
with their orientation and length. A marked point process Y

on Ss describes random configurations of segments Y(ω) =
{y1, . . . , yn(Y(ω))} with yi ∈ Ss, for all i ∈ {1, . . . , n(y)}.

2) Data term: Our purpose is to use linear networks for
detecting significant discontinuities on the DEM. Segment
networks have previously been used in the context of road
detection ( [16], [15]). The aim of the data term is to quantify
the relevance of a segment hypothesis with respect to the
DEM. Since we want to process various type of DEMs, we
propose to use the generic discontinuity detector that we
presented in [6].

a) Discontinuity filter: Figure 2 provides a graphical
explanation of our approach. For a given segment hypothesis,
we consider slices taken orthogonally to the segment direction
on the DEM. For each of these slices, the discontinuity filter
detects discontinuity locations.

We use a dedicated filter. This filter is based on the
accumulation of large enough gradient values, and permits the
analysis of smooth data (e.g. Laser measurements), as well
as sharper DEMs (e.g. provided by optical stereovision). This
detector relies on the following steps. First, on each profile, the
points such that the local gradient is larger than a parameter
∇Hmin are pre-selected. Second, the pre-selected gradients are
accumulated, and selected if the accumulation is greater that
ΔHmin. Finally, the discontinuity closest to the segment is
kept as the important point. A morphological opening step is
also performed, using a linear element of size lsel. A complete
description of the filter is given in [27]. An important point is
that this filter is implicitely directional as the slice analysis is
performed orthogonally to a segment hypothesis.

b) Reward functions: We detail here how the selected
discontinuities are incorporated into the data term. As already
discussed in the previous section, the data term Ud(.) enables
the discrimination between attractive and repulsive objects.

For a given segment hypothesis u on which the discontinuity
analysis has been performed, we compute the length of the
detected discontinuity Lg(u) as illustrated by the Figure 2(c).
This length is given by the ratio of selected discontinuities,
that are at a distance to the segment smaller than a parameter
δr, multiplied by the length of the segment. We also compute
a moment value, m̂(u), as illustrated by Figure 2(d). This
moment is the average squared distance between the detected
discontinuities and the segment.

c) Final data term: We define the set of attractive
segments as the set of segments such that the ratio of detected
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(a) A segment hypothesis (in
black) on a Digital Elevation
Model and the considered slices,
orthogonal to the segment.

(b) We use a dedicated filter to de-
tect on each slice the closest mean-
ingfull discontinuity to the seg-
ment.

(c) The detected discontinuity
length corresponds to the length
of the gray rectangle.

(d) The discontinuity moment is
the average squared distance be-
tween the selected discontinuities
and the segment.

Fig. 2. Illustration of the steps used to compute the data energy of a
segment hypothesis. First, orthogonal slices are extracted from the DEM (see
2(a)). Then, using a dedicated filter, on each profile the closest meaningfull
discontinuity is detected (see 2(b)). The data energy is based on the length of
detected discontinuity, which corresponds to the ratio of discontinuities that
are close enough to the segment multiplied by its length (see 2(c)); as well
as the average squared distance between the discontinuities and the segment,
a value that we call discontinuity moment (see 2(d)).

discontinuities is greater than a fixed threshold η ∈ [0, 1]]

γs
1 = {u ∈ Ss s.t. Lg(u) ≥ ηL(u)}

In practice, we take η = 90%. As a consequence, the set of
attractive segments is the set of segments lying on discon-
tinuities. We also define a reward function jseg : Ss → R

associated with a segment

jseg(u) =
1

2

Lg(u)

Lmax

+
1

2
(1 − m̂(u)).

This reward function favors segments with a large disconti-
nuity length and fitting the discontinuities well. Therefore we
get

Us
d (u) =

(
−jseg(u) ∗ 1γs

1
(u) + 0.1 ∗ (2 − jseg(u))1γs

0
(u)

)
This data term favors the attractive segments and leads ele-
ments of γs

0 towards the set of attractive elements γs
1 as it

associates low values with segments in good correspondence
with the discontinuities of the DEM

3) Internal field for the segment: We describe in this
section the internal field designed to favor configurations of
connected segments. We consider two different connection
cases depending on the angle between the segments. We
promote cases where the connection happens between aligned
or orthogonal segments.

a) Connections: Connection interactions for segment
processes has been considered in the works of [16] and [28].
We use similar geometrical interactions, but our generic model
of attractive interactions presented in section II-C allows an
easier incorporation of a quality term.

