
HAL Id: inria-00274193
https://hal.inria.fr/inria-00274193v2

Submitted on 29 May 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Practice of Free and Open Source Software
Processes

Michel Pawlak, Ciaran Bryce, Stéphane Laurière

To cite this version:
Michel Pawlak, Ciaran Bryce, Stéphane Laurière. The Practice of Free and Open Source Software
Processes. [Research Report] RR-6519, INRIA. 2008, pp.42. �inria-00274193v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50260522?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00274193v2
https://hal.archives-ouvertes.fr

in
ria

-0
02

74
19

3,
 v

er
si

on
 2

 -
 2

9
M

ay
 2

00
8

appor t
de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
65

19
--

F
R

+
E

N
G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

The Practice of Free and Open Source Software
Processes

Michel Pawlak — Ciarán Bryce — Stéphane Laurière

N° 6519

April 2008

Centre de recherche INRIA Rennes – Bretagne Atlantique
IRISA, Campus universitaire de Beaulieu, 35042 Rennes Cedex

Téléphone : +33 2 99 84 71 00 — Télécopie : +33 2 99 84 71 71

The Practice of Free and Open Source Software

Processes

Michel Pawlak∗, Ciarán Bryce†, Stéphane Laurière‡

Thème COM — Systèmes communicants
Équipes-Projets ACES

Rapport de recherche n° 6519 — April 2008 — 39 pages

Abstract: Free and Open Source Software (F/oss) is widespread today. F/oss
is primarily a movement that permits access to software source code, and, en-
compasses a software development paradigm that harnesses the efforts of a dis-
tributed community. F/oss is not simply a computer science phenomenon, but
also a social, economic and legal one.

The goal of this survey paper is to examine the operational challenges facing
F/oss today, and to review tools, methods and projects that seek to address
these. We conclude that the major open challenge is the design of information
systems that address community management issues with the same rigor as
current tools address content management issues, and that provides support for
both f/oss production and support processes.

Key-words: Free software, open-source software, software licenses.

∗ Université de Genève, Michel.Pawlak@cui.unige.ch
† INRIA, Ciaran.Bryce@inria.fr
‡ Mandriva, slauriere@mandriva.com

La gestion de processus liés aux projets de
logiciel libre

Résumé : Les logiciels libres (f/oss) constituent une part importante des
logiciels utilisés de nos jours. Ils sont produits par une communauté auto-
organisée n’ayant aucun point de contrôle centralisé. Une des caractéristiques
principales des f/oss est la mise à disposition des sources du contenu produit
(du code, de la documentation, etc.) Tous les utilisateurs de contenu f/oss
re coivent un accès aux sources, l’autorisation de les modifier et d’en redistribuer
le contenu selon les conditions définies par la licence employée. Tous les projets
f/oss doivent gérer différents aspects tels que la production du contenu, la
gestion des tests, la correction des bugs, la distribution, la documentation, mais
également la gestion de la communauté, etc. Nous appelons le processus f/oss
le processus englobant tous les mécanismes liés à la gestion de ces aspects. Ce
document passe en revue quelques outils et méthodes employés pour gérer le
processus f/oss.

Mots-clés : Logiciel libre, processus de développement, Linux, communauté.

Free and Open Source Software 3

Contents

1 Introduction 4

2 Free and Open Source Software 6
2.1 History and Philosophy . 7
2.2 The Garage, to Enterprises, to Public Administrations 10

3 The Challenges for f/oss 11
3.1 The Distinguishing Features of f/oss 12
3.2 Requirements for f/oss Processes 14

4 Existing Approaches and Solutions 18
4.1 F/oss Community Organization 18
4.2 F/OSS Quality Assessment . 19

4.2.1 QA of Content . 20
4.2.2 F/OSS Project Measurement 23

4.3 F/OSS Process Management . 26
4.3.1 General Process Management 26
4.3.2 Support for Distribution and Production Processes 29
4.3.3 F/oss Interoperability . 30

5 Conclusion: A fragmented World 32

RR n° 6519

4 Pawlak & Bryce & Laurière

1 Introduction

Free and Open Source Software (f/oss) is one of the great facts of software
development of the past few years. In this approach, communities of people
with common interests collaborate to develop new ideas, models and, in fine,
produce freely available software. The software is distributed with its source
code that can be freely modified by any developer; the modifications made by
a developer are, in turn, made available to the community.

In a f/oss project, the interests of the community push design requirements
and specific licenses regulate intellectual property rights. A f/oss community is
responsible for all aspects of software development, from requirements to coding,
testing, and even documentation compilation and translation. The f/oss com-
munity is self-organizing; compared to the proprietary software model used by
some companies, there is no hierarchal organization of the community. For this
reason, f/oss is said to be organized like a bazaar, as opposed to the cathedral
model of proprietary software development [97].

F/oss projects have given birth to successful developments such as Linux,
Apache, PhP and MySQL. Further, major technology firms such as IBM and
Sun Microsystems have become major supporters of this movement with projects
like Eclipse [25] and OpenOffice.org [88].

The f/oss model has even been adapted to non-software domains, fostering
community effort to achieve a common goal in a highly collaborative manner.
Examples include knowledge sharing (e.g., Wikipedia [121], Wiktionary [123]),
health (e.g., Munos Drug Research [79], Finding cures [71], Tropical Disease
Initiative [118]) and science [104].

The Challenge of Large Projects

Theoretically, the bigger a project’s community, the more successful the project
since increasing the community’s size brings more ideas and code. Nonetheless,
this increase brings a management challenge that needs to be addressed for the
well being of the project. For instance, as of 30 October 2006, the standard
Mandriva Linux distribution contains 10566 packages1 so packaging a distribu-
tion is thus no easy task. The average package size is 2717431 bytes, so testing
packages is a challenge. Further, these packages involve more than one hundred
different licenses [69], so reasoning about licensing issues for a system instal-
lation is also a challenge. As a further example, Gaim [47], one of the most
active projects on SourceForge, had an average of 533 daily read transactions in
August 2006, and 17 daily write transactions for an average of 101 files. Thus,
maintaining an infrastructure for operating a large-sized project on a daily basis
is a challenge.

Large sized f/oss projects have been known to encounter problems in the
following areas:� Dependency management is the problem of identifying and locating

the set of packages that need to be installed - or removed - when a given

1The f/oss project’s source code is usually distributed as a set of files, where each file
contains one or more software modules; each file is generally termed a package. This division
allows users to optimize downloading by only downloading required packages rather than the
whole system. Large projects can have many packages: Debian Linux for instance has nearly
20 000 packages in its distribution.

