
HAL Id: inria-00281374
https://hal.inria.fr/inria-00281374

Submitted on 22 May 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Soft Shadow Maps: Efficient Sampling of Light Source
Visibility

Lionel Atty, Nicolas Holzschuch, Marc Lapierre, Jean-Marc Hasenfratz,
François X. Sillion, Charles Hansen

To cite this version:
Lionel Atty, Nicolas Holzschuch, Marc Lapierre, Jean-Marc Hasenfratz, François X. Sillion, et al.. Soft
Shadow Maps: Efficient Sampling of Light Source Visibility. Computer Graphics Forum, Wiley, 2006,
25 (4), pp.725-741. �10.1111/j.1467-8659.2006.00995.x�. �inria-00281374�

https://hal.inria.fr/inria-00281374
https://hal.archives-ouvertes.fr

Volume 0 (1981), Number 0 pp. 1–17

Soft Shadow Maps:
Efficient Sampling of Light Source Visibility

Lionel Atty1, Nicolas Holzschuch1, Marc Lapierre2, Jean-Marc Hasenfratz1,3, Charles Hansen4 and François X. Sillion1

1 ARTIS/GRAVIR–IMAG INRIA 2 MOVI/GRAVIR–IMAG INRIA
3 Université Pierre Mendès-France 4 School of Computing, University of Utah

Figure 1: Our algorithm computes soft shadows in real-time (left) by replacing the occluders with a discretized version (right), using informa-
tion from the shadow map. This scene runs at 84 fps.

Abstract
Shadows, particularly soft shadows, play an important role in the visual perception of a scene by providing visual
cues about the shape and position of objects. Several recent algorithms produce soft shadows at interactive rates,
but they do not scale well with the number of polygons in the scene or only compute the outer penumbra. In
this paper, we present a new algorithm for computing interactive soft shadows on the GPU. Our new approach
provides both inner- and outer-penumbra, and has a very small computational cost, giving interactive frame-rates
for models with hundreds of thousands of polygons.
Our technique is based on a sampled image of the occluders, as in shadow map techniques. These shadow samples
are used in a novel manner, computing their effect on a second projective shadow texture using fragment programs.
In essence, the fraction of the light source area hidden by each sample is accumulated at each texel position of
this Soft Shadow Map. We include an extensive study of the approximations caused by our algorithm, as well as
its computational costs.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Graphics processors I.3.7
[Computer Graphics]: Color, shading, shadowing, and texture

1. Introduction

Shadows add important visual information to computer-
generated images. The perception of spatial relationships be-
tween objects can be altered or enhanced simply by mod-
ifying the shadow shape, orientation, or position [WFG92,
Wan92,KMK97]. Soft shadows, in particular, provide robust
contact cues by the hardening of the shadow due to prox-

imity resulting in a hard shadow upon contact. The advent
of powerful graphics hardware on low-cost computers has
led to the emergence of many interactive soft shadow algo-
rithms (for a detailed study of these algorithms, please refer
to [HLHS03]).

In this paper, we introduce a novel method based on
shadow maps to interactively render soft shadows. Our

c© The Eurographics Association and Blackwell Publishing 2006. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

L. Atty et al. / Soft Shadow Maps

Figure 2: Applying our algorithm (200,000 polygons, oc-
cluder map 256×256, displayed at 32 fps).

method interactively computes a projective shadow texture,
the Soft Shadow Map, that incorporates soft shadows based
on light source visibility from receiver objects (see Fig. 2).
This texture is then projected onto the scene to provide in-
teractive soft shadows of dynamic objects and dynamic area
light sources.

There are several advantages to our technique when com-
pared to existing interactive soft-shadow algorithms: First,
it is not necessary to compute silhouette edges. Second, the
algorithm is not fill-bound, unlike methods based on shadow
volumes. These properties provide better scaling for occlud-
ing geometry than other GPU based soft shadow techniques
[WH03, CD03, AAM03]. Third, unlike some other shadow
map based soft shadow techniques, our algorithm does not
dramatically overestimate the umbra region [WH03, CD03].
Fourth, while other methods have relied on an interpola-
tion from the umbra to the non-shadowed region to approxi-
mate the penumbra for soft shadows [AHT04,WH03,CD03,
BS02], our method computes the visibility of an area light
source for receivers in the penumbra regions.

Our algorithm also has some limitations when compared
to existing algorithms. First, our algorithm splits scene ge-
ometry into occluders and receivers and self shadowing is
not accounted for. Also, since our algorithm uses shadow
maps to approximate occluder geometry, it inherits the well
known issues with aliasing from shadow map techniques.
For large area light sources, the soft shadows tend to blur
the artifacts but for smaller area light sources, such aliasing
is apparent.

We acknowledge that these limitations are important, and
they may prevent the use of our algorithm in some cases.
However, there are many applications such as video games
or immersive environments where the advantages of our
algorithm (a very fast framerate, and a convincing soft
shadow) outweigh its limitations. We also think that this new
algorithm could be the start of promising new research.

In the following section, we review previous work on
interactive computation of soft shadows. In Section 3, we
present the basis of our algorithm, and in the following sec-
tion, we provide implementation details. In the next two sec-

tions, we conduct an extensive analysis of our algorithm;
first, in Section 5, we study the approximations in our soft
shadows, then in Section 6 we study the rendering times of
our algorithm. Both studies are done first from a theoretical
point of view, then experimentally. Finally, in Section 7, we
conclude and expose possible future directions for research.

2. Previous Work
Researchers have investigated shadow algorithms for
computer-generated images for nearly three decades. The
reader is referred to a recent state-of-the art report by Hasen-
fratz et al. [HLHS03], the overview by Woo et al. [WPF90]
and the book by Akenine-Möller and Haines [AMH02].

The two most common methods for interactively produc-
ing shadows are shadow maps [Wil78] and shadow vol-
umes [Cro77]. Both of these techniques have been extended
for soft shadows. In the case of shadow volumes, Assarsson
and Akenine-Möller [AAM03] used penumbra wedges in a
technique based on shadow volumes to produce soft shad-
ows. Their method depends on locating silhouette edges to
form the penumbra wedges. While providing good soft shad-
ows without an overestimate of the umbra, the algorithm is
fill-limited, particularly when zoomed in on a soft shadow
region. Since it is necessary to compute the silhouette edges
at every frame, the algorithm also suffers from scalability is-
sues when rendering occluders with large numbers of poly-
gons.

The fill-rate limitation is a well known limitation
of shadow-volume based algorithms. Recent publica-
tions [CD04, LWGM04] have focused on limiting the fill-
rate for shadow-volume algorithms, thus removing this lim-
itation.

On shadow maps, Chan and Durand [CD03] and Wyman
and Hansen [WH03] both employed a technique which uses
the standard shadow map method for the umbra region and
builds a map containing an approximate penumbra region
that can be used at run-time to give the appearance, includ-
ing hard shadows at contact, of soft shadows. While these
methods provide interactive rendering, both only compute
the outer-penumbra, the part of the penumbra that is outside
the hard shadow. In effect, they are overestimating the umbra
region, resulting in the incorrect appearance of soft shadows
in the case of large area light sources. These methods also
depend on computing the silhouette edges in object space
for each frame; this requirement limits the scalability for oc-
cluders with large numbers of polygons.