We introduce a connection relation ∼conn depicted by
Figure 3. We identify by E1(u) and E2(u) the extremities of
the segment u. We consider that two segments are connected if
the distance between their extremities is less than a parameter
δEmax : u ∼conn v iff min{‖Ei(u) − Ej(v)‖ i, j ∈
{1, 2}2} ≤ δEmax

b) Restrictions: We actually consider two different types
of connections depending on the angle between the connected
segments, as illustrated in Figure 3. We therefore append
the following two conditions on the difference of angles:
|θ(u) − θ(v)| ≤ δθmax (modulo π) and |θ(u) − θ(v) + π

2 | ≤
δθmax (modulo π).

(a) A connection between
aligned segments.

(b) A
connection
between
orthogonal
segments.

(c) Two segments in re-
pulsive interaction (the
associated rectangles in-
tersect)

Fig. 3. Interactions between segments. Two segments are connected if the
distance between their extremities is small enough.. Two types of connections
are actually distinguished: connections with a flat angle (see 3(a)) and
connections with a right angle (see 3(b)). A repulsive intersection relation
(see 3(c)) is added to avoid overlapping segments.

We finally add a further restriction, and consider only
connections between attractive segments. Since a segment has
two extremities, we consider two relations of each type per
segment. The different resulting mathematical expressions are
detailed in [29].

4) Energy Model: In order to favor good connections we
introduce the following real valued function

� : R
2 → [0, 1]

(x, xmax) →
1

x2
max

(
1 + x2

max

1 + x2 − 1

)
, |x| ≤ xmax.

(12)
This function verifies �(0, xmax) = 1 and �(xmax, xmax) =
0. In the case of the flat connection relation ∼conn.al.1 we
adopt the following reward function

Ψ(u, v) =
1

2
�(δE(u, v), δEmax) +

1

2
�(δθ, δθmax).

where δE and δθ respectively represent the distance between
the suitable extremities and the suitable angle difference. We
therefore favor precise connections (the smaller the distance
between the extremities, the better) as well as flat connections.
The quality function associated with the orthogonal connection
is similar and favors angle differences close to π/2.

We use the generic model presented in section II-C.
This model relies on four real parameters,
aconn. al., bconn. al., aconn. orth., bconn. orth.. As we want the
connections to be favored, these parameters are taken positive.
Note that since we have 4 connection relations, we should
consider 4 couples (a, b). However, since the connections
by one or another extremity is symmetric (relation ∼conn. al.1
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Fig. 4. Simulation result of the internal field acting on the segment process.
This simulation has been obtained using γs

1
= Ss.

equivalent to ∼conn. al.2) we set aconn. al.1 = aconn. al.2 = aconn. al.

and proceed similarly for the other parameters.
5) Exclusion term.: Following the discussion in sec-

tion II-D on the necessity of introducing a repulsive interaction
to avoid accumulations of attractive points, we incorporate
within the model an intersection interaction. For each segment,
we define an embedding rectangle (see Figure 3(c)) and
set the exclusion interaction as the intersection between the
corresponding rectangles.

6) Result example: We present on Figure 4 a simulation
result of the prior model. The internal field favors connected
networks of lines and both flat and orthogonal connections.

B. Rectangles and homogeneity

In this section we detail the rectangle process. After recall-
ing the object space, we describe the data term as well as the
internal field. We then show simulated results of the model.

1) Configurations of rectangles: We define a process of
rectangles X whose points represent rectangles. The object
space is Sr = K × Mr. Mr =] − π

2 , π
2 ] × [Lr

min, Lr
max] ×

[lrmin, lrmax].

2) Rectangles and DEM: The goal of the data term is to
make the rectangles fit extruded areas of the Digital Elevation
Model. For that purpose we use a mask of points presented
on Figure 5(a). This mask is made of a set of points inside a
rectangle along with four bands around it.

a) Local ground height: We compute a local ground
height estimate Ĥg(u) from the four bands. We take the min-
imum of the four means of heights. This procedure provides
a local estimate of the ground height. This point is important,
as dense urban areas often exhibit different ”ground levels”.

b) Extruded ratio: We define the volume ratio v̄(u) as
the percentage of points inside the rectangle that are higher
than the ground height estimate augmented by a minimum
height (Ĥg(u) + Hmin).

c) Surface ratio: Another function we use is the ratio
between the area of the rectangle and the maximum possible
area. s̄(u) = l(u) ∗ L(u)/(Lr

max ∗ lrmax). This function is
included in the data term to favor large rectangles. It should be
noted that a term favoring large rectangles could be considered
as a part of the internal field.