INRIA

Free and Open Source Software 5

package is installed. Existing tools such as APT and URPMI, used by
major projects, scale poorly to systems with several thousands of pack-
ages [1].� Testing is limited as many f/oss software errors are configuration er-
rors that cannot be detected by the distributor given the multitude of
configurations that he needs to test. These errors are only detected after
the software is deployed on the clients, which really, is not a satisfactory
situation.� Code Distribution is the issue of delivering software to a huge number
of end-clients. As the number of users grows, the latency of downloading
software from a mirror server increases; this situation is worsened by flash
crowd situations when many users attempt download at the same time [2],
e.g., at the moment of a new release. Further, the effort needed to keep
mirror servers up-to-date is greater when releases are frequent.

There has been much research and development to address these issues.
For instance, dependency management algorithms are studied in [27] that are
scalable and provably complete. Distribution issues are being addressed with
the use of BitTorrent [17] and content distribution architectures [2] that employ
peer-to-peer solutions that distribute the network load of downloading among
a community of machines.

However, we contend that the organizational and operational chal-
lenges that f/oss faces as projects become large are just as important. One
such challenge is to ensure that any technical solution, e.g., for dependency
management or content distribution, is correctly applied and maintained for all
content and community members. Further, consider that f/oss is more than
the simple production, testing and deployment of software; it involves activities
such as community management, organization of seminars, production of man-
uals, starting new projects, etc. A community member may decide to start a
new activity inside an existing project, and this can be as varied in nature as
fund-raising or server maintenance. The success of a project depends on being
able to manage these issues, which requires the following:� Starting an activity entails locating competent and potentially interested

community members. Apart from news-groups and mailing lists, there is
no way of actively locating potential collaborators, especially for a precise
task, e.g. to fix or develop a specialized package or organize a seminar on
the project’s software.� Effort allocation and reallocation must be gauged since there might be sev-
eral contributors working on the same topic for the same code package or
bug fix, unaware of each other’s efforts. Effort reallocation needs support
since predicting the workload of contributors is not possible – since there
is no developer “contract” in f/oss, there is no guarantee that a job to
be done will indeed get done.� Information about content, activities and participants’ needs to be shared.
For instance, a user seeking to install a package must be immediately
informed of a newly detected configuration error. A member starting a
project branch specializing in security must be able to learn of the presence
of security experts in the community.

RR n° 6519

6 Pawlak & Bryce & Laurière

The common element of these requirements is information availability.
In some cases, pertinent information may be held by some contributor, but as
contributors are free to leave at will, there is no guarantee that this information
makes its way into the community. Further, there is no standardized method
to collect or retrieve information, nor a guideline indicating what information
needs to be collected and made available by f/oss tools. It is the role of a f/oss
process to address both of these issues. A process defines the framework for the
production and control of content, the management of community activities, and
the accessibility of community and content information whenever it is needed.
A well-defined process for a f/oss project addresses the requirements just set
out, and is thus essential for a project to employ one in order to scale as the
community grows.

Another role of a f/oss process is to support project artifact correctness. For
instance, each package meta data must include a software license and a complete
list of patches and dependencies. The process should render it impossible for
the community to create packages that do not have the complete set of meta-
data. Further, a formalized description of a process is also the starting point
for reasoning about, and improving, the efficiency of the process by permitting
information flows and workflow relations to be studied and perhaps compared
with processes of other projects.

Goal of paper

The goal of this paper is to examine in more depth the challenges faced by f/oss
processes to help their projects to successfully grow, and to examine tools and
techniques that help.

Section 2 gives background into f/oss. It explains its history and the dif-
ferent approaches. Section 3 pinpoints the operational challenges that need to
be addressed by f/oss projects, and examines why these challenges differ to
those of proprietary software development. Section 4 surveys tools, methods
and projects that seek to address these challenges, and Section 5 concludes.

2 Free and Open Source Software

The Free and Open Source Software (f/oss) model is a philosophy and method-
ology characterized by development and production practices that support ac-
cess to the sources (source code, documentation, etc.) of produced content, and,
by the authorization provided to users of the sources to modify and distribute
them under specific conditions.

Two different movements put forward this philosophy: Open Source Software
(oss) [85] and Free Software (fs) [38, 40]. Though the movements have different
origins and motivations, which we describe later in this section, we group them
under the umbrella name f/oss.

F/oss encapsulates ideas that have revolutionized the software domain.
These include user expectance for software, e.g., making software available to
anyone and retrieving software upgrades whenever needed. F/oss has also revo-
lutionized software production practices by enabling users themselves to improve
software, e.g., adapt it to their needs, correct bugs, etc. F/oss supports main-
tenance, even when the company that produced the software has gone out of

INRIA

Free and Open Source Software 7

business. These features are no longer user wishes, but are considered as basic
rights by the f/oss movement and set the background for so-called software
freedom.

The f/oss philosophy is driven by the desire to make software widely avail-
able in order to enable its fast improvement, to foster innovation, and to enable
increased adaptability in highly changing software and hardware environments.
To achieve this goal, a community of users forms around the project to pool
competence and shared interests. However, as nobody likes putting work into a
program and then see someone else gain exclusive (financial) benefit from it, the
following rules are respected by the community [94]. Everyone has the right:� To make copies of a program and to distribute these copies.� To have access to the software’s source code.� To make improvements to the program, and to distribute these.

2.1 History and Philosophy

The history of Free and Open Source Software started with the UNIX operating
system. In 1969-1970, Kenneth Thompson, Dennis Ritchie and others at AT&T
Bell Labs began developing a small operating system named Unix on a PDP-
7. In 1972-1973, the system was rewritten in the C programming language, a
visionary step that led to Unix being the first widely used operating system that
could switch from, and outlive, its original hardware.

While AT&T continued developing Unix under the names System III and
later System V, the academic community led by Berkeley, developed a UNIX
variant called the Berkley Software Distribution (BSD). Over the years, each
variant adopted many key features of the other. Commercially, System V won
the war of the standards by getting most of its interfaces into the formal stan-
dards, and most hardware vendors switched to it. The BSD branch did not
die, but instead became widely used by the research community and for single-
purpose servers.

In the PC context, Bill Jolitz’s operating system, 386BSD, departed from
BSD as a return to UNIX origins but in modern form. It was first released
inside the University of California and the US Department of Energy in 1989.
Major parts were released in the Networking II (Net/2) release that was labeled
as freely distributable by the University of California.

In early 1993, the last 3 coordinators of 386BSD’s patch kit – Nate Williams,
Rod Grimes and Jordan Hubbard – created the FreeBSD Project [43] after the
abandon of 386BSD. Around 1994, Novell and U.C. Berkeley settled a long-
running lawsuit over the legal status of the Berkeley Net/2 tape. Novell, who
had acquired it from AT&T, owned a large part of the tape. Since FreeBSD
was using Net/2, it had to free itself of this commercial part and re-invent itself
from a completely new, and rather incomplete, set of 4.4BSD sources from which
large chunks of code required for constructing a bootable running system were
removed for legal reasons. It took the project until November 1994 to make
this transition, which represented the final step to freedom for this operating
system.