Arvo et al. [AHT04] used an image-space flood-fill
method to produce approximate soft shadows. Their algo-
rithm is image-based, like ours, but works on a detection of
shadow boundary pixels, followed by several passes to re-
place the boundary by a soft shadow, gradually extending
the soft shadow at each pass. The main drawback of their
method is that the number of passes required is proportional

c© The Eurographics Association and Blackwell Publishing 2006.

L. Atty et al. / Soft Shadow Maps

to the extent of the penumbra region, and the rendering time
is proportional to the number of shadow-filling passes.

Guennebaud et al. [GBP06] also used the back projection
of each pixel in the shadow map to compute the soft shadow.
Their method was developed independently of ours, yet is
very similar. The main differences between the two methods
lie in the order of the computations: we compute the soft
shadow in shadow map space, while they compute the soft
shadow in screen space, requiring a search in the shadow
map.

Brabec and Seidel [BS02] and Kirsch and Doell-
ner [KD03] use a shadow map to compute soft shadows,
by searching at each pixel of the shadow map for the near-
est boundary pixel, then interpolating between illumination
and shadow as a function of the distance between this pixel
and the boundary pixel and the distances between the light
source, the occluder and the receiver. Their algorithm re-
quires scanning the shadow map to look for boundary pixels,
a potentially costly step; in practical implementations they
limit the search radius, thus limiting the actual size of the
penumbra region.

Soler and Sillion [SS98] compute a soft shadow map as
the convolution of two images representing the source and
blocker. Their technique is only accurate for planar and par-
allel objects, although it can be extended using an object hi-
erarchy. Our technique can be seen as an extension of this
approach, where the convolution is computed for each sam-
ple of an occlusion map, and the results are then combined.

Finally, McCool [McC00] presented an algorithm merg-
ing shadow volume and shadow map algorithms by detect-
ing silhouette pixels in the shadow map and computing a
shadow volume based on these pixels. Our algorithm is sim-
ilar in that we are computing a shadow volume for each pixel
in the shadow map. However, we never display this shadow
volume, thus avoiding fill-rate issues.

3. Algorithm

3.1. Presentation of the algorithm

Our algorithm assumes a rectangular light source and starts
by separating potential occluders (such as moving charac-
ters) from potential receivers (such as the background in a
scene) (Fig. 3(a)). We will compute the soft shadows only
from the occluders onto the receivers.

Our algorithm computes a Soft Shadow Map, (SSM), for
each light source: a texture containing the texelwise percent-
age of occlusion from the light source. This soft shadow map
is then projected onto the scene from the position of the light
source, to give soft shadows (see Fig. 2).

Our algorithm is an extension of the shadow map algo-
rithm: we start by computing depth buffers of the scene.
Unlike the standard shadow map method, we will need two

Compute depth map of receivers
Compute depth map of occluders
for all pixels in occluder map

Retrieve depth of occluder at this pixel
Compute micro-patch associated with this pixel
Compute extent of penumbra for this micro-patch
for all pixels in penumbra extent for micro-patch

Retrieve receiver depth at this pixel
Compute percentage of occlusion for this pixel
Add to current percentage in soft shadow map

end
end
Project soft shadow map on the scene

Figure 4: Our algorithm

depth buffers: one for the occluders (the occluder map) and
the other for the receivers.

The occluder map depth buffer is used to discretize the
set of occluders (see Fig. 3(b)): each pixel in this occluder
map is converted into a micro-patch that covers the same
image area but is is located in a plane parallel to the light
source, at a distance corresponding to the pixel depth. Pixels
that are close to the light source are converted into small
rectangles and pixels that are far from the light source are
converted into larger rectangles. At the end of this step, we
have a discrete representation of the occluders.

The receiver map depth buffer will be used to provide the
receiver depth, as our algorithm uses the distance between
light source and receiver to compute the soft shadow values.

We compute the soft shadow of each of the micro-patches
constituting the discrete representation of the occluders (see
Fig. 3(c)), and sum them into the soft shadow map (SSM)
(see Fig. 3(d)). This step would be potentially costly, but
we achieve it in a reasonable amount of time with two key
points: 1) the micro-patches are parallel to the light source,
so computing their penumbra extent and their percentage of
occlusion only requires a small number of operations, and 2)
these operations are computed on the graphics card, exploit-
ing the parallelism of the GPU engine. The percentage of
occlusion from each micro-patch takes into account the rel-
ative distances between the occluders, the receiver and the
light source. Our algorithm introduces several approxima-
tions on the actual soft shadow. These approximations will
be discussed in Section 5.

The pseudo-code for our algorithm is given in Fig. 4.
In the following subsections, we will review in detail the
individual steps of the algorithm: discretizing the occlud-
ers (Section 3.2), computing the penumbra extent for each
micro-patch (Section 3.3) and computing the percentage of
occlusion for each pixel in the Soft Shadow Map (Sec-
tion 3.4). Specific implementation details will be given in
Section 4.

c© The Eurographics Association and Blackwell Publishing 2006.

L. Atty et al. / Soft Shadow Maps

Light source

Occluders

Receivers

(a) Scene view

Light source

Occluders

Receivers

(b) Discretizing occluders

Light source

Receivers

P

Shadow of P

(c) Soft shadows from one
micro-patch

Light source

Receivers

Soft Shadow Map

(d) Summing the soft shadows

Figure 3: The main steps of our algorithm

Occluding patch

Light source

Penumbra
Umbra

Figure 5: The penumbra extent of a micro-patch is a rectan-
gular pyramid

3.2. Discretizing the occluders
The first step in our algorithm is a discretization of the oc-
cluders. We compute a depth buffer of the occluders, as seen
from the light source, then convert each pixel in this occluder
map into the equivalent polygonal micro-patch that lies in a
plane parallel to the light source, at the appropriate depth
and occupies the same image plane extent (see Fig. 1).

The occluder map is axis-aligned with the rectangular
light source and has the same aspect ratio: all micro-patches
created in this step are also axis-aligned with the light source
and have the same aspect ratio.

3.3. Computing penumbra extents
Each micro-patch in the discretized occluder is potentially
blocking some light between the light source and some por-
tion of the receiver. To reduce the amount of computations,
we compute the penumbra extent of the micro-patches, and
we only compute occlusion values inside these extents.

Since the micro-patches are parallel, axis-aligned with the

L

L’

O

P
P’

(a)

L L’

P P’

O

CL

CP

(b)

Figure 6: Finding the apex of the pyramid is reduced to a
2D problem

light source and have the same aspect ratio, the penumbra
extent of each micro-patch is a rectangular pyramid (Fig. 5).
Finding the penumbra extent of the light source is equivalent
to finding the apex O of the pyramid (Fig. 6(a)). This reduces
to a 2D problem, considering parallel edges (LL′) and (PP′)
on both polygons (Fig. 6(b)). Since (LL′) and (PP′) are par-
allel lines, we have:

OL
OP =

OL′

OP′
=

LL′

PP′

This ratio is the same if we consider the center of each line
segment:

OCL
OCP

=
LL′

PP′

Since the micro-patch and the light source have the same
aspect ratio, the ratio r = LL′

PP′ is the same for both sides of the
micro-patch (thus, the penumbra extent of the micro-patch is
indeed a pyramid).

We find the apex of the pyramid by applying a scaling to
the center of the micro-patch (CP), with respect to the center

c© The Eurographics Association and Blackwell Publishing 2006.