(a) A mask of points,
associated with each
rectangle, is made of
a set of central points
and four bands along
the sides.

(b) The four bands are
used to obtain a ground
height estimate taken
as the lowest average
height among the four
bands.

(c) The extruded
ratio is given by
the ratio of inside
points higher than
the ground height
estimate augmented
by a minimum height
(points in white).

Fig. 5. To compute the data energy of a rectangle we use a mask of points
associated with the rectangle (see 5(a)). The four lateral bands gives four
mean DEM height (see 5(b)). The lowest mean gives a local estimate of the
ground height. We then compute a volume ratio (see 5(c)) that corresponds to
the ratio of inside points that are higher than the ground height augmented by
a minimum height, set by the user. We also compute the standard deviation
of these points.

d) Standard deviation ratio: We compute the standard
deviation σ(u) of grey levels among the points of the
mask that are higher than the minimum height Ĥg(u) +
Hmin. The standard deviation ratio is given by σ̄(u) =
max {0, 1 − σ(u)/σmax}. This term obviously favors an ho-
mogeneous distribution of gray levels inside the rectangles.
Note that this term relies on an additional parameter σmax,
which in practice we take as σmax = 10m.

3) Data term:
a) Attractive objects: We define the set of attractive

rectangles as the set of rectangles for which the extruded ratio
is large enough, i.e. u ∈ γr

1 iff v̄(u) ≥ vmin. In practice, we
use vmin = 90% and Hmin = 4m.

b) Data function Ud: We consider the following reward
function associated with a rectangle jrect(u) = v̄(u)∗s̄(u)/2+
σ̄(u)/2. By multiplying the extruded and surface ratios, we
actually obtain the surface of the rectangle that is above
Ĥg(u)+Hmin up to proportionality. This function favors large
homogeneous rectangles. We finally end up with the following
data term

Ur
d (u) =

(
−jrect(u) ∗ 1γr

1
(u) + 0.1 ∗ (2 − jrect(u))1γr

0
(u)

)
Again, this function Ur

d (.) discriminates between attractive and
repulsive objects and favors the best objects, in the sense of
the homogeneity of gray levels.

4) Internal field for the rectangle process: In a town,
buildings are usually aligned. Hence, we design an interaction
that favors such alignments. Figure 6(a) presents an example
of alignment. This model is similar to the model we propose
in [6].

a) Alignment interaction: Denoting δC(u, v) the dis-
tance between appropriate corners (see details in [6]) and
δθ(u, v) the angle difference between the two rectangles (mod-
ulo π), we define the first interaction by the three following
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C
C

CC

1
2

3 4

(a) Alignment
interaction

1

(b) paving interaction (c)
Interaction
between
segments and
rectangles

Fig. 6. Some attractive interactions. a) example of an alignment interaction,
b) Illustration of a paving interaction (alignment along the other axis) and c)
illustration of an interaction between rectangles and segments.

conditions

u ∼al1 v ⇐⇒

⎧⎨
⎩

δC(u, v) ≤ δCmax

δθ(u, v) ≤ δθmax

(u, v) ∈ γ2
1 .

(13)

Because a rectangle has four corners, we actually define four
different alignment interactions that we note ∼al1 , . . . ,∼al4 .
We only detect alignments between two attractive objects
(belonging to γr

1 ). A rectangle can be in relation with a
neighbor by two corners in which case we consider that they
are related by two different interactions. The associated reward
function evaluated on a couple of related points is:

Ψ(u, v) =
1

2
� (δθ(u, v), δθmax) +

1

2
� (δC(u, v), δCmax) .

(14)
This reward function is important: the goal is not only to pro-
mote the presence of alignments, but also to favor alignments
of good quality. We finally define the internal field

Uint(x) =
∑
u∈x

aal

4∑
i=1

V ali(x, u) + bal

4∑
i=1

W ali(x, u). (15)

Note that although 4 alignment relations are considered, we
only use two parameters a and b to limit the number of
parameters.

b) Paving interaction: We also introduce a second type
of relation which favors parallel rectangles that are located
side by side as illustrated by Figure 6(b). This interaction is
essentially introduced in order to favor clean arrangements of
buildings. This relation is defined similarly to the alignment
relation previously described. The reward function Ψ is also
defined in a similar way. It leads to interactions ∼pav11 to
∼pav4 .