In respect to software freedom, the reader should keep in mind that when
computers first reached universities, they were research tools. Software was

RR n° 6519

8 Pawlak & Bryce & Laurière

freely passed around and programmers were paid for the act of programming,
not for the programs themselves. Only later, when computers reached the busi-
ness world in the 70’s-80’s, did programmers begin to support themselves by
restricting the rights to their software and charging fees for copies.

The emergence of proprietary software and its implicit restrictions on access
to software provoked tensions in the programming community. In 1984, Richard
Stallman’s Free Software Foundation (FSF) [39] began the GNU project [36]
with the aim of creating a free version of the Unix operating system2. By
free, Stallman meant software that could be freely used, read, modified, and
redistributed. The quip often used to clarify the term “free” is to equate it with
free speech, rather than with free beer.

While the FSF was promoting complete freedom, it had in the 1990’s [37]
trouble developing a free and complete operating system kernel, the major com-
ponent needed to provide a free operating system. In 1991, this issue was
solved when Linus Torvalds began developing an operating system kernel that
he named Linux [117]. When Linux became free in 1992, its combination with
GNU components, BSD components and MIT’s X-windows software resulted in
a complete free operating system.

The Open Source Definition [85] started life as a policy document of the De-
bian GNU/Linux Distribution, which was built entirely of free software. How-
ever, since numerous licenses purported to be free, Debian had some problem
defining what was exactly free and had to make its free software policy clear.
These problems were addressed by proposing a Debian Social Contract and the
Debian Free Software Guidelines in July 1997. The Social Contract documented
Debian’s intent to compose their system entirely of free software, and the Free
Software Guidelines made it possible to classify software into free and non-free
easily, by comparing the software license to the guidelines.

At the beginning of 1997, Eric Raymond was concerned that business people
were put off by Richard Stallman’s freedom approach, which was very popular
among more liberal programmers. He felt that this was hampering the devel-
opment of Linux in the business world while it flourished in research. In 1998,
Netscape announced that it planned to release its browser Navigator as an open
source project, and Raymond was invited to help them plan this action. Ray-
mond used this opportunity to sell the free software idea strictly on pragmatic,
business-case grounds: the ones that motivated Netscape. This created a pre-
cious window of time to market the free software concept to business people and
to teach the corporate world about the benefits of an open development pro-
cess. The principal benefit touted was rapid software development, and that this
could be achieved through collaboration with individuals and other companies
who shared a common interest in the software.

While the Debian Free Software Guidelines were the right document to define
Open Source, they needed a more general name and the removal of Debian-
specific references. Bruce Perens edited the Guidelines to form the Open Source
Definition – a bill of rights for the computer user. It defines certain rights
that a software license must grant the user to be certified as Open Source.
Then a certification mark, a special form of trademark meant to be applied to
other people’s products, was registered. Eric Raymond and Bruce Perens have

2Gnu stands for “GNU is Not Unix”.

INRIA

Free and Open Source Software 9

since formed the Open Source Initiative (OSI) [86], a non-profit organization,
exclusively for managing the Open Source campaign and its certification mark.

As of 1st February 2007, there are 140,417 registered projects and 1,498,326
registered users on SourceForge.net [107] the world’s largest Open Source soft-
ware development web site. Table 1 lists some of the most important open
source projects available today. Linux remains the flagship open source devel-
opment; the major Linux distributions today are Red Hat, Mandriva, Debian
and Suse; the major BSDs are FreeBSD and NetBSD.

Project Name Description of produced software
Ajax Interactive Web Applications
Apache HTTP Server
Azureus BitTorrent client
Eclipse Extensible Integrated Development Environment
Firefox Web browser
Gaim Messenging
GCC C Compiler
Hibernate Persistence and query service
Jboss Application server
KOffice Office Suite
MySQL Relational Database
Openoffice Office Suite
PHP Hypertext Preprocessor
The Gimp Photo retouching, image composition and image authoring
Thunderbird Mailer
Tomcat Servlet container

Table 1: Examples of f/oss Projects.

Different approaches; a common philosophy

FSF Richard Stallman has popularized Free Software as a political idea since
1984, when he formed the Free Software Foundation (FSF) and its GNU Project.
The philosophy of FSF is that people should have, and appreciate, freedom. To
gain freedom, a set of rights was defined that Stallman felt all users should
possess. These rights are codified in the GNU General Public License (GPL). It
gives users four main “freedom” rights: the freedom i) to run a program for any
purpose, ii) to study how a program works and adapt it to their needs, iii) to
redistribute copies to help the community and iv) the freedom to improve the
program and release this new version to the public. Stallman developed initial
works of free software such as the GNU C Compiler and GNU Emacs. His work
inspired many others to contribute free software under the GPL.

FreeBSD The goals of the FreeBSD Project are to provide software that
may be used for any purpose and without strings attached. For FreeBSD, the
first and foremost mission of f/oss is to provide code to anyone for any purpose,
so that the code gets the widest possible use and provides the widest possible
benefit. Thus the FreeBSD License permits the redistribution and use in source
and binary forms with and without modification, as long as the source code

RR n° 6519

10 Pawlak & Bryce & Laurière

retains the license itself and a liability disclaimer, and as long as redistributions
reproduce these elements in the documentation and/or other materials provided
with the distribution. The FreeBSD license is less restrictive than the GNU
General Public License (GPL) or Library General Public License (LGPL)3 since
it allows developers to sell code they obtain under the license.

OSI The purpose of the Open Source Initiative (OSI) [86] is to lobby the
commercial world with the idea that open source is a rapid and evolutionary
process that produces better software than the traditional closed model. OSI
also argues that open software is better since, in the closed proprietary world,
only a few programmers can see the sources and client companies must blindly
trust these sources. Although it is not promoted with the same evangelical
fervor as free software, the Open Source Definition (OSD) includes many of
Stallman’s ideas, and can be considered a derivative of his work. The OSD is
a list of ten criteria that software licenses must comply with to be considered
as Open Source licenses [85]: i) free redistribution must be ensured; ii) un-
obfuscated source code must be provided; iii) derived works must be allowed;
iv) integrity of the authors source code must be ensured. Further, in order to
get the maximum benefit of the process, v) no discrimination against people
or groups can be tolerated; vi) no discrimination against fields of endeavor is
permitted, this in order to prohibit traps that prevent open source being used
commercially; vii) the distribution of license defines that the rights attached
to the program must apply to whom the program is distributed; viii) license
must not be specific to a product; ix) it cannot restrict other software, and x) it
must be technology neutral. Multiple licenses comply with this definition [84],
including the GPL.