L. Atty et al. / Soft Shadow Maps

Occluding patch

Light source

Penumbra extentVirtual plane

Figure 7: The intersection between the pyramid and the vir-
tual plane is an axis-aligned rectangle

L L’

R R’

O

CL

CR

zR

zO

Figure 8: Computing the position and extent of the penum-
bra rectangle for each micro-patch.

of the light source (CL):

−−→CLO =
r

1+ r
−−−→CLCP

where r is again the ratio r = LL′

PP′ .

We now use this pyramid to compute occlusion in the
soft shadow map (see Fig. 7). We use a virtual plane, par-
allel to the light source, to represent this map (which will be
projected onto the scene). The intersection of the penumbra
pyramid with this virtual plane is an axis-aligned rectangle.
We only have to compute the percentage of occlusion inside
this rectangle.

Computing the position and size of the penumbra rectan-
gle uses the same formulas as for computing the apex of the
pyramid (see Fig. 8):

−−−→CLCR =
zR
zO

−−→CLO

RR′ = LL′ zR − zO
zO

Occluding patch

Light source

Penumbra extent

A =

A

*

Figure 9: We reproject the occluding micro-patch onto the
light source and compute the percentage of occlusion.

3.4. Computing the soft shadow map
For all the pixels of the SSM lying inside this penumbra ex-
tent, we compute the percentage of the light source that is
occluded by this micro-patch. This percentage of occlusion
depends on the relative positions of the light source, the oc-
cluders and the receivers. To compute it, for each pixel on the
receiver inside this extent, we project the occluding micro-
facet back onto the light source [DF94] (Fig. 9). The result
of this projection is an axis-aligned rectangle; we need to
compute the intersection between this rectangle and the light
source.

Computing this intersection is equivalent to computing
the two intersections between the respective intervals on
both axes. This part of the computation is done on the GPU,
using a fragment program: the penumbra extent is converted
into an axis-aligned quad, which we draw in a float buffer.
For each pixel inside this quad, the fragment program com-
putes the percentage of occlusion. These percentages are
summed using the blending capability of the graphics card
(see Section 4.2).

3.5. Two-sided soft-shadow maps
As with many other soft shadow computation algo-
rithms [HLHS03], our algorithm exhibits artifacts because
we are computing soft shadows using a single view of the oc-
cluder. Shadow effects linked to parts of the occluder that are
not directly visible from the light source are not visible. In
Fig. 10(a), our algorithm only computes the soft shadow for
the front part of the occluder, because the back part of the oc-
cluder does not appear in the occluder map. This limitation
is frequent in real-time soft-shadow algorithms [HLHS03].

For our algorithm, we have devised an extension that
solves this limitation: we compute two occluder maps. In
the first, we discretize the closest, front-facing faces of the
occluders (see Fig. 10(b)). In the second, we discretize the
furthest, back-facing faces of the occluders (see Fig. 10(c)).

c© The Eurographics Association and Blackwell Publishing 2006.

L. Atty et al. / Soft Shadow Maps

(a) Original algorithm (b) Closest, front faces of the
occluder discretized with their
shadow

(c) Furthest, back faces of the
occluder discretized with their
shadow

(d) Combining the two soft
shadow maps

Figure 10: The original algorithm fails for some geometry. The two-pass method gives the correct shadow.

(a) One pass (148 fps) (b) One pass with bottom patches
(142 fps)

(c) Two passes (84 fps) (d) Ground truth

Figure 11: Two-pass shadow computations enhance precision.

We then compute a soft shadow map for each occluder
map, and merge them, using the maximum of each occluder
map. The resulting occlusion map has eliminated most arti-
facts (Fig. 10(d) and 11). Empirically, the cost of the two-
pass algorithm is between 1.6 and 1.8 times the cost of the
one-pass algorithm. Depending on the size of a model and
the quality requirements of a given application, the second
pass may be worth this extra cost. For example, for an ani-
mated model of less than 100,000 polygons, the one-pass al-
gorithm renders at approximately 60 fps. Adding the second
pass drops the framerate to 35 fps — which is still interac-
tive.

4. Implementation details

4.1. Repartition between CPU and GPU

Our algorithm (see Fig. 4) starts by rendering two depth
maps, one for the occluders and one for the receivers; these
depth maps are both computed by the GPU. Then, in order
to generate the penumbra extents for the micro-patches, the
occluders depth map is transferred back to the CPU.

On the CPU, we generate the penumbra extents for the
micro-patch associated to each non-empty pixel of the oc-
cluders depth map. We then render these penumbra extents,
and for each pixel, we execute a small fragment program
to compute the percentage of occlusion. Computing the per-

centage of occlusion at each pixel of the soft shadow map is
done on the GPU (see section 4.2).

These contributions from each micro-patch are added to-
gether; we use for this the blending ability of the GPU: oc-
clusion percentages are rendered into a floating-point buffer
with blending enabled, thus the percentage values for each
micro-patch are automatically added to the previously com-
puted percentage values.

4.2. Computing the intersection
For each pixel of the SSM lying inside the penumbra extent
of a micro-patch, we compute the percentage of the light
source that is occluded by this micro-patch, by projecting
the occluding micro-patch back onto the light source (see
Fig. 9). We have to compute the intersection of two axis-
aligned rectangles, which is the product of the two intersec-
tions between the respective intervals on both axes.

We have therefore reduced our intersection problem from
a 2D problem to two separate 1D problems. To further op-
timize the computations, we use the SAT instructions in the
fragment program assembly language: without loss of gen-
erality, we can convert the rectangle corresponding to the
light source to [0,1]× [0,1]. Each interval intersection be-
comes the intersection between one [a,b] interval and [0,1].
Exploiting the SAT instruction and swizzling, computing the
area of the intersection between the projection of the oc-

c© The Eurographics Association and Blackwell Publishing 2006.

L. Atty et al. / Soft Shadow Maps

cluder [a,b]× [c,d] and the light source [0,1]× [0,1] only
requires three instructions:

MOV_SAT rs,{a,b,c,d}
SUB rs, rs, rs.yxwz
MUL result.color, rs.x, rs.z

Computing the [a,b]× [c,d] intervals requires projecting
the micro-patch onto the light source and scaling the projec-
tion. This uses 8 other instructions: 6 basic operations (ADD,
MUL, SUB), one reciprocal (RCP) and one texture lookup to
get the depth of the receiver. The total length of our fragment
program is therefore 11 instructions, including one texture
lookup.

4.3. Possible improvements
As it stands, our algorithm makes a very light use of GPU
resources: we only execute a very small fragment program,
once for each pixel covered by the penumbra extent, and we
exploit the blending ability for floating point buffers.

The main bottleneck of our algorithm is that the penum-
bra extents have to be computed on the CPU. This requires
transfering the occluders depth map to the CPU, and loop-
ing over the pixels of the occluders depth map on the CPU.
It should be possible to remove this step by using the render-
to-vertex- buffer function: instead of rendering the occlud-
ers depth map, we would directly render the penumbra ex-
tents for each micro-patch into a vertex buffer. This vertex
buffer would be rendered in a second pass, generating the
soft shadow map.

5. Error Analysis and comparison
In this section, we analyze our algorithm, its accuracy and
how it compares with the exact soft-shadows. We first study
potential sources of error from a theoretical point of view, in
Section 5.1, then we conduct an experimental analysis, com-
paring the soft shadows produced with exact soft shadows,
in Section 5.2.