5) Results: An illustrative example of a simulation of the
internal field is presented on Figure 7.

C. Coopeeration between segments and rectangles

We present in this section an interaction between segments
and rectangles whose purpose is to merge the two processes
in order to obtain a joint analysis of the data based on both
discontinuities and extruded area detection.

Fig. 7. Simulation result showing the internal field of the rectangle process.

1) Union of point processes: We formally denote configu-
rations of rectangles and segments as realizations of a process
Z, union of the processes X of rectangles and Y of segments
Z = X ∪ Y.

Alternatively, the point process Z can be seen as a marked
point process on Ssr = K×(({s} × Ms) ∪ ({r} × Mr)). An
object z is accordingly described by a point, an indicator o ∈
{s, r}, and the relevant marks. This alternative representation
is useful from the algorithmic point of view, as it allows us to
extend the convergence results we obtained in [6] and [21] to
the case of a process of rectangles and segments.

2) Interaction between segments and rectangles: We define
an interaction term between rectangles and segments in order
to favor the coherence between the two networks of objects.
We use a test on the angle difference, as well as a test on the
distance between the segment center and the closest side of
the rectangle. The associated limit parameters are noted δdmax

and δθrs.
Similarly to the previously defined interactions, we consider

only interactions among attractive objects. Note that a segment
can be in relation with two rectangles (two sides) while a
rectangle can be related to four segments, as illustrated by the
Figure 6(c).

We end up with the following interaction energy

Ucoop(z) =
∑
u∈z

acoopV (z, u) + bcoopW coop(z, u). (16)

where acoop, bcoop are the interaction parameters, and V,W
the interaction functions defined similarly to the previous
interactions.

3) Resulting model: Accounting for both the segment and
rectangle processes result in the overall model

Urs(z) = Ur(x) + Us(y) + U inter(z)

= ρr
∑
u∈x

Ur
d (u) + ρs

∑
v∈y

Us
d (v) + Ur

int(x) + Us
int(x) + . .

+ . . . Ur
excl(x) + Us

excl(y) + Ucoop(z)

parameterized by ρr, ρs together with the ai and bi covering
the two types of segment connections, the two types of
rectangle alignment relations, the two repulsive interactions
and the cooperation interaction.

IV. ALGORITHM

We present briefly in this section the algorithm used for
optimizing the model described by Equation (4). Rather than
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detailing technical issues that can be found in [25] or [21] we
try to give a general flavor of the MCMC sampler we use.

A. Sampling unnormalized densities

As stated in section II, we specify point process models by
means of an energy U(.) and a reference Poisson point process
playing the analog role of real p.d.f. and Lebesgue measure
for real random variables. The resulting distribution is denoted
π(.) and is known up to a normalizing constant. Due to the
Markov Random Field approaches, it is now widely known
in the image processing community that Gibbs or Metropolis-
Hastings procedures allow the computation of Monte Carlo
estimators, even if the normalizing constant of the target
distribution is not known. Such algorithms are Monte Carlo
Markov Chain samplers generating Markov chains that exhibit
the desired properties (i.e. Harris recurrence, aperiodicity,
π invariance and ergodicity). As a consequence of these
properties, the states of the Markov chain after a large enough
time are distributed according to the desired distribution π(.)
and can be used to compute Monte Carlo values even if the
samples are not independent, regardless of the starting point.
Of course, mild conditions on the function to evaluate need to
be fulfilled (e.g. it has to verify Lyapunov stability conditions,
see [25]).

The point process case can be tackled similarly, by employ-
ing a Metropolis-Hastings like procedure. However, as it was
pointed out by Green [30], when exploring state spaces of
different dimensions, a correcting term has to be appended to
the acceptance ratio when the Markov chain jumps between
spaces of different dimensions.

As we now detail it, the Metropolis-Hastings-Green proce-
dure applied to point processes is very similar to the usual
Metropolis-Hastings update scheme. The transition kernel of
the Markov chain is a two stage procedure. A possible new
state is first randomly proposed by a perturbation kernel
(proposition step) and then randomly accepted according to
a suitable Bernoulli scheme (acceptance step). In the case of
point processes, the current state is a configuration of geo-
metrical objects. The random proposition can be for instance
the translation or the rotation of one or several objects in the
configuration or the addition/deletion of an item to/from the
current configuration. In that case, the Green correcting factor
is needed, since the dimension of the configuration is changed.
The second step (random acceptation of the proposition) is the
step that ensures the convergence of the Markov Chain to the
desired distribution and the acceptance probability needs to be
computed carefully.