2.2 The Garage, to Enterprises, to Public Administra-
tions

The f/oss world has experienced many changes over the years. Long seen as
a development model opposed to traditional enterprise development models, it
was considered in the enterprise environment as a threat to proprietary soft-
ware. However, since the release of the Netscape source code under an Open
Source license, the border separating f/oss from enterprise environments has
blurred. For instance, shared source licenses such as Microsoft’s Shared Source
Initiative [76] or Sun Microsystems’s Community Source License [111] are a step
towards giving access to sources to end users and providing them with bene-
fits not available under traditional proprietary software licenses. This license
family defines restrictions ranging from the most restrictive (e.g., content can
only be viewed) to the least restrictive (e.g., content can be viewed, modified,
or redistributed as source code for either commercial or non-commercial pur-
poses) [122].

A number of large f/oss projects were initially developed by, or have as part-
ners, well-known companies. For example, Mozilla [78] was a fork of Netscape
and its current partners are IBM, Sun Microsystems, Hewlett Packard and Red
Hat. The Eclipse platform [25] was originally released into Open Source by
IBM and is now a Foundation supported by 50 member companies; it hosts

3LGPL is the Lesser GNU Public License is a less restrictive variant of the GPL. One
of the restrictions of the GPL is that other code that gets linked to GPL code must also be
distributed under the terms of the GPL; LGPL removes this particular restriction.

INRIA

Free and Open Source Software 11

4 major f/oss projects and 19 sub projects. Project JXTA [60] started as
a research project at Sun Microsystems to support peer-to-peer collaborative
environments. Today, JXTA covers 117 projects in 6 categories and about
27 enterprises and 29 universities have contributed. The office suite OpenOf-
fice.org [88] has been released into f/oss by Sun Microsystems, which remains
the primary contributor.

Eclipse is a good example of successful synergy between the enterprise and
f/oss worlds. IBM takes advantage of inputs from the community to improve
the platform, and sells its Websphere product built on top of Eclipse. In the
meantime, the community provides new plug-ins. Other companies also provide
plug-ins and tools that integrate with the platform and IBM products. This
situation allows all parties to benefit from the base platform.

F/oss and commercial cooperation needs legal regulation to work smoothly.
Thus, the Eclipse project is released under the terms and conditions of the Com-
mon Public License (CPL) [19]. This license specifies that each Contributor
hereby grants Recipient a non-exclusive, worldwide, royalty-free patent license
in order to protect contributors from being sued for patent infringement when
using code under the CPL. The CPL also specifies that only commercial con-
tributors, i.e. contributors reselling products released under the CPL, are liable
for damages caused by the product.

Various f/oss projects now exist to support enterprise environments. For
instance, Open For Business (OFBiz) seeks to provide applications and tools
to easily and efficiently develop and maintain enterprise applications [7]. The
growing availability of open source products such as enterprise resource planning
(ERPs) and consumer resource management (CRMs) [108, 81, 92, 18] is another
sign of the enterprise - f/oss integration.

European Public Administrations increasingly rely on f/oss. In France for
instance, public sector institutions increasingly use f/oss solutions for their
IT systems since 1998. Concerned sectors include the Ministry of Defense, the
Ministry of Justice (e.g., the national crime register), the Ministry of Economy,
Finance and Industry. Malaysia has an Open Source Awareness Programme for
educating and assisting public sector users in adopting and implementing f/oss
solutions [67]. The Open Source Observatory of the IDABC [53] (Interoper-
able Delivery of European e-Government Services to public Administrations,
Businesses and Citizens) offers a good overview about OSS-related government
activities in Europe and abroad.

3 The Challenges for f/oss

This section looks at the specific features of f/oss, and at how it differs from
proprietary software content and production practices. Understanding these
features is important to run f/oss processes efficiently, and in particular, to
ensure that the processes can work gracefully as the project increases in size.
The first subsection examines the distinguishing features of f/oss environments;
the second subsection provides process guidelines for content, community and
process management.

RR n° 6519

12 Pawlak & Bryce & Laurière

3.1 The Distinguishing Features of f/oss

There are several features of f/oss software and communities that distinguish
them from their proprietary counterparts.

1 - The License The distinguishing feature of content produced by a f/oss
project is the license. It defines the obligations and rights concerning the use,
modification, and further distribution of content.

A large amount of licenses can be used for Open Source. The Open Source
Initiative (OSI) [86] provides a set of approved licenses, the purpose of which
is to provide the community with a reliable way of knowing if a piece of soft-
ware offers the qualities expected of open source software. As of September
2006, 56 licenses are approved by the OSI [84]. Similarly, the Free Software
Foundation defines a list of licenses and classifies them as GPL-compatible,
GPL-incompatible or Non-Free Software Licenses [41]. The different types of
f/oss licenses are discussed in [61].

The multiplicity of license raises the issue of license compatibility in software
projects. This is particularly important for projects like the Linux distributions
that use packages from independent projects that can have different licenses.
Not every license can be combined with each other; this is the case with the
General Public License (GPL) [42] which is incompatible with many other li-
censes. While license compatibility issues can occur when projects use content
produced in independent projects, it can also occur within single projects using
different licenses or when integrating Open Source Software with an existing
information system.

2 - Absence of Standards Information in f/oss projects describing con-
tent and community is not standardized. For instance, there is no globally
adhered to rule indicating what metadata should be bound to packages, what
precisely a patch is, etc. As a result, it is difficult to build generalized f/oss
tools. From the process management perspective, every project can have its
own definition of the responsibilities assigned to a tester or distribution man-
ager, and thus, even activities like testing and distribution can require different
responsibilities and competence in different projects.

3 - High Decentralization F/oss resources are highly distributed. For
instance, contributors to the Mandriva Linux distribution come from several
countries. The Debian Linux distribution maintains a page indicating the differ-
ent locations of their developers who are willing to provide this information [21].
Figure 1 was generated using the program xplanet [125] from the list of coor-
dinates found on this page. It is obviously difficult for f/oss contributors to
meet each other. In fact, they rarely meet or know each other, and communi-
cate using the tools like e-mail, mailing lists, Wikis and other tools provided by
projects.

4 - Dynamic Project Structures New f/oss projects are regularly cre-
ated, and existing projects can take new directions. A project may decide
to develop new applications. The community involved in a particular f/oss
project evolves as well: developers join and others get promoted to committers.
These roles are not full-time jobs; for instance, committers can take time out
to test packages, to cater for a new release, or may even leave the project in
order to start a new one. f/oss projects do not have a precise number of par-
ticipants; they often start small with a few motivated people and may become
huge involving hundreds of participants.

