
HAL Id: inria-00281378
https://hal.inria.fr/inria-00281378

Submitted on 22 May 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Omnidirectional texturing of human actors from
multiple view video sequences
Alexandrina Orzan, Jean-Marc Hasenfratz

To cite this version:
Alexandrina Orzan, Jean-Marc Hasenfratz. Omnidirectional texturing of human actors from multiple
view video sequences. Romanian Conference on Computer-Human Interaction, 2005, Cluj-Napoca,
Romania. pp.133-136. �inria-00281378�

https://hal.inria.fr/inria-00281378
https://hal.archives-ouvertes.fr


Omnidirectional texturing of human actors from multiple view
video sequences

Alexandrina Orzan∗, Jean-Marc Hasenfratz†

Artis‡, GRAVIR/IMAG - INRIA

Abstract

In 3D video, recorded object behaviors can be observed
from any viewpoint, because the 3D video registers the
object’s 3D shape and color. However, the real-world
views are limited to the views from a number of cam-
eras, so only a coarse model of the object can be re-
covered in real-time. It becomes then necessary to judi-
ciously texture the object with images recovered from
the cameras. One of the problems in multi-texturing is
to decide what portion of the 3D model is visible from
what camera. We propose a texture-mapping algorithm
that tries to bypass the problem of exactly deciding if
a point is visible or not from a certain camera. Given
more than two color values for each pixel, a statistical
test allows to exclude outlying color data before blend-
ing.

1 Introduction

Currently, visual media such as television and motion
pictures only present a 2D impression of the real world.
In the last few years, increasingly more research activity
has been devoted to investigate 3D video from multiple
camera views. The goal is to obtain a free-viewpoint
video, where the user is able to watch a scene from an
arbitrary viewpoint chosen interactively.

The possible applications are manifold. A free-
viewpoint system can increase the visual realism of
telepresence technology 1 , thus enabling users in dif-
ferent locations to collaborate in a shared, simulated

∗ENS de Cachan - France
†University Pierre Mendès France - Grenoble II
‡Artis is a team of the GRAVIR/IMAG laboratory, a joint research

unit of CNRS, INPG, INRIA, UJF
1”Telepresence technology” enables people to feel as if they are

environment as if they were in the same physical room.
Also, special effects used by the movie industry, such
as freeze-and-rotate camera, would be made accessible
to all users.

For free-viewpoint video, a scene is typically captured
by N cameras. From the views obtained by the cameras
a 3D video object, with its shape and appearance, is cre-
ated. The shape can be described by polygon meshes,
point samples or voxels. In order to make the model
more realistic, appearance is typically described by the
textures captured from the video streams. Appearance
data is mapped onto the 3D shape, thus completing the
virtual representation of the real object. The 3D video
object can be seamlessly blended into existing content,
where it can be interactively viewed from different di-
rections, or under different illumination.

Since people are central to most visual media content,
research has been dedicated in particular to the extrac-
tion and reconstruction of human actors.However, the
system used in this article is not restricted to human
actors, as [2]. Moreover, it allows the acquisition of
multiple objects present in the scene.

The rest of the paper proceeds with a review of related
work in section 2. Section 3 will be dedicated to de-
scribing the proposed method of texture-mapping, after
which results and future tasks are discussed.

2 Previous Work

Over the last few years, several systems with different
model reconstruction and different ways of texturing
the 3D model have been proposed.

actually present in a different place or time (S. Fisher & B. Laurel,
1991) or enables objects from a different place to feel as if they are
actually present (T. Lacey & W. Chapin, 1994).

1



A.Orzan, J-M. Hasenfratz / Proceedings of the Conference on Computer-Human Interaction, 2005

2.1 3D Model reconstruction

Two different approaches of model reconstruction have
been studied in the recent years: model-free and model-
based reconstruction.

Model-free reconstruction makes no a priori assump-
tions on scene geometry, allowing the reconstruction of
complex dynamic scenes. In human modeling it allows
the reproduction of detailed dynamics for hair and loose
clothing.

Most model-free methods aim to estimate the visual
hull, an approximate shell that envelopes the true ge-
ometry of the object [10]. To achieve this, object silhou-
ettes are extracted from each camera image by detecting
the pixels not belonging to the background.