5.1. Theoretical analysis
Our algorithm replaces the occluder with a discretized ver-
sion. This discretization ensures interactive framerates, but
it can also be a source of inaccuracies. From a given point
on the receiver, we are separately estimating occlusion from
several micro-patches, and adding these occlusion values to-
gether. We have identified three potential sources of error in
our algorithm:

• We are only computing the shadow of the discretized oc-
cluder, not the shadow of the actual occluder. This source
of error will be analyzed in Section 5.1.1.

• The reprojections of the micro-patches on the light source
may overlap or be disjoined. This cause of error will be
analyzed in Section 5.1.2.

• We are adding many small values (the occlusion from
each micro-patch) to form a large value (the occlusion
from the entire occluder). If the micro-patches are too
small, we run into numerical accuracy issues, especially
with floating-point numbers expressed on 16 bits. This
cause of error will be analyzed in Section 5.1.3.

5.1.1. Discretization error

Our algorithm computes the shadow of the discretized oc-
cluder, not the shadow of the actual occluder. The dis-
cretized occluder corresponds to the part of the occluder
that is visible from the camera used to compute the depth
buffers, usually the center of the light source. Although
we reproject each micro-patch of the discretized occluder
onto the area light source, we are missing the parts of the
occluder that are not visible from the shadow map cam-
era but are still visible from some points of the area light
source. This is a limitation that is frequent in real-time soft
shadow algorithms [HLHS03], especially algorithms relying
on the silhouette of the occluder as computed from a single
point [WH03, CD03, AAM03].

We also use a discrete representation based on the shadow
map, not a continuous representation of the occluder. For
each pixel of the shadow map, we are potentially overes-
timating or underestimating the actual occluder by at most
half a pixel.

If the occluder has one or more edges aligned with the
edges of the shadow map, these discretization errors are of
the same sign over the edge, and add themselves; the worst
case scenario is a square aligned with the axis of the shadow
map.

For more practical occluders the discretization errors on
neighboring micro-patches compensate: some of the micro-
patches overestimate the occluder while others underesti-
mate it.

5.1.2. Overlapping reprojections

At any given point on the receiver, the parts of the light
source that are occluded by two neighboring micro-patches
should be joined exactly for our algorithm to compute the
exact percentage of occlusion on the light source. This is
typically not the case, and these parts may overlap or there
may be a gap between them (Fig. 12). The amount of over-
lap (or gap) between the occluded parts of the light source
depends on the relative positions of the light source, the oc-
cluding micro-patches and the receiver

If we consider the 2D equivalent of this problem (Fig. 13),
with two patches separated by δh and at a distance zO from
the light source, with the receiver being at a distance zR from
the light source, there is a point P0 on the receiver where
there is no overlap between the occluded parts. As we move
away from this point, the overlap increases. For a point at a

c© The Eurographics Association and Blackwell Publishing 2006.

L. Atty et al. / Soft Shadow Maps

Occluding patches

Light source

Receiver

Overlap

Figure 12: The reprojection of two neighboring micro-
patches may overlap.

R

zR

zO

δh

L

PO
x

x1x2

Figure 13: Computing the extent of overlap or gap between
two neighboring micro-patches.

distance x from P0, the boundaries of the occluding micro-
patches project at abscissa x1 and x2; as the occluding micro-
patches and the light source lie in parallel planes, we have:

x1
x =

zO
zR − zO

x2
x =

zO +δh
zR − zO −δh

The amount of overlap is therefore:

x2 − x1 = x
(

zO
zR − zO

−
zO +δh

zR − zO −δh

)

= −x zRδh
(zR − zO)(zR − zO −δh)

(1)

x itself is limited, since the occlusion area must fall inside
the light source:

|x| < L
2

zR − zO
zO

(2)

The amount of overlap is therefore limited by:

|x2 − x1| <
L
2

zRδh
zO(zR − zO −δh)

(3)

Equation 3 represents the error our algorithm makes for
each pair of micro-patches. The overall error of our algo-
rithm is the sum of the modulus of all these errors, for all the
micro-patches projecting on the light source at a given point.
This is a conservative estimate, as usually some patches
overlap while others present gaps; the actual sum of the oc-
clusion values from all the micro-patches is closer to the real
value than what our estimation tells (see Section 5.2).

The theoretical error caused by our algorithm depends on
several factors:

Size of the light source: The maximum amount of overlap
(Eq. 3) depends directly on the size of the light source.
The larger the light source, the larger the error. Our prac-
tical experiments confirm this.

Distance between micro-patches: The maximum amount
of overlap (Eq. 3) also depends linearly on δh, the dis-
tance in z between neighboring micro-patches. Since δh
depends on the discretization of the occluder, the error in-
troduced by our algorithm is related to the resolution of
the bitmap: the smaller the resolution of the bitmap, the
larger the error. Our practical experiments confirm this,
but there is a maximum resolution after which the error
does not decrease.
Note that this source of error is related to the effective
resolution of the bitmap, that is the number of pixels used
for discretizing the occluder. If the occluder occupies only
a small portion of the bitmap, the effective resolution of
the bitmap is much smaller than its actual resolution. For-
tunately, the cost of the algorithm is also related to the
effective resolution of the bitmap.

Distance to the light source/the receiver: If the occluder
touches either the light source or the receiver, the amount
of overlap (Eq. 3) goes toward infinity. When the occluder
is touching the receiver, the area where the overlap occurs
(as defined by equation 2) goes towards 0, thus the er-
ror does not appear. When the occluder is touching the
receiver, the actual effect depends on the shape of the oc-
cluder. In some cases, overlaps and gaps can compensate,
resulting in an acceptable shadow.

5.1.3. Floating-point blending accuracy

Our algorithm adds together many small scale occlusion val-
ues — the occlusion from each micro-patch — to compute a
large scale occlusion value — the occlusion from the com-
plete occluder. This addition is done with the blending abil-
ity of the GPU, using blending of floating-point buffers. At
the time of writing, blending is only available in hardware
for 16-bits floating-point buffers. As a result, we sometimes
encounter problems of numerical accuracy.

c© The Eurographics Association and Blackwell Publishing 2006.

L. Atty et al. / Soft Shadow Maps

(a) 1282 pixels, FP16 blending
(66 Hz)

(b) 5122 pixels, FP16 blending
(20 Hz)

(c) 5122 pixels, FP32 blending
(CPU)

(d) Ground truth (CPU)

Figure 14: Blending with FP16 numbers: if the resolution of the shadow map is too high, numerical issues appear, resulting in
wrong shadows. Using higher accuracy for blending removes this issue (here, FP32 blending was done on the CPU).

Figure 14 shows an example of these problems. Uncon-
ventionally, increasing the resolution of the shadow map
makes these problems more likely to appear (for a complete
study of floating-point blending accuracy, see appendix A).
The best workaround is therefore to use relatively low reso-
lution for the occluder map, such as 128×128 or 256×256.
While this may seem a low resolution compared to other
shadow map algorithms, our shadow map is focused on the
moving occluder (such as a character), not on the entire
scene, so 128×128 pixels is usually enough resolution.

We see this is only as a temporary issue that will disappear
as soon as hardware FP32 blending becomes available on
graphics cards.