The Metropolis-Hastings-Green algorithm applied to the
specific case of point processes is known under the name
of Geyer and Møller [31] algorithm by the point process
community since they provided a proof of its convergence in
1994.

B. Generic Structure

Suppose we consider a point process Z defined by its
energy U(.). Through the Gibbs relation, this energy leads to
a density h known up to a normalizing constant. This density

together with the distribution μ(.) of the reference Poisson
point process defines the distribution π(.) of Z.

The Markov chain (Xt)t≥0 is defined by a starting point
X0 = {∅} and a Markovian transition kernel P (x, .) cor-
responding to the conditional distribution of Xt+1|Xt = x.
It results in a Markov chain (Xt)t≥0 on the space of finite
configurations of points C.

Of course, P (., .) is designed in order to make the Markov
Chain converge towards the desired distribution ‖Pn({∅}, .)−
π(.)‖TV → 0 where ‖.‖TV notes the Total Variation norm
(TV).

The Markov chain generated by the following algorithm
satisfies this property. We actually have more accurate results,
since we know that we can start from any configuration
(Harris recurrence) and that the total variation tends to zero
geometrically (geometric ergodicity), as detailed in [21].

1) Algorithm: The algorithm is based on a mixture of per-
turbation kernels Q(., .) =

∑
m pmQm(., .) where

∑
pm = 1

and
∫

Qm(z, z′)μ(dz′) = 1. The algorithm iterates the follow-
ing steps. Let the current state Xt be Xt = z = {z1, . . . , zn}.
[1] Choose one of the proposition kernels Qm(., .) with

probability pm(z) and
[2] sample z′ according to the chosen kernel z′ ∼ Qm(z, .).
[3] Compute the Green ratio Rm(z, z′), function of the

selected kernel Qm, the original state z and the proposed
new state z′. The ratio Rm is derived to make the Markov
chain converge towards the desired distribution.
[4] The proposition is accepted (Xt+1 = z′) with a proba-

bility αm(z, z′) = min(Rm(z, z′), 1) and rejected otherwise
(Xt+1 = z).
2) Perturbation kernels: The efficiency of the algorithm

highly depends on the variety of possible transformations
Qm(z, .).

a) Birth or death: This kind of perturbation first chooses
with probability pb and pd = 1 − pb whether a point should
be removed (death) or added (birth) to the configuration. If
death is chosen, the kernel selects randomly one point u in z

and proposes z′ = z \ u, while if birth is chosen, it generates
a new point u according to the uniform measure |.|/|Ssr| and
proposes z′ = z ∪ u. The birth or death kernel is necessary
and sufficient to insure the convergence of the Markov chain
towards the target distribution.

b) Non jumping transformations: Non jumping transfor-
mations are transformations that first select randomly a point
u in the current configuration and then propose replacing this
point by a perturbed version v, z′ = z \ u ∪ v. Translation,
rotation or dilation are examples of non jumping perturbations.

c) Birth or death in a neighborhood: We introduced this
kind of transformation in [21]. The idea is to propose the
removal or addition of interacting pairs of points with respect
to one of the attractive relations such as the connection in
the case of segments or alignment in the case of rectangles.
This type of transformations increase the performance of the
sampler since it follows the prior model (see [21].

d) Green ratio: With each of these proposition kernels
a mapping Rm(., .) from C × C to (0,∞) is associated. This
value, named Green ratio, depends on the target distribution
π.
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(a) Rotation of a
rectangle.

(b) Rectangle di-
lation in one di-
rection.

(c) Rectangle di-
lation in the sec-
ond direction.

(d) Rectangle
translation.

(e) Segment dila-
tion.

(f) Segment rota-
tion.

(g) Segment
translation.

(h) Modification
of the connection
between two
connected
segments.

Fig. 8. The different non jumping transformations used in the algorithm.
Each of these transformations first randomly selects an object in the current
configuration of rectangles and segments, and applies a specific parameter
perturbation on the selected object, except in the case of a connection
perturbation (see 8(h)) where two objects are modified.