The visual hull can then be reconstructed either by
voxel-based or polyhedron-based approaches. The first
approach discretizes a confined 3D space in voxels and
carves away those voxels whose projection fall outside
the silhouette of any reference view [7]. Polyhedron-
based approaches represent each visual cone as a poly-
hedral object and computes the intersection of all visual
cones [11, 14, 13].

The visual hull allows real-time reconstruction and ren-
dering, yet it needs a large number of views to accu-
rately represent a scene, otherwise the obtained model
is not very exact.

Model-based reconstruction assumes that the real ob-
ject is a human body and uses a generic humanoid
model, which is deformed to fit the observed silhouettes
[2, 8, 9]. Although it results in a more accurate model
and permits motion tracking over time, this approach is
restricted to a simple model and does not allow com-
plex clothing movements. Moreover, it places a severe
limitation on what can be captured (i.e. a single human
body) and it is not real-time.

In this paper, the 3D model used is the one created in
the context of CYBER-II project2, a polyhedron-based
model obtained in real-time.

2.2 Multi-view texture mapping

Original images from multiple viewpoint are often
mapped onto recovered 3D geometry in order to achieve
realistic rendering results [3]. Proposed methods for

2http://artis.imag.fr/Projects/Cyber-II/

multi-texture mapping are either view-dependent or
view-independent.

View-dependent texture mapping considers only the
camera views closest to the current viewpoint. In be-
tween camera views, two to four textures are blended
together in order to obtain the current view image [4, 5].
This method exhibits noticeable blending artifacts in
parts where the model geometry does not exactly cor-
respond to the observed shape. What’s more, the result
is usually blurred and the passing from one camera view
to another does not always go unnoticed.

View-independent texture mapping selects the most ap-
propriate camera for each triangle of the 3D model, in-
dependently of the viewer’s viewpoint [2, 8, 13]. The
advantage of this method is that it does not change the
triangle texture when the user changes the viewpoint.
Moreover, the blurred effect is less noticeable. How-
ever, the problem is that the best camera is not the same
from patch to patch, even if they are neighboring. Here
also, blending between visible views is necessary in or-
der to reduce the abrupt change in texture at triangle
edges.

Blending is done using various formulas that depend of:

- the angle between the surface normal and the vector
towards the considered camera

- the angle between the surface normal and the vector
towards the viewpoint

- the angle the vector towards a camera and the vector
towards the viewpoint

Blending weights can be computed per vertex or per
polygon [2, 4, 5]. Matsuyama [13] proposes using
this method for determining each vertex color and then
paints the triangles with the colors obtained by linearly
interpolating the RGB values of its vertices. How-
ever, for large triangles, small details like creases in the
clothes are lost.

Li and Magnor [12] compute the blending for each
rasterized fragment, which results in a more accurate
blending.

2.3 Visibility

Visibilities with respect to reference views are very im-
portant for multi-view texture mapping. For those parts
that are invisible in a reference view, the correspond-
ing color information should be ignored when blending
multiple textures.

2



A.Orzan, J-M. Hasenfratz / Proceedings of the Conference on Computer-Human Interaction, 2005

Debevec et al. [3] splits the object triangles so that they
are either fully visible or fully invisible to any source
view. This process takes a long time even for a mod-
erately complex object and is not suitable for real-time
applications. Matusik [14] proposes computing the ver-
tex visibility at the same time that the visual hull is gen-
erated. Magnor et al. [12] solves the visibility prob-
lem per fragment, using shadow mapping. However,
they require rendering the scene from each input cam-
era viewpoint and is not real-time even with a hardware-
accelerated implementation.

We propose a per pixel method that checks only poly-
gon visibility and eliminates the wrong colors by con-
sidering only those colors that are close to a computed
average.

3 Texture mapping algorithm

3.1 Model constraints

The polyhedron-based model-free method recreates the
geometrical object at each frame. The number of poly-
gons, their form and position in space vary greatly in
time, so we cannot track vertices from one frame to an-
other.

This means that it is impossible to decide the color of
the polygons only once, at the beginning of the video.
Color values have to be computed in real-time, for each
frame.