INRIA

Free and Open Source Software 13

Figure 1: Map of Debian developers locations

In proprietary software, upgrades are provided through major versions, and
critical bug fixes are provided on a punctual basis. In contrast, the whole
f/oss philosophy is based on dynamics. Indeed, the evolution of f/oss is
driven by the multiple updates, problem reports and bug fixes contributed by
the community. While the closed source software approach seeks to hide these
intermediate milestones from the public, f/oss shows them in the hope that
some contributor will handle them as fast as possible. For instance, the Debian
project’s social contract stipulates that the project “will not hide problems” [23].
The Eclipse project [25] provides in addition to its stable build, an integration
build integrating most recent changes to the project on a regular basis, and
nightly builds providing the changes made day by day. One of the most active
projects on SourceForge, Gaim [47], had an average of 8 bugs opened by day
and 9 bugs closed by day between November 2005 and November 2006.

5 - The Challenge of Quality The set of quality problems related to
f/oss are now well identified [74]. These problems include unsupported or or-
phaned code, configuration management issues, security updates management,
lack of documentation, difficulty to attract volunteers, and communication and
coordination issues. Most of these quality problems are bound to a lack of effi-
cient process management within the project. This shows that while developers
may understand that process management is important for quality assessment,
they do not necessarily have the experience in it. The study [74] also showed dif-
ferences between the development practices and processes in surveyed projects,
and suggests that few projects adopt all required processes for quality.

Quality is not facilitated by the impressive growth rate of some large projects.
For instance, a study of the evolution of the stable versions of Debian from
1998 onwards [99] shows that the distribution doubles in size (measured by
number of packages or by lines of code) approximately every two years. This
result, combined with the huge size of the system (about 200 MSLOC and 8000
packages in 2005), may lead to significant management issues in the future.
Indeed, since the number of packages is growing linearly, and since the specifics
of each package imposes a limit on the number of packages per developer, this

RR n° 6519

14 Pawlak & Bryce & Laurière

means that projects also need to grow in terms of developers at the same pace.
However, such growth is not easy and causes problems of its own, specifically in
the area of coordination. This has probably influenced the delays in the release
process of recent stable versions of Debian.

6 - Contributor Identity and Interest F/oss projects exist because
people contribute code, documentation and services (e.g., testing, translation
of manuals, etc.). Notably, contributors are not directly paid by the project
for their contribution. Some contributors might be indirectly paid by a founda-
tion supporting the project or by their company, which, for strategic reasons,
supports the f/oss process. Generally though, contributors are people with no
financial interest in the project, but who contribute because they believe in the
f/oss philosophy and projects to which they contribute. People also contribute
since they enjoy being a member of a community; this explains why f/oss is
also considered to be a social phenomenon.

F/oss environments are often misunderstood as being completely anony-
mous since anybody can contribute to projects without identifying himself.
While anonymity is desired in some cases, full anonymity is not always autho-
rized. Anonymous access is often allowed to many services like ftp, or content
management systems like subversion for content reading. However, in cases
where code sources or binaries are subject to license restrictions, identification
might be required, even for read access. In order to obtain write access, users
might have to be identified for security and information integrity reasons. In
FreeBSD for instance, mutual identification of committers with the CVS code
repository servers [20] is required through the use of public key cryptography.

An analysis of the Debian project provides insight into how volunteer in-
volvement affects released software and the developer community itself [98].
The study has three conclusions: i) globally, the involvement duration of vol-
unteers is stable; ii) experienced volunteers seek increased responsibilities and
increase their involvement over time; and iii) the voluntary effort is stable even
when volunteers leave, since tasks are taken over by other volunteers. However,
the report also highlights the worrisome trend of a growing number of packages
per maintainer. This can create scalability problems as the number of packages
in the distribution increases and the project does not grow by a proportional
number of developers.

3.2 Requirements for f/oss Processes

Consider the following citation of Ian Murdock, founder of the Debian project.

“Linux is not a product. Rather, Linux is a collection of software
components, individually crafted by thousands of independent hands
around the world, with each component changing and evolving on
its own independent timetable. . . . Linux is not a product. It is a
process.”

While a f/oss project is characterized by community and content, the pro-
cess defines “how things happen”. It expresses the actions of community mem-
bers to produce content and manage the community. The challenge today is
to develop information system support for processes, and in particular, to ac-
company these processes as the projects they manage get larger. The design of

INRIA

Free and Open Source Software 15

these information systems requires that guidelines exist for content, community
and process; these are looked at in this subsection.

3.2.1 Content Guidelines

Uniformity of Content By content, we mean anything produced by a f/oss
project. This can be source code, binary code or documentation. There is no
real difference from the process viewpoint between documentation and code. For
instance, some of the OpenOffice developers produce natural language transla-
tions of user manuals rather than code; their content gets packaged, tested and
linked to others just as code from developers gets treated. The implication is
that it must be as easy to create and support (via tools) f/oss activities around
documentation as it is around code.

Integrity of Content To be used correctly by a community, all forms of
content must be correctly packaged before distribution. This entails including
in the package a precise set of metadata, e.g., date, dependency information4,
license, etc. The purpose of the metadata is to ensure that the package can
be used (i.e., installed if it is a code package), modified and republished in
the community. A process should not permit the creation of a package if the
complete set of metadata is not provided.

Review of Content Community members should be able to search through
content using a range of properties. Currently, the need to know package names
is an unacceptable burden for both end users and developers. Content retrieval
should rather be built around a mechanism that enables actors so specify what
they need, e.g., content retrieval based on the license or on the configuration of
the client’s machine – an operation currently not possible.

Further, for any unit of content, it must be possible to determine its origin.
This information includes the original development source and also the evolu-
tion that the content underwent (versions, branching, etc.). For security, this
information must be indelibly bound to the content.

3.2.2 Community Guidelines

Projects live from the contributions made by members of their communities.
Managing a community implies being able to harness the competence that exists
in the community – this is the fundamental difference between successful and
less successful projects. Harnessing the potential of the community means that
the community support process is able to profile the community in the following
ways.

Contributor overview Project managers should have access to a complete
overview of their project’s community members. Information available should
include the number of participants in the project, the interests, knowledge and
competence of each actor, the responsibilities that each of them is assigned,
the achievements made by each member in the scope of the project, and thus

4This captures several types of relation between packages. Build (or source) dependencies
define the prerequisites for building and compiling a package. Binary dependencies specify the
prerequisites for installing a package. Configuration dependencies provide the prerequisites
for configuring a package once it is installed. Conflicts specify the incompatibilities between
packages at installation and configuration levels. Finally, replacements define the relations be-
tween packages that may replace each other’s functionality, e.g., the mail server sendmail [106]
can replace the mail server exim [29].