3) Simulated annealing: To find a minimizer of the energy
U(.) we use a simulated annealing framework. Instead of gen-
erating samples of h(.), we simulate h

1

Tt (.). The temperature
parameter Tt tends to zero as t tends to ∞. Note that it is
equivalent to the notation

ft(z) = Z−1
Tt

exp

(
−

U(z)

Tt

)
. (17)

This technique has been widely used in image processing
(see [32] for instance). If Tt decreases with a logarithmic
rate, then Xt tends to one of the global maximizers of h(.).
Of course, in practice it is not possible to use a logarithmic
evolution law and we eventually use a geometrical one. This
last point makes the quality of the proposition kernels an
important issue. As a consequence we design kernels such
that the trajectory of the Markov chain is poorly correlated to
insure a good exploration of the state space.

C. Specific Transformations

We detail in this section the proposition kernels used in our
case.

1) Birth or death transformations: We consider two simple
birth or death transformations, QBDR and QBDS correspond-
ing to the random birth or death of a rectangle (BDR)
or a segment (BDS). The birth update follows a uniform
distribution |.|/|Sr| or |.|/|Ss| depending on the type of object
to be created. The death update proposes removing an object
uniformly selected among the current objects. The Green ratios
associated with the birth and the death of a rectangle are
respectively RBDR(z, z∪ u) = |Sr|h(z ∪ u)/(n(z) + 1)h(z),
and RBDR(z, z \ u) = n(z)h(z \ u)/|Sr|h(z \ u)h(z). The
ratios in the case of birth or death of a segment are similar.

2) Translations, rotations, dilatations: We have imple-
mented the transformations depicted in Figure 8. Each of
these transformations uses a parameter z that is randomly
chosen in some symmetric set Σ. For instance, the rotation
perturbations use a random parameter ξ ∈ Θ = [−Δϕ,Δϕ] to
generate the new angle for the selected object. If u is chosen
uniformly in z and the distribution of ξ is symmetric, the
suitable Green ratio is given by the usual Metropolis-Hastings
ratio R(z, z′) = h(z′)/h(z).

3) Birth or death of an aligned rectangle: This kernel
proposes either to create (with probability pb ) or to remove
(with probability pd = 1−pb) an interacting pair of rectangles.

a) Birth: The birth update first selects a point u of z∩γr
1 ,

then generates a new point v aligned with u in the sense of
one of the alignment relations ∼a l, and proposes z′ = z∪ v.

b) Death: The death update selects a pair of aligned
points provided that at least one of them is in γr

1 , chooses
an object v in this pair with probability 0.5, and proposes to
remove v: z′ = z \ v.

The expression for the Green ratio associated with this kind
of transformations is detailed in [21] and [6], and we refer the
reader to these papers for detailed explanations on how the
ratios are derived.

4) Connection perturbation: This intuitive transformation
allows to modify the segment network, by acting simulta-
neously on two connected segments. The different steps are
1. choose a couple of connected segments, 2. generate a
random perturbation vector, 3. apply this vector to each of the
connected extremities , 4. test if the two new segments are still
connected, if not stop here, otherwise 5. propose y′ obtained
by replacing the two former segments by the new perturbed
one. This transformation is illustrated by Figure 8(h). The
Green ratio is given by h(z′)/h(z).

D. Reference measure

For computational convenience, the reference intensity mea-
sure ν(.) usually used is uniform (see [20]). The advantage of
using a simple intensity measure is that it makes the birth of
a point easier. However, in our setup, points of interest are
those in γ1 which is of small Lebesgue measure. To improve
the exploration of γ1, a solution is to use a reference measure
favoring this set. In [29] we show how to tune the reference
measure in order to improve the mixing ability of the Markov
Chain.

E. Convergence of the algorithm

The convergence of the algorithm holds. We derived suffi-
cient conditions in [21] and showed in [6] that these conditions
are fulfilled in the specific case of a process of rectangles.
The generalization to the case of processes of both segments
and rectangles is straightforward, due to the representation of
the new mark space as a product. The convergence of the
simulated annealing towards a global maximum of the density
h(.) has been proved in [22] using Dobrushin conditions.
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V. RESULTS

We present in this section a set of results on real data.
We first detail the parameters of the internal field, as these
parameters were tuned once and kept constant for all applied
results. We then present results on a very crude DEM. This
example illustrates how interesting it is to include two different
types of elements. We first present a result obtained using only
as process of segments, then a result obtained using only a
process of rectangles and finally a result obtained using both
processes. We then present results on different types of data
(optical and LASER), showing the generality of the proposed
model.