5.2. Comparison with ground truth
We ran several tests to experimentally compare the shadows
produced by our algorithm with the actual shadows. The ref-
erence values were computed using occlusion queries, giv-
ing an accurate estimation of the real occlusion of the light
source. In this section, we review the practical differences
we observed.

5.2.1. Experimentation method
For each image, we computed an error metric as thus: for
each pixel in the soft shadow map, we compute the actual
occlusion value (using occlusion queries), and the difference
with the occlusion value computed using our algorithm. We
summed the modulus of the differences, then divided the re-
sult by the total number of pixels lying either in the shadow
or in the penumbra, averaging the error over the actual soft
shadow. We used the number of pixels that are either in
shadow or in penumbra and not the total number of pixels
in the occluders depth map because the soft shadow can oc-
cupy only a small part of the depth map. Dividing by the
total number of pixels in the depth map would have under-
estimated the error.

We have used 3 different scenes (a square plane parallel to
the light source, a Buddha model and a Bunny model). These

scenes exhibit several interesting features. The Buddha and
Bunny are complex models, with folds and creases. The
Bunny also has important self-occlusion, and in our scene
it is in contact with the ground, providing information on the
behavior of our algorithm in that case. The square plane is
an illustration of the special case of occluders aligned with
the axes of the occluders depth map.

We have tested both the one-pass and the two-pass ver-
sions of our algorithm. We selected four separate parame-
ters: the size of the light source, the resolution of the shadow
map and moving the occluder, either vertically from the re-
ceiver to the light source or laterally with respect to the light
source. For each parameter, we plot the variation of the error
introduced by our algorithm as a function of the parameter
and analyze the results.

5.2.2. Visual comparison with ground truth
Fig. 16 shows a side by side comparison of our algorithm
with ground truth. Even though there are slight differences
with ground truth, our algorithm exhibits the proper behavior
for soft shadows: sharp shadows at places where the object
is close to the ground, a large penumbra zone where the ob-
ject is further away from the receiver. Our algorithm visibly
computes both the inner and the outer penumbra of the ob-
ject.

Looking at the picture of the differences (Fig. 16(d)
and 16(g)) between the shadow values computed by our al-
gorithm and the ground truth values, it appears that the dif-
ferences lie mostly on the silhouette: since our algorithm
only computes the soft shadow of the discretized object, as
seen from the center of the light source. The actual shape of
the soft shadow depends on subtle effects happening at the
boundary of the silhouette.

5.2.3. Size of the buffer
Figure 17 shows the average difference between the occlu-
sion values computed with our algorithm and the actual oc-
clusion values for our three test scenes, when changing the
resolution of the shadow map. In these figures, the abscissa

c© The Eurographics Association and Blackwell Publishing 2006.

L. Atty et al. / Soft Shadow Maps

(a) Square plane (b) Buddha (c) Bunny

Figure 15: The test scenes we have used

(a) Scene view (b) Our algorithm (c) Ground Truth
0 %

15 %

3 %

6 %

9 %

12 %

(d) Difference between the occlu-
sion values

(e) Our algorithm (f) Ground Truth
0 %

15 %

3 %

6 %

9 %

12 %

(g) Difference between the occlusion val-
ues

Figure 16: Visual comparison of our algorithm with ground truth.

 0

 0.04

 0.08

 0 256 512 768 1024

A
v
e
ra

g
e
 e

rr
o
r

Buffer resolution (pixels)

single pass
double pass

(a) Square plane

 0

 0.04

 0.08

 0 256 512 768 1024

A
v
e
ra

g
e
 e

rr
o
r

Buffer resolution (pixels)

single pass
double pass

(b) Buddha

 0

 0.04

 0.08

 0 256 512 768 1024

A
v
e
ra

g
e
 e

rr
o
r

Buffer resolution (pixels)

single pass
double pass

(c) Bunny

Figure 17: Variation of the error with respect to the resolution of the shadow map

c© The Eurographics Association and Blackwell Publishing 2006.

L. Atty et al. / Soft Shadow Maps

is the number of pixels for one side of the shadow map, so
128 corresponds to a 128× 128 shadow map. For this test,
we used non-power of two textures, in order to have enough
sampling data. We can make several observations by looking
at the data:

Two-pass version: the two-pass version of the algorithm
consistently outperforms the single-pass version, always
giving more accurate results. The only exception is of
course the square plane: since it has no thickness, the
single-pass and two-pass version give the same results.

Shadow map Resolution: as expected from the theoretical
study (see Section 5.1.2), the error decreases as the res-
olution of the shadow map increases. What is interesting
is that this effect reaches a limit quite rapidly. Roughly,
increasing the shadow map resolution above 200 pixels
does not bring an improvement in quality. Since the com-
putation costs are related to the size of the shadow map,
shadow map sizes of 200× 200 pixels are close to opti-
mal.
The fact that the error does not decrease continuously as
we increase the resolution of the occluder map is a little
surprising at first, but can be explained. It is linked to the
silhouette effect. As we have seen in Fig. 16, the error
introduced by our algorithm comes from the boundary of
the silhouette of the occluder, from parts of the occluder
that are not visible from the center of the light source, but
visible from other parts of the light source. Increasing the
resolution of the shadow map does not solve this problem.
The optimal size for the shadow map is related to the size
of the light source. As the light source gets larger, we can
use smaller bitmaps.

Discretization error: the error curve for the square plane
presents many important spikes. Looking at the results,
it appears that these spikes correspond to discretization
error (see Section 5.1.1). Since the square occluder is
aligned with the axis of the shadow map, it magnifies dis-
cretization error.

5.2.4. Size of the light source

Figure 18 shows the average difference between the oc-
clusion values computed with our algorithm and the ac-
tual occlusion values when we change the size of the light
source for our three test scenes. The parameter values
range from a point light source (parameter=0.01) to a very
large light source, approximately as large as the occluder
(parameter=0.2). We used a bitmap of 128× 128 pixels for
all these tests. We can make several observations by looking
at the data:

Point light sources: the beginning of the curves
(parameter=0.01) corresponds to a point light source. In
that case, the error is quite large. This corresponds to an
error of 1, over the entire shadow boundary; as we are
computing the shadow of the discretized occluder, we
miss the actual shadow boundary, sometimes by as much

as half a pixel. The result is a large error, but it occurs
only at the shadow boundary.

Light source size: except for the special case of point light
sources, the error increases with the size of the light
source. This is consistent with our theoretical analysis
(see Section 5.1.2).

5.2.5. Occluder moving laterally
Figure 19 shows the average difference between the occlu-
sion values computed with our algorithm and the actual oc-
clusion values, when we move the occluder from left to right
under the light source. The parameter corresponds to the po-
sition with respect to the center of the light, with 0 meaning
that the center of the object is aligned with the center of the
light. We used a bitmap of 128×128 for all these tests.

The error is at its minimum when the occluder is roughly
under the light source, and increases as the occluder moves
laterally. The Buddha and Bunny models are not symmetric,
so their curves are slightly asymmetric, and the minimum
does not correspond exactly to 0.

5.2.6. Occluder moving vertically
Figure 20 shows the average difference between the occlu-
sion values computed with our algorithm and the actual oc-
clusion values, when we move the occluder vertically. The
smallest value of the parameter corresponds to an occluder
touching the receiver, and the largest value corresponds to
an occluder touching the light source. We used a bitmap of
128×128 for all these tests.