3.2 Algorithm description

To achieve realistic rendering results, we use the projec-
tive texture mapping, a method introduced by Segal [15]
and included in the OpenGL graphics standard. But the
current hardware implementation of projective texture
mapping in OpenGL lets the texture pass through the
geometry and be mapped onto all back-facing and oc-
cluded polygons. Thus it is necessary to perform visi-
bility check so that only polygons visible to a particular
camera are texture mapped with the corresponding im-
age.

A point p on the object’s surface is visible from a cam-
era ci if (1) the triangle t j to which the point belongs
faces the camera and (2) the point is not occluded by
any other triangles.

The first condition can be fast determined by checking
the equation nt j · vci→t j < 0, where nt j is the triangle
normal vector and vci→t j is the viewing direction from
ci towards the centroid of t j.

Still, in a per-pixel approach, we do not have the ge-
ometrical data. We solve this problem by an addi-
tional rendering of the object from the current view-
point, where we use the polygon ID as its color. Thus,
we can determine what polygons are visible from the
viewpoint and exactly which pixel of the current image
view belongs to which triangle.

Determining if a point viewed by the viewer is occluded
or not to the cameras is a less obvious problem. Meth-
ods to determine what points are occluded were briefly
presented in the previous section. We propose to bypass
the occlusion checking by doing a basic statistical test.
The strong condition that has to be fulfilled is that for
each pixel at least three cameras have to pass the first
visibility test, and the majority has to see the correct
color. Still, this is usually the case with a system having
an evenly distributed camera configuration.

As all the cameras are calibrated prior to use and the
images are acquired at the same time and in the same
lighting conditions, we can compare colors and calcu-
late distances in the RGB space [1, 6].

If a sufficient number of color values are available for
a pixel, we compute the mean (µ) and the standard de-
viation (τ) for each of the R, G, B channels. Individ-
ual colors falling outside the range µ±β · τ for at least
one channel are excluded. The factor β permits us to
modify the confidence interval for which the colors are
accepted. The classical normal deviation test considers
β is 1. We experimentally concluded that it was best to
set it at 1.17, to allow for slight errors in manipulating
the color-values.

If less than three possible colors are available for a
pixel, we do not exclude any of them.

A weighted mean of all contributing images is fi-
nally used for texturing each particular pixel. The
blending weight is computed using the value of the
cos(angle(nt j ,vci→t j )).

If the pixel is invisible for all cameras, we compute its
color using the color values of the neighbours whose
color was already decided.

The algorithm runs as follows:

3



A.Orzan, J-M. Hasenfratz / Proceedings of the Conference on Computer-Human Interaction, 2005

1: for all polygons in the 3D model do
2: check if they are at least partially visible from the

current view
3: end for
4: for all pixels in the image view do
5: for all cameras do
6: if the polygon that colored the pixel faces the

camera then
7: retain the corresponding color
8: end if
9: if there are three or more colors then

10: compute the mean and standard deviation
11: for all colors do
12: if they are not in the allowed interval

then
13: exclude
14: end if
15: end for
16: compute the weighted mean
17: else if there are two colors then
18: compute the weighted mean
19: else if there is no color then
20: compute the color using neighbouring col-

ors
21: end if
22: end for
23: end for
24: draw

4 Results

We tested this algorithm with the system used by the
CYBER-II project. The system has 6 cameras, 4 in the
front and 2 in the back, as seen in Figure 13.

For the front views, the algorithm succeeded in elim-
inating the wrong colors and in seamlessly mixing
data from various cameras. Moreover, the pixel color
doesn’t change with the change of viewpoint. Images
comparing view-dependent and view-independent algo-
rithms, without occlusion checking, and our method can
be seen in Figure 2.

However, for the back views, where the object is
seen by at most 2 cameras, the algorithm does only a
weighted average, without color elimination.

3video sequences were acquired with the Grimage platform of In-
ria Rhône-Alpes

Figure 1: Camera setting

Figure 2: a) View dependent, b) View independent, c)
Our method

We set the resolution of the rendered novel view to
512x512, and we tested the algorithm for a model of
about 5000 polygons. On a Intel 2.40GHz CPU and a
GeForce4 Ti 4800 graphic card, the frame rate is of 17
fps.