RR n° 6519

16 Pawlak & Bryce & Laurière

the quality of work done by each. This overview is useful to be able to locate
contributors based on interests of the community members, their competence
or experience. This is particularly the case for specialized tasks, e.g., starting a
sub-project that deals with encryption of in-memory data, or locating someone
to give tutorials on the project’s software in a town.

Workload overview. To avoid situations where community members are
overloaded, another aspect of community management is to visualize contributor
workload. For instance, an increase in software defects or manual tests to run
may give too much work to the set of contributors responsible for testing. Being
able to detect such situations can help to react fast by suggesting a reattribution
of tasks to contributors.

Role Management The purpose of a role is to define the operations as-
sociated with a given task, and also the security privileges and responsibilities
associated. In the context of a patching activity for instance, roles can be de-
fined to correspond to new patch submission and to patch committing. Working
with the role abstraction permits project managers to reason about the work
done, or to be done, in a project without being concerned about who is currently
attributed to these roles. It is for this reason that roles have been so widely
used in the security community [102]. Further, the mapping from contributors
to roles can be analyzed to ensure that contributors only have roles needed for
executing the tasks they have been assigned, and avoids the risk of forgotten
rights where users have privileges that should be revoked. This is the case since
a user’s rights are strictly defined by the roles he is attributed – removing a role
removes associated rights.

3.2.3 Process Guidelines

Figure 2: Example of production and distribution process

As suggested in Figure 2, the f/oss model can be viewed as a series of
production processes – documentation, development, testing, integration, pack-
aging, etc. These f/oss sub-processes are highly inter-dependent. For instance,
consider improving the distribution process with an elaborate search tool that

INRIA

Free and Open Source Software 17

allows users to specify search requests for content using natural language con-
structs. Integrating the tool is not simply an issue for the distribution process;
rather, it requires expressiveness metadata in the content package, and content
packagers can only add this. There are also workflow dependencies between pro-
cesses, e.g., content cannot be tested before it has been produced, it cannot be
packaged before a testing process certifies a given stability level, and it cannot
be distributed as long as it has not been properly packaged, etc.

The guidelines just presented in relation to content and community can only
be satisfied by a f/oss process. They entail complementing the production pro-
cesses with support processes, e.g., for efficient community management (e.g.,
cataloging the experience and interests of actors), measurement and metrics
management (i.e., to analyze the health of a project), and process management
(e.g., to identify what has to be done within a project, the recurring tasks, tasks
to be affected to community members, etc.). These support processes are often
neglected in f/oss projects, be it for lack of interest in them, the lack of grat-
ification that working on them provides, or due to a lack of knowledge about
their importance to the overall f/oss project outcome.

It is extremely difficult to have an exhaustive list of processes involved in
different f/oss projects, though some research work has been done on automatic
process extraction [59]. Extracting and formalizing the process would useful, as
it would permit the following list of functionalities.

Streamlining the f/oss Process is the effort of making project man-
agement more efficient. A formal description of a process is clearly useful for
this since project management would be able to chain processes, build work-
flows, measure them, and create rendezvous or synchronization points. The
description is also useful for pinpointing superfluous information flows and pro-
cess steps. The desire to optimize business processes in this way for instance
has led to process modeling and execution languages such as BPML [11] and
XLANG [116].

Know-how sharing While f/oss focuses on code sharing, a major stake
for f/oss is to go towards a situation where large projects can share their know-
how about process handling, measurement and evaluation with small projects.
Process formalization can help here since it is itself a knowledge artifact for
sharing: it has a concrete representation that can be exchanged and discussed
by project participants.

Process Dashboards provide operational information indicating how the
processes are being executed, showing if this execution is in-line with predictions
previously made, if unexpected events are happening, etc. Dashboards could
also support strategic decisions, by enabling projections and estimations of the
impact of decisions such as involving more contributors as testers or distributors.
Dashboards are a key element of all processes, and in f/oss they can encode
all information related to content and community (e.g., trace package evolution,
test results, contributor patch record, etc.). Thus, if a project depends on an
external activity such as a testing service, and if the latter lacks testers to
achieve its task, the dashboard should detect this and permit contributors to
be moved to the testing activity.

Building interoperable f/oss projects is important since projects can
rely on content produced in independent projects, e.g., Linux distributions. This
raises new challenges with regard to interoperability like information format
standards as well as standards for descriptions of processes employed by each

RR n° 6519

18 Pawlak & Bryce & Laurière

project. Interoperability is a process issue since a project needs clear guidelines
about working with external projects: i.e., a description of the steps to be taken,
the information and formats to be exchanged, the roles involved in project
cooperation, etc.

4 Existing Approaches and Solutions

The goal of this section is to review methods and projects that consider the pro-
cess view of f/oss projects. The focus of existing work has generally touched
two aspects of process management – community organization to a certain de-
gree that we look at in Subsection 4.1, and especially quality assessment, which
is the subject of Subsection 4.2. Finally, Subsection 4.3 looks at work on overall
process management.

4.1 F/oss Community Organization

A key characteristic of f/oss is the self-organization of the community. As most
f/oss projects rely on the work of volunteers, attracting people who contribute
their time and technical skills is of paramount importance, both in technical
and economic terms. Ensuring that contributors do not neglect their work
is another challenge. The Debian approach to this issue [72] employs several
approaches such as developer hints, email-based activity confirmation and a
quality assurance team. The project recommends preventive measures such
as explaining the problem to prospective volunteers, introducing maintainer
redundancy to limit the damage of inactive maintainers, and limiting the number
of low-interest packages.

To become a registered Debian developer, users have to pass through a pro-
cess of identity, intentions and technical skills verification [22]. This process
is partially run online through the evaluation of patches submitted, but to be
completed, it involves that a Debian maintainer signs the GnuPG key of the new
developer, which implies that people have to meet in person. Other projects can
have other ways of dealing with newcomers. For instance, FreeBSD has a disci-
plined group of core developers that approves source code committers; similarly,
the ports management group approves ports committers, and the same process
is applied for documentation. Once approved, new committers are assigned a
mentor who works on the same code tree as them and who is responsible for
everything their pupils do in the FreeBSD project. The role of the mentor is to
answer questions and to review patches submitted by the newcomers. There is
no real penalty if anything goes wrong, but it reflects badly on both the mentor
and the new committer – this is sufficient incentive to work well together. As
time passes, the mentor verification becomes less strict, but he is still responsible
for the committer assigned to him.