A. Fixed parameters

In Table I we present the parameters defining the internal
model and the space parameters. These parameters are fixed
for all the results presented later in this paper. These param-
eters have been tuned by hand, but a supervised learning is
possible, if some examples are provided (see [25]).

Objects space
lr
min

5m
lrmax 30m
Lr

min
5m

Lr
max 40m

Ls

min
9m

Ls
max 30m

Cooperation
Definition
δdmax 6m
δθrs

max 30
◦

Weights
a∼coop.

0.1
b∼

coop.
1

Rectangle
Definition
δCmax 6m
δθr

max 30
◦

Alignments

a∼al
0.3

b∼
al

0.4
Paving
a∼pav

0.3
b∼

pav
0.4

Exclusion

a∼excl
-10

Segment
Definition
δEmax 5m
δθs

max 30
◦

Flat connection

a∼conn.al.
1.5

b∼
conn.al.

1.5
Orth. connection

a∼conn.orth.
0

b∼
conn.orth

2
Exclusion

a∼excl.s
-15

TABLE I
PARAMETERS DESCRIBING THE INTERNAL FIELD OF BOTH PROCESSES AS

WELL AS THE INTERACTION TERM BETWEEN RECTANGLES AND

SEGMENTS. THESE PARAMETERS ARE FIXED FOR ALL THE RESULTS

PRESENTED IN THIS PAPER.

B. Crude DEM

We present in Figure 9(a) a very crude Digital Elevation
Model. This DEM comes from a simulation and has been
provided by the French National Geographic Institute (IGN).
We consider this DEM to be very crude as it exhibits two
main characteristics. First, due to the way the data have been
generated, the vertical resolution of the DEM is very low,
as shown by the low number of gray levels of Figure 9(a).
Second, there are some occlusions: large amounts of data
represented by black areas are missing.

1) Rectangles process: We present in Table II the data term
parameters employed. In order to deal with missing data, we
add the condition that a rectangle can be attractive only if the
amount of data available is large enough (at least 70% of the
rectangle surface). We present on Figure 9(b) a detection result
obtained by using only the rectangle process. The homogeneity
data term clearly plays its role. The segmentation obtained

indeed follows the homogenous areas. However, the rectangles
fail to follow the discontinuities.

2) Segments process: We present the segment data term
parameters in Table II. These parameters were tuned to deal
with smooth discontinuities. On Figure 9(c), we present an
extraction result obtained using the segment process only.
Note that the extraction process tends to give curved linear
networks.

3) Cooperation between segments and rectangles: We
present now the extraction result obtained using the two
processes together in two steps. In Figure 10(b), we show
the obtained segment configuration, while on Figure 10(a) we
show the rectangle configuration. The cooperation term plays
its role, as both the rectangles and the segments processes fit
the data better when used together. This example on a crude
DEM is however disappointing. The data are indeed too crude
to obtain a satisfactory extraction result, although it illustrates
well the originality of our approach. As a consequence, we
present in the rest of this section results on different Digital
Elevation Models.

C. Satellite DEM

We present on Figure 11(a) another simulation of a satellite
DEM also provided by the IGN. This DEM is far better
due its improved vertical and horizontal resolution and the
rectangle extraction is therefore more meaningful. We present
in Table II the data term parameters employed. Figures 11(b)
and 11(c) present the extraction results obtained using both
processes. These results show that our approach is interesting
as it provides a kind of land register useful for further analysis.
In particular, our approach provides a starting point for precise
building reconstruction.

D. Aerial DEM

We present in Figure 12(a) a DEM of a part of Rennes,
France. It is a DEM obtained by stereovision on aerial images.
This DEM is very noisy with respect to other data available
(see [6]). The data term parameters employed are detailed
in Table II. Figures 12(b) and 12(c) present the extraction
result obtained using both processes. Again, the obtained result
allows further 3D roof extraction.

E. Laser DEM

We present in Figure 13(a) a DEM obtained by a Laser
measurement. This piece of data originally consists in a set
of sparse 3D points. The obtained DEM is consequently
very smooth. In Table II we show the data term parameters
employed. Figures 13(b) and 13(c) present the extraction
results obtained using both processes. The results are relevant,
but somehow disappointing. It seems that our approach is
better suited to low quality DEMs than to precise data.