5 Conclusions and Future work

A per-pixel algorithm for multi-view texture mapping
has been implemented. It succeeds in eliminating
wrong colors for pixels viewed by more that 2 cameras,
without doing a time-consuming occlusion checking.

Yet, further enhancements are both necessary and feasi-
ble. Thus, a hardware-implementation should be con-
sidered, since the mane time-consuming task in our
algorithm is transferring information from the frame-
buffer to the CPU. Moreover, we would like to consider
a continuity in time of the computed pixel colors and a
dynamic deactivation of the unused cameras.

4



A.Orzan, J-M. Hasenfratz / Proceedings of the Conference on Computer-Human Interaction, 2005

References

[1] A. Agathos and R. Fishe. Colour texture fusion of
multiple range images. In Proceedings of the 4th
International Conference on 3-D Digital Imaging
and Modeling, pages 139– 146, 2003.

[2] Joel Carranza, Christian Theobalt, Marcus Mag-
nor, and Hans-Peter Seidel. Free-viewpoint video
of human actors. ACM Trans. on Computer
Graphics, 22(3):569 – 577, July 2003.

[3] Paul E. Debevec, Camillo J. Taylor, and Jitendra
Malik. Modeling and rendering architecture from
photographs: A hybrid geometry- and image-
based approach. Computer Graphics, 30(Annual
Conference Series):11–20, 1996.

[4] Paul E. Debevec, Yizhou Yu, and George D. Bor-
shukov. Efficient view-dependent image-based
rendering with projective texture-mapping. In 9th
Eurographics Workshop on Rendering, 1998.

[5] Bastian Goldlücke and Marcus Magnor. Real-
time microfacet billboarding for free-viewpoint
video rendering. In Proceedings of ICIP 2003,
IEEE Computer Society, volume 3, pages 713–
716, 2003.

[6] L. Grammatikopoulos, I. Kalisperakis, G. Karras,
T. Kokkinos, and E. Petsa. On automatic orthopro-
jection and texture-mapping of 3d surface models.
In ISPRS Congress - Geo-Imagery Bridging Con-
tinents, 2004.

[7] Jean-Marc Hasenfratz, Marc Lapierre, and
François Sillion. A real-time system for full
body interaction. Virtual Environments, pages
147–156, 2004.

[8] Adrian Hilton and Jonathan Starck. Model-based
multiple view reconstruction of people. In IEEE
International Conference on Computer Vision,
pages 915–922, 2003.

[9] Adrian Hilton and Jonathan Starck. Multiple view
reconstruction of people. In 3D Data Processing,
Visualization, and Transmission, pages 357–364,
2004.

[10] A. Laurentini. The visual hull concept for
silhouette-based image understanding. IEEE
Transactions on Pattern Analysis and Machine In-
telligence, 16(2):150–162, 1994.

[11] Ming Li, Marcus Magnor, and Hans-Peter Seidel.
Online accelerated rendering of visual hulls in real
scenes. In Journal of WSCG, 2003.

[12] Ming Li, Marcus Magnor, and Hans-Peter Sei-
del. A hybrid hardware-accelerated algorithm for
high quality rendering of visual hulls. In Proceed-
ings of the 2004 conference on Graphics interface,
pages 41–48, 2004.

[13] Takashi Matsuyama and Takeshi Takai. Gener-
ation, visualization, and editing of 3d video. In
3D Data Processing, Visualization, and Transmis-
sion, page 234, 2002.

[14] Wojciech Matusik, Chris Buehler, and Leonard
McMillan. Polyhedral visual hulls for real-time
rendering. In Proceedings of the 12th Eurograph-
ics Workshop on Rendering Techniques, pages
115–126, 2001.

[15] Mark Segal, Carl Korobkin, Rolf van Widenfelt,
Jim Foran, and Paul Haeberli. Fast shadows and
lighting effects using texture mapping. In SIG-
GRAPH ’92: Proceedings of the 19th annual
conference on Computer graphics and interactive
techniques, pages 249–252, 1992.

5