As predicted by the theory, the error increases as the oc-
cluder approaches the light source (see Section 5.1.2). For
the Bunny, the error becomes quite large when the upper ear
touches the light source.

6. Complexity
The main advantages of our algorithm are its rendering
speed and its scalability. With a typical setup (a modern
PC, an occluder map of 128× 128 pixels, a scene between
50,000 polygons and 300,000 polygons), we get framerates
between 30 and 150 fps. In this section, we study the nu-
merical complexity of our algorithm and its rendering speed.
We first conduct a theoretical analysis of the complexity of
our algorithm, in Section 6.1, then an experimental analysis,
where we test the variation of the rendering speed with re-
spect to several parameters: the size of the shadow map, the
number of polygons and the size of the light source (Sec-
tion 6.2). Finally, in Section 6.3, we compare the complex-
ity of our algorithm with a state-of-the-art algorithm, Soft
Shadow Volume [AAM03].

6.1. Theoretical complexity
Our algorithm starts by rendering a shadow map and down-
loading it into main memory. This preliminary step has a

c© The Eurographics Association and Blackwell Publishing 2006.

L. Atty et al. / Soft Shadow Maps

 0

 0.04

 0.08

 0.12

 0 0.05 0.1 0.15 0.2

A
v
e
ra

g
e
 e

rr
o
r

Light source size

single pass
double pass

(a) Square plane

 0

 0.04

 0.08

 0.12

 0 0.05 0.1 0.15 0.2

A
v
e
ra

g
e
 e

rr
o
r

Light source size

single pass
double pass

(b) Buddha

 0

 0.04

 0.08

 0.12

 0 0.05 0.1 0.15 0.2

A
v
e
ra

g
e
 e

rr
o
r

Light source size

Single pass
Double pass

(c) Bunny

Figure 18: Variation of the error with respect to the size of the light source

 0

 0.025

 0.05

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

A
v
e
ra

g
e
 e

rr
o
r

Occluder position

single pass
double pass

(a) Square plane

 0

 0.025

 0.05

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

A
v
e
ra

g
e
 e

rr
o
r

Occluder position

single pass
double pass

(b) Buddha

 0

 0.025

 0.05

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

A
v
e
ra

g
e
 e

rr
o
r

Occluder position

single pass
double pass

(c) Bunny

Figure 19: Variation of the error with respect to the lateral position of the occluder

complexity linear with respect to the number of polygons in
the scene, and linear with the size of the shadow map, mea-
sured in the total number of pixels.

Then, for each pixel of the shadow map corresponding to
the occluder, we compute its extent in the occlusion map,
and for each pixel of this extent we execute a small fragment
program of 11 instructions, including one texture lookup.

The overall complexity of this second step of the algo-
rithm is the number of pixels covered by the occluder, mul-
tiplied by the number of pixels covered by the extent for
each of them, multiplied by the cost of the fragment pro-
gram. This second step is executed on the GPU, and benefits
from the high-performance and the parallelism of the graph-
ics card.

The worst case situation would be a case where each
micro-patch in the shadow map covers a large number of
pixels in the soft shadow map. But this situation corresponds
to an object with a large penumbra zone, and if we have a
large penumbra zone, we can use a lower resolution for the
shadow maps. So we can compensate the cost for the algo-
rithm by running it with bitmaps of lower resolution.

Using our algorithm with a large resolution shadow map
in a situation of large penumbra results in relatively high
computing costs, but a low resolution shadow map would
give the same visual results, for a smaller computation time.

6.2. Experimental complexity
All measurements in this section were conducted on a 2.4
GHz Pentium4 PC with a GeForce 6800 Ultra graphics card.
All framerates and rendering times correspond to observed
framerates, that is the framerate for a user manipulating our
system. We are therefore measuring the time it takes to dis-
play the scene and to compute soft shadows, not just the time
it takes to compute soft shadows.

6.2.1. Number of polygons
We studied the influence of the polygon count. Fig. 6.2
shows the observed rendering time (in ms) as a function
of the polygon count, with a constant occluder map size of
128×128 pixels. The first thing we note is the speed of our
algorithm: even on a large scene of 340,000 polygons, we
achieve real-time framerates (more than 30 frames per sec-
ond). Second, we observe that the rendering time varies lin-
early with respect to the number of polygons. That was to
be expected, as we must render the scene twice (once for
the occluder map and once for the actual display), and the
time it takes for the graphics card to display a scene varies
linearly with respect to the number of polygons. For smaller
scenes (less than 10,000 polygons, rendering time below 10
ms), some factors other than the polygon count play a more
important role.

Our algorithm exhibits good scaling, and can handle sig-
nificantly large scenes without incurring a high performance

c© The Eurographics Association and Blackwell Publishing 2006.

L. Atty et al. / Soft Shadow Maps

 0

 0.05

 0.1

 0.15

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A
v
e
ra

g
e
 e

rr
o
r

Occluder vertical position

single pass
double pass

(a) Square plane

 0

 0.05

 0.1

 0.15

 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

A
v
e

ra
g

e
 e

rr
o

r

Occluder vertical position

single pass
double pass

(b) Buddha

 0

 0.05

 0.1

 0.15

 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

A
v
e

ra
g

e
 e

rr
o

r

Occluder vertical position

single pass
double pass

(c) Bunny

Figure 20: Variation of the error with respect to the vertical position of the occluder

 0

 10

 20

 30

 40

 50

5000002500001000000

R
en

d
er

in
g

 t
im

e
(m

s)

Number of Polygons

Rendering times
30 fps

(a) Rendering times (in ms) (b) Our largest test scene (565,203 polygons)

Figure 21: Influence of polygon count

 0

 50

 100

 150

512
2

256
2

128
2

R
en

d
er

in
g

 t
im

e
(m

s)

Number of pixels

Rendering times
30 fps
10 fps

(a) Rendering times (in ms) (b) Test scene (24,000 polygons)

Figure 22: Influence of the size of the occluder map

c© The Eurographics Association and Blackwell Publishing 2006.

L. Atty et al. / Soft Shadow Maps

(a) Bitmap of 642 (184 fps) (b) Ground truth

Figure 23: Large light sources with small bitmaps

cost. The maximum size of the scene depends on the require-
ments of the user.

6.2.2. Size of occluder map
Fig. 6.2.1 shows the observed rendering times (in ms) of
our algorithm, on a scene with 24,000 polygons (Fig. 22(b)),
when the size of the occluder map changes. We plotted the
rendering time as a function of the number of pixels in the
occluder map (that is, the square of the size of the occluder
map) to illustrate the observed linear variation of rendering
time with respect to the total number of pixels.

An occluder map of 5122 pixels gives a rendering time of
150 ms — or 7 fps, too slow for interactive rendering. An
occluder map of 1282 or 2562 pixels gives a rendering time
of 10 to 50 ms, or 20 to 100 fps, fast enough for real-time
rendering. For a large penumbra region, an occluder map of
1282 pixels qualitatively gives a reasonable approximation,
as in Fig. 22(b). For a small penumbra region, our algorithm
behaves like the classical shadow mapping algorithm and ar-
tifacts can appear with a small occluder map of 1282 pixels;
in that case, it is better to use 2562 pixels.