F. Comments

The algorithm requires a large number of iterations (on
average 25.000.000) and a high computational time. Each
simulation takes around 6 hours on an image of size 1000

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



12

(a) Crude Digital Elevation Model c©IGN (b) Extraction result obtained using only the
process of rectangle.

(c) Extraction result obtained using only the
segment process.

Fig. 9. Crude Digital Elevation Model provided by the French National Geographic Institute. The analysis of this DEM faces two major issues: first, large
areas of data are missing (black areas); second, the vertical resolution is poor, limiting the amount of information available.

(a) Rectangle extraction (b) Segment extraction

Fig. 10. Extraction result obtained using both processes simultaneously.

(a) Original DEM c©IGN (b) Segment extraction (c) Rectangle extraction

Fig. 11. Digital Elevation Model of a part of Amiens, France obtained by satellite stereovision and extraction results
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Data term parameters associated with Figures 9 and 10

Rectangle data term parameters Inside points resolution 2 m Hmin 5 m σmax 5 m
Distance of lateral bands 10 m vmin 90% ρr 1.2

Segment data term parameters Slices discretization step 1 m ∇Hmin 0.7 δr 8 m
Distance between slices 2 m δHmin 5 η 90%
Length of slices 30 m lsel 4 m ρs 3

Data term parameters associated with Figure 11

Rectangle data term parameters Inside points resolution 2 m Hmin 5 m σmax 10 m
Distance of lateral bands 10 m vmin 90% ρr 1.2

Segment data term parameters Slices discretization step 1 m ∇Hmin 1 δr 3m
Distance between slices 1.5 m δHmin 4 m η 90%
Length of slices 20 m lsel 4 m ρs 3

Data term parameters associated with Figure 12

Rectangle data term parameters Inside points resolution 1m Hmin 3m σmax 10m
Distance of lateral bands 10m vmin 90% ρr 1.2

Segment data term parameters Slices discretization step 0.8m ∇Hmin 1 δr 1.5m
Distance between slices 0.7m δHmin 2m η 90%
Length of slices 20m lsel 4m ρs 3

Data term parameters associated with Figure 13

Rectangle data term parameters Inside points resolution 1 m Hmin 3 m σmax 10m
Distance of lateral bands 10 m vmin 90% ρr 1.2

Segment data term parameters Slices discretization step 0.8 m ∇Hmin 1 δr 1.5m
Distance between slices 0.7 m δHmin 2 m η 90%
Length of slices 20 m lsel 4 m ρs 3

TABLE II
DATA TERM PARAMETERS EMPLOYED FOR THE DIFFERENT RESULTS PRESENTED IN FIGURES 10, 11,12 AND 13.

by 1000, including approximatively 150 buildings2. Improving
the speed of the algorithm is therefore a major issue, although
the computational time depends more on the complexity of
the urban area than on the size of the image. An interesting
idea would be to pre-compute the result of the discontinuity
filter, since it appears that the computation associated with the
segment process take most of the time. Another idea could be
to keep the best objects found so far in memory.

VI. CONCLUSION AND FUTURE WORK

We have proposed an original approach based on stochastic
geometry amenable to the introduction of a prior knowledge
on both the shape of the primitives to be extracted and their
spatial patterns in term of their interactions.

More specifically, we have presented a model based on two
types of geometrical objects. We have proposed a point process
model of segments to detect discontinuities and a model
of rectangles for segmenting homogeneous areas. The prior
term we employ favors the connections between segments, a
paving behavior of rectangles and makes both types of objects
interact.

Although our approach is based on very simple objects,
it proves to be powerful when applied on real data. We
have indeed been able to process Digital Elevation Models of
various type (from aerial/satellite stereovision data and Laser
measurement). To our best knowledge, few automatic methods
are able to process such a variety of data.

Future work should involve the introduction of more com-
plex primitives (e.g. corners, roof edges, etc...). However two
major issues need to be solved in order to fully exploit

2Using a 3 GHz Pentium 4 machine

this kind of models. First, the learning of parameters should
be carefully examined, even if the prior model parameters
proved to be very robust in practice. Second, the algorithm
employed is very slow. There is a huge need for proposing new
algorithms to speed up the computation. A first direction is to
improve the simulated annealing. Adaptive cooling schedules
are a possibility we will examine in a near future. Another
interesting idea would be to test whether adding a memory
could improve the algorithmic performances.
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