A good example of what can currently be called advanced community man-
agement is Mandriva’s Mandrivaclub [68]. This club is built around a Wiki
where community members can find all documentation they need, participate
in forums, gain access to a shared knowledge base, and chat with the Mandriva
team. However, as users’ motivation, interests or knowledge are not consid-
ered by this solution, advanced community management that helps users con-
tribute or helps the project find skilled contributors is not possible. There is still

INRIA

Free and Open Source Software 19

progress to be made to achieve the community management guidelines outlined
in the previous section.

An interesting approach to the issue of community management in f/oss is
to create a f/oss project whose goal is to facilitate community organization!
For instance, the SELF [105] project aims to provide a platform for educational
and training material. The first goal of the project is to provide information,
educational and training materials on Free Software and Open Standards pre-
sented in different languages and formats. The second goal is to offer a plat-
form for the evaluation, adaptation, creation and translation of this material.
The production process of the material is based on the organizational model of
Wikipedia [121]. The SELF Platform specifically embraces universities, schools
and training centers, f/oss communities, software companies, publishers and
government bodies.

The TEAM project (The Tightening knowledge sharing in distributed soft-
ware communities by applying semantic technologies) [113] is a European Union
funded project addressing the need for a knowledge sharing environment special-
izing in the distributed engineering and management of software systems. The
features of the environment include a semantic search tool for relevant knowl-
edge items, a metadata repository for acquired knowledge that incorporates a
tool to reason about its consistency, and a P2P Infrastructure for knowledge
exchange between Knowledge Desktops and software developers. An interesting
feature of TEAM is that it underlines the fact that the value of the f/oss com-
munity is not just the content produced, but the knowledge required to produce
it.

The SELF and TEAM research projects are funded by the European Union,
which shows that the need for f/oss community management support is widely
recognized at government level. In practice however, little effort is put into
community management by the majority of f/oss projects. Some projects keep
in touch with their community members through mailing lists, other choose more
advanced means to tackle the community management issue through tools like
Wikis, yet most small projects put no effort at all into this task.

4.2 F/OSS Quality Assessment

The f/oss community often considers the f/oss model to guarantee a high level
of quality by itself, with features such as source code availability supposedly
facilitating the detection of errors. In practice, studies confirm that quality can
only come from an organized community effort to ensure quality [58].

As the now abandoned ISO 8402 [54] norm defined, quality assurance deals
with planned and systematic activities for fulfilling requirements for software
quality. Project processes impact on the quality of a project and its software.
For instance, poor coordination between developers in the development process
can lead to latency in code production; this directly impacts on the frequency
of distribution releases and also on volunteers’ willingness to contribute if they
are annoyed by delays. To study quality improvement, orchestrated processes
involving tools and specialized metrics are needed both to measure quality and
to evaluate quality improvement techniques. A starting point for quality im-
provement is to examine the project’s defect reports; this approach was taken
in [75] for Debian with an analysis of over 7000 defect reports.

RR n° 6519

20 Pawlak & Bryce & Laurière

We break our presentation of QA into two parts. The first looks at the
biggest field of research and development – tools for QA of content produced
by a f/oss community. We then look at tools for measuring the quality of a
f/oss process itself.

4.2.1 QA of Content

Quality Assessment tools and frameworks organize tests, create test suites, ex-
ecute them and keep track of obtained results. Test suites are defined for a
specific domain and aim to achieve testing coverage for this domain.

As this subsection illustrates, the set of tools is quite large even if they do not
all include each of the functionalities we mentioned for QA. This is generally
due to each project developing its own tools, though some, like Bugzilla, are
used across projects. Despite the many tools, the general and emerging features
of tools are the same.� Automate testing as much as possible, and thus have to rely on fewer

volunteers than for development. This is important since testing is a far
less attractive activity than development.� Offer visualization tools to the community about the status of content
and test reports. This data must be understandable to all types of users,
e.g., developers, business analysts and end-users. The data also serves to
encourage volunteers for those packages that most need work.� The ultimate aim, from a process perspective, is that bugs and tests be
handled with the same rigor as code packages, with the emergence
and formalization of process activities to encourage and manage volun-
teers. Poor management of content QA activities leads, ultimately, to
poor quality content.

As the range of available open source testing tools is extremely wide, Open-
sourcetesting.org [90] provides users with a centralized point of departure. Each
tool is described by a profile and categorized accordingly to the family it be-
longs to. The website splits the tools in two main groups: testing tools and
unit testing tools. Each is further sub-categorized: testing category contains
tools for functional testing, performance testing, test management, bug track-
ing, link checking, security, while the unit testing category contains tools for
creating unit tests in different languages such as in Ada, C/C++, HTML, Java,
Javascript, .NET, Perl, PHP, Python, Ruby, SQL, Tcl and XML.

The broad choice of tools gives projects a lot of flexibility in dealing with
Quality Assessment. For instance Mandriva has its own Quality Assurance
Lab’s Contributor’s Corner [70] which aims at centralizing information about
how quality assurance is dealt with at Mandriva, so that the community can
participate in their public test campaigns and help them improve the quality
of the Mandriva Linux distribution. The lab tests, validates and certifies Man-
driva’s own and integrated software, as well as hardware compatibility. The tools
used are Bugzilla for detect management, its companion for testing, Testzilla,
as well as a database containing information on all of Mandriva’s RPMs, e.g.,
data on dependencies, changelogs, etc. Nonetheless, despite the broad choice of
tools, there are no standardization guiding projects in the choice of the tools
for handling quality.

INRIA

Free and Open Source Software 21

Linux Test Project (LTP) [66] is an example of a test suite. It is a joint
project started by SGI and maintained by IBM, whose goal is to deliver a
collection of tools for testing the Linux kernel and components that validate
the reliability, robustness, and stability of Linux. LTP also gathers test results
within a Linux Test Tools Table. This provides the f/oss community with a
comprehensive list of the tools used for testing the various components of Linux
as well as a code coverage analysis tool whose aim is to graphically identify
the areas in the kernel impacted by the execution of these tests. This enables
developers to use the LTP test suite more effectively and also to identify the
test contributions needed to improve the test suite.