The fact that the rendering time of our algorithm is pro-
portional to the number of pixels in the occluder map con-
firms that the bottleneck of our algorithm is its transfer to the
CPU. Due to the cost of this transfer, we found that for some
scenes it was actually faster to use textures whose dimen-
sions are not a power of 2: if the difference in pixel count is
sufficient, the gain in transfer time compensates the losses in
rendering time.

6.2.3. Light source size
Another important parameter is the size of the light source,
compared to the size of the scene itself. A large light source
results in a large penumbra region for each micro-patch, re-
sulting in more pixels of the soft shadow map covered, and
a larger computational cost. Fig. 24(a) shows the observed
framerate as a function of the size of the light source. We did
the tests with several bitmap resolutions (2562, 1282, 642).
Fig. 24(b) shows the error as a function of the size of the
light source, for the same bitmap resolutions.

As you can see from Fig. 24(a), the rendering time in-
creases with the size of the light source. What is interesting
is the error introduced by our algorithm (see Fig. 24(b)). The
error logically increases with the size of the light source, and
for small light sources, larger bitmaps result in more accu-
rate images. But for large light sources, a smaller bitmap
will give a soft shadow of similar quality. A visual compari-
son of the soft shadows with a small bitmap and ground truth
shows the small bitmap gives a very acceptable soft shadow
(see Fig. 23).

This effect was observed by previous researchers: as the
light source becomes larger, the features in the soft shadow
become blurrier, hence they can be modeled accurately with
a smaller bitmap.

6.3. Comparison with Soft-Shadow Volumes
Finally, we performed a comparison with a state-of-the art
algorithm for computing soft shadows, the Soft-Shadow Vol-
umes by Assarsson and Akenine-Möller [AAM03].

Fig. 25 shows the same scene, with soft shadows, com-
puted by both algorithms. We ran the tests with a varying
number of jeeps, to test how both algorithms scale with re-
spect to the number of polygons. Fig. 25(c) shows the ren-
dering times as a function of the number of polygons for both
algorithms. These figures were computed using a window of
512×512 pixels for both algorithms, and with the two-pass
version of our algorithm, with an occluder map resolution of
210×210.

Our algorithm scales better with respect to the number of
polygons. On the other hand, soft shadow volumes provide
a better looking shadow (see Fig. 25(b)), closer to the actual
truth.

It is important to remember that the rendering time for the
Soft- Shadow Volumes algorithm varies with the number of
screen pixels covered by the penumbra region. If the view-
point is close to a large penumbra region, the rendering time
becomes much larger. The figures we used for this compari-
son correspond to an observer walking around the scene (as
in Fig. 25(b)).

7. Conclusion and Future Directions
In this paper, we have presented a new algorithm for com-
puting soft shadows in real-time on dynamic scenes. Our al-
gorithm is based on the shadow mapping algorithm, and is
entirely image-based. As such, it benefits from the advan-
tages of image-based algorithms, especially speed.

The largest advantage of our algorithm is its high fram-
erate, hence there remains plenty of computational power
available for performing other tasks, such as interacting
with the user or performing non-graphics processing such
as physics computations within game engines. Possibly the

c© The Eurographics Association and Blackwell Publishing 2006.

L. Atty et al. / Soft Shadow Maps

 0

 50

 100

 150

 200

 250

 300

 0 0.05 0.1 0.15 0.2 0.25 0.3

re
n
d
e
ri
n
g
 t
im

e
 (

m
s
)

Light source size

256
2

30 fps
128

2

64
2

(a) Rendering time

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 0.05 0.1 0.15 0.2 0.25 0.3

A
v
e
ra

g
e
 e

rr
o
r

Light source size

64
2

128
2

256
2

(b) Average error

Figure 24: Changing the size of the light source (floating bunny scene)

(a) Soft Shadow Maps (b) Soft Shadow Volumes

 0

 50

 100

 150

 200

 250

 300

 0 5000 10000 15000 20000
R

e
n

d
e

ri
n

g
 T

im
e

 (
m

s
)

Number of Polygons

Soft Shadow Volumes
Soft Shadow Maps

(c) Rendering times

Figure 25: Comparison with Soft-Shadow Volumes

largest limitation of our algorithm is the fact that it does not
compute self-occlusion and it requires a separation between
occluders and receivers. We know that this limitation is very
important, and we plan to remove it in future work, possibly
by using layered depth images.

An important aspect of our algorithm is that we can use
low-resolution shadow maps in places with a large penum-
bra, even though we still need higher resolution shadow
maps for places with small penumbra, for example close to
the contact between the occluder and the receiver. An obvi-
ous improvement to our algorithm would be the ability to use
hierarchical shadow maps, switching resolutions depending
on the shadow being computed. This work could also be
combined with perspective-corrected shadow maps [SD02,
WSP04, MT04, CG04], in order to have higher resolution in
places with sharp shadows close to the viewpoint.

In its current form, our algorithm still requires a transfer
of the occluder map from the GPU to the main memory, and
a loop, on the CPU, over all the pixels in the occluder map.
We would like to design a GPU only implementation of our
algorithm, using the future render-to-vertex-buffer capabili-
ties.

8. Acknowledgments
Most of this work was conducted while Charles Hansen was on sab-
batical leave from the University of Utah, and was a visiting profes-
sor at ARTIS/GRAVIR IMAG, partly funded by INPG and INRIA.

The authors gratefully thank Ulf Assarsson for doing the tests for
the comparison with the soft-shadow volumes algorithm.

The Stanford Bunny, Happy Buddha and dragon 3D models appear-
ing in this paper and in the accompanying video were digitized and
kindly provided by the Stanford University Computer Graphics Lab-
oratory.
The smaller Buddha 3D model appearing in this paper was digitized
and kindly provided by Inspeck.
The Jeep 3D model appearing in this paper was designed and kindly
provided by Psionic.
The horse 3D model appearing in the accompanying video was dig-
itized by Cyberware, Inc., and was kindly provided by the Georgia
Tech. “Large Geometric Models Archive”.
The skeleton foot 3D model appearing in the accompanying video
was digitized and kindly provided by Viewpoint Datalabs Intl.

References

[AAM03] ASSARSSON U., AKENINE-MÖLLER T.: A
geometry-based soft shadow volume algorithm using

c© The Eurographics Association and Blackwell Publishing 2006.

L. Atty et al. / Soft Shadow Maps

graphics hardware. ACM Transactions on Graphics (Proc.
of SIGGRAPH 2003) 22, 3 (2003), 511–520.

[AHT04] ARVO J., HIRVIKORPI M., TYYSTJÄRVI J.:
Approximate soft shadows using image-space flood-fill
algorithm. Computer Graphics Forum (Proc. of Euro-
graphics 2004) 23, 3 (2004), 271–280.

[AMH02] AKENINE-MÖLLER T., HAINES E.: Real-Time
Rendering, 2nd ed. A. K. Peters, 2002.

[BS02] BRABEC S., SEIDEL H.-P.: Single sample soft
shadows using depth maps. In Graphics Interface (2002).

[CD03] CHAN E., DURAND F.: Rendering fake soft shad-
ows with smoothies. In Rendering Techniques 2003 (Proc.
of the Eurographics Symposium on Rendering) (2003),
pp. 208–218.

[CD04] CHAN E., DURAND F.: An efficient hybrid
shadow rendering algorithm. In Rendering Techniques
2004 (Proc. of the Eurographics Symposium on Render-
ing) (2004), pp. 185–195.

[CG04] CHONG H., GORTLER S. J.: A lixel for every
pixel. In Rendering Techniques 2004 (Proc. of the Euro-
graphics Symposium on Rendering) (2004), pp. 167–172.

[Cro77] CROW F. C.: Shadow algorithms for computer
graphics. Computer Graphics (Proc. of SIGGRAPH ’77)
11, 2 (1977), 242–248.

[DF94] DRETTAKIS G., FIUME E.: A fast shadow algo-
rithm for area light sources using backprojection. In SIG-
GRAPH ’94 (1994), pp. 223–230.

[GBP06] GUENNEBAUD G., BARTHE L., PAULIN M.:
Real-time soft shadow mapping by backprojection. In
Rendering Techniques 2006 (Proc. of the Eurographics
Symposium on Rendering) (2006).

[HLHS03] HASENFRATZ J.-M., LAPIERRE M.,
HOLZSCHUCH N., SILLION F.: A survey of real-
time soft shadows algorithms. Computer Graphics Forum
22, 4 (2003), 753–774.

[KD03] KIRSCH F., DOELLNER J.: Real-time soft shad-
ows using a single light sample. Journal of WSCG (Winter
School on Computer Graphics) 11, 1 (2003).

[KMK97] KERSTEN D., MAMASSIAN P., KNILL D. C.:
Moving cast shadows and the perception of relative depth.
Perception 26, 2 (1997), 171–192.

[LWGM04] LLOYD B., WENDT J., GOVINDARAJU N.,
MANOCHA D.: Cc shadow volumes. In Rendering Tech-
niques 2004 (Proc. of the Eurographics Symposium on
Rendering) (2004), pp. 197–205.

[McC00] MCCOOL M. D.: Shadow volume reconstruc-
tion from depth maps. ACM Transactions on Graphics
19, 1 (2000), 1–26.

[MT04] MARTIN T., TAN T.-S.: Anti-aliasing and conti-
nuity with trapezoidal shadow maps. In Rendering Tech-

niques 2004 (Proc. of the Eurographics Symposium on
Rendering) (2004), pp. 153–160.

[SD02] STAMMINGER M., DRETTAKIS G.: Perspective
shadow maps. ACM Transactions on Graphics (Proc. of
SIGGRAPH 2002) 21, 3 (2002), 557–562.

[SS98] SOLER C., SILLION F. X.: Fast calculation of soft
shadow textures using convolution. In SIGGRAPH ’98
(1998), pp. 321–332.

[Wan92] WANGER L.: The effect of shadow quality on
the perception of spatial relationships in computer gener-
ated imagery. In Symposium on Interactive 3D Graphics
(1992), pp. 39–42.

[WFG92] WANGER L., FERWERDA J. A., GREENBERG
D. P.: Perceiving spatial relationships in computer-
generated images. IEEE Computer Graphics and Appli-
cations 12, 3 (1992), 44–58.

[WH03] WYMAN C., HANSEN C.: Penumbra maps: Ap-
proximate soft shadows in real-time. In Rendering Tech-
niques 2003 (Proc. of the Eurographics Symposium on
Rendering) (2003), pp. 202–207.

[Wil78] WILLIAMS L.: Casting curved shadows on
curved surfaces. Computer Graphics (Proc. of SIG-
GRAPH ’78) 12, 3 (1978), 270–274.

[WPF90] WOO A., POULIN P., FOURNIER A.: A survey
of shadow algorithms. IEEE Computer Graphics & Ap-
plications 10, 6 (1990), 13–32.

[WSP04] WIMMER M., SCHERZER D., PURGATHOFER
W.: Light space perspective shadow maps. In Rendering
Techniques 2004 (Proc. of the Eurographics Symposium
on Rendering) (2004), pp. 143–152.

Appendix A: Floating-point blending accuracy

In this section, we review the issues behind the hardware
blending accuracy problems we have encountered and pro-
pose a temporary fix for these issues.

All the accuracy issues are linked to the fact that hard-
ware blending is, at the time of writing, only available for
16-bits floating point numbers. NVidia graphics hardware
stores these floating-point numbers using s10e5 format: one
bit of sign, 10 bits of mantissa, 5 bits of exponent, with a
bias of 15 for the exponent. The important point for addition
is that the mantissa is stored on 10 bits. As a result, adding a
large number X and a small number ε will give an inaccurate
result if ε < 2−10X :

X + ε = X if ε < 2−10X (inFP16)

For example, 2048+1 = 2048 (in FP16 format) and 0.5+
1

2049 = 0.5 (also in FP16 format).

In some cases, the addition of the contribution from all
micro-patches will be 1 (meaning complete occlusion of the
light source). As a consequence, we can expect numerical

c© The Eurographics Association and Blackwell Publishing 2006.

L. Atty et al. / Soft Shadow Maps

accuracy issues if some micro-patches hide less than 2−10 of
the light source. Because 322 = 210, it means that the width
of the reprojection of one micro-patch should be larger than
1

32 of the width of the light source.

This translates easily into conditions for the position of
the occluder:

1
zO

<
1
zR

+
64tanα

NL (4)

where L is the width of the light source, N is the resolution of
the bitmap, α is the half-angle of the camera used to generate
the shadow map, zO is the distance between the light source
and the occluder and zR is the distance between the light
source and the receiver.

Bitmap resolution: The most important thing is that in-
creasing N makes this error more likely to appear. This
explains why using a bitmap of 512× 512 pixels we see
a poor looking shadow, while the 128×128 bitmap gives
the correct shadow (see Fig. 14).

Light source size: In equation 4, the size of the light source
appears in a product with the resolution of the bitmap. If
the light source is large, the bitmap must be low resolu-
tion in order to avoid FP16 blending errors. Fortunately,
a large light source means a large penumbra for most oc-
cluders, so a low resolution bitmap might be enough for
these penumbra effects.

Occluder position: As the occluder moves closer to the re-
ceiver, the likeliness of blending errors gets lower.

Camera half-angle: Similarly, increasing the camera half-
angle improves the FP16 blending accuracy.

Basically, all these conditions amount to the same thing: us-
ing less pixels to describe the occluder in the shadow map.
While this improves the FP16 blending accuracy, it obvi-
ously degrades the discretization of the occluder and also
increases the overlapping between reprojections of neigh-
boring pixels.

In our experiments (see Fig. 14) the blending accuracy
problem appears very often when the resolution of the
shadow map is larger than 512 × 512, sometimes with a
shadow map resolution of 256× 256 and very rarely with
a shadow map resolution of 128×128.

The problem will disappear when hardware blending will
become available on higher accuracy floating point numbers.
FP32 have a mantissa of 23 bits, allowing the use of micro-
patches that block less than 2−23 of the light source, mean-
ing that the width of the back-projection of the micro-patch
should be at least larger that 2−11 than the width of the light
source (64 times smaller than the current threshold). Com-
pared with the current method, it would allow the use of
shadow maps with a resolution above 4096×4096.

With FP16 blending only, the best solution is to use a hier-
archical shadow map for soft-shadow computations, as was
suggested by Guennebaud et al. [GBP06]: the low resolution

shadow map would be used for large penumbra regions, and
the high-resolution shadow map for areas with hard shad-
ows, e.g. when the occluder and the receiver are in contact.

c© The Eurographics Association and Blackwell Publishing 2006.