Bugzilla [13] Bug-Tracking System is used to track bugs and code changes,
communicate with teammates, submit and review patches, and manage quality
assurance. Information is provided for each bug such as the bug reporter, the
version of software, platform, priority, product, component, OS, severity, ini-
tial state, the person the bug has been assigned to, the persons who have to
be informed of its creation, an url, a summary and description. Having peo-
ple assigned to bugs helps implement accountability. Registered user can leave
comments and propose patches. Bugzilla allows searching existing bugs by sta-
tus, product, keywords, but one of its most interesting features is its ability to
generate precise and complete tabular or graphical reports. Indeed, the user is
able to pick any data information existing in the bug database and use it as an
element of the report. Examples of usable data are the summary of the bugs, the
products that are concerned, the components of the products, their version, the
comments, the URL, keywords, bug status, resolution, severity, priority, con-
cerned hardware, related software, email addresses and number of bugs and bug
changes. The users define XYZ axis, put filters to the different data, and then
generate a report in tabular or graphical form (bar, line or pie charts). Thus any
information can be used as an indicator. Furthermore, Bugzilla offers the ca-
pability to build bug dependencies and to illustrate them using graphs or trees.
Thus bug blocks can be indicated and graphically represented. Bugzilla has also
a “voting” feature allowing users to vote for the importance of a bug. All users
can be given a certain number of votes and when voting, a user indicates that
the bug is of the highest importance and needs to be fixed rapidly. The number
of available votes per user for a given product depends on the administrator of
that product. Figure 3 gives an example of a chart generated by Mandriva’s
bugzilla instance mapping the number of active bugs (on February 21st, 2008)
to a severity level. Figure 4 shows an extract of a page for a Mandriva bug.

Fitnesse [30] is a lightweight, open-source framework aiming at enhancing
collaboration in software development. It allows Acceptance Tests to be col-
laboratively defined using a wiki. Acceptance tests differ from unit tests in the
sense that they define what the code should do from a functional and end user
point of view. Indeed, while unit tests provide testing at a smaller granularity
than acceptance tests do, and ensure that the code is correctly built, fitnesse test
cases define business logic. Acceptance test are expressed as tables containing
inputs and expected outputs and these tables are defined by the tester. They
are readable by customers and aim at ensuring that the application is doing
what it is meant to. Unit and acceptance tests are complementary and both
should be highlighted. Tests are created through the wiki and can be directly
run from the framework. This is done by triggering so called custom “fixtures”

RR n° 6519

22 Pawlak & Bryce & Laurière

Figure 3: Mandriva Linux bug severity levels

Figure 4: Mandriva Linux bug description

INRIA

Free and Open Source Software 23

which map customer language constructs to the implementation. Created tests
can be organized as test suites and contain cross-references to other test suites.

There are several testing frameworks used by f/oss projects but they do not
differ greatly in functionality. The key systems are Testopia [115] (a test case
management extension for Bugzilla), RTH [100] (a web-based tool designed to
manage requirements, tests, test results, and defects throughout the application
life cycle), Test Case Web (TCW) [112] (an online test management system built
with PHP and a SQL backend), Test Link [114] (an open source web based test
management and test execution system), Salome-TMF [101] (a test management
tool aiming to provide an open framework allowing automatic test execution, the
production of documents, and the management of defects/requirements using
the ISO 9646 [55] definition of tests), the Software Testing Automation Frame-
work (STAF) [109] (an open source, multi-platform, multi-language framework
designed around the idea of reusable components), the Open Office Automated
GUI Testing Project [89, 110] (a test framework with test scripts and an ap-
plication (VCL TestTool) to test almost the whole Open Office [88] application
automatically), and GNU/Linux Desktop Testing Project (GNU/LDTP) [65]
(aimed at producing high quality test automation framework and cutting-edge
tools that can be used to test GNU/Linux Desktop and improve it).

4.2.2 F/OSS Project Measurement

The previous section looked at testing tools for the basic commodity of f/oss
projects – content. Although less enshrined in the culture of f/oss projects,
measurement of the project itself is also an area of study. On the one hand,
there are models that deal with project measures. On the other, there are
projects that collect measures from open source projects, and as such facilitate
comparison and the definition of new tools for project measurement.

Project Measures Business Readiness Rating (BRR) [12, 87] is being pro-
posed as a new standard model for rating open source software. It is intended
to enable the entire community (enterprise adopters and developers) to rate
software in an open and standardized way. The calculation employed in the
Business Readiness Rating model weighs the factors that have proved to be
most important for a successful deployment of open source software in specific
settings: functionality, quality, performance, support, community size, secu-
rity, and others. The Business Readiness Rating model is open and flexible,
yet standardized. This allows for a broad implementation of a systematic and
transparent assessment of both open source software and proprietary software.
Figure 5 shows an extract of rating data for JBoss.

Navica’s Open Source Maturity Model (OSMM) [80] is designed to be a
lightweight process that can evaluate an open source product’s maturity in a
short time (up to two weeks). It assesses the maturity level of all key product el-
ements such as software, support, documentation, training, product integration
and professional services. As output, OSMM provides a numeric score between
0 and 100 that may be compared against recommended levels for different pur-
poses; for instance, the measure may be interpreted differently according to
whether an organization is an early adopter or a pragmatic user of IT.

Capgemini’s Open Source Maturity Model (OSMM) [35] describes how an
Open Source product should be assessed to ensure that the product meets the

RR n° 6519

24 Pawlak & Bryce & Laurière

Figure 5: Extract of Business Rating Model Data

IT challenges a company faces. The OSMM accomplishes this by linking an
extensive product analysis with a thorough review of the company and its IT
issues.

Information Availability The relative accessibility of information about
open source software makes it an interesting target for quantitative analysis to
discover some hidden properties and trends of this software development model.
FLOSSMole [56, 33] (Free/Libre Open Source Software Mole and formerly OS-
SMole) is a data mining project that aims at providing data and reports about
existing f/oss projects and teams. A particularity of FLOSSMole is that it
promotes compatibility both across sources of f/oss data and across research
groups. The project gathers, shares and stores comparable data and analy-
sis of f/oss development for academic research. Having such a collaborative
and compatible data and analysis repository enables reproducible, extendable
and comparable research on f/oss. The project provides scripts for analyzing
the raw data and provides some tools enabling users to gather their own data.
The raw data used by FLOSSMole is donated from other research teams and
projects to create common frames of communication. Collected data includes
page views, downloads, bandwidth consumed by downloading, and number of
comments posted, etc.

The main objective of the FLOSSMetrics (Free/Libre Open Source Software
Metrics) Project is to construct, publish and analyze a large scale database
with information and metrics about f/oss development coming from several
thousands of software projects, using existing methodologies, and tools already
developed [32]. The targets of the projects are to identify and evaluate sources

INRIA

Free and Open Source Software 25

of data and develop a comprehensive database structure, built upon the results
of the CALIBRE Project [15].

Ways in which properties of f/oss can be acquired have been described
in [120]. This research analyzed the largest open source hosting facility – Source-
Forge – to obtain quantitative information about existing projects. It focused
on aspects such as project activity, average number of developers per project,
number of language translations per project, etc. Cross-comparisons were done
with the results provided by FLOSSMole on the following aspects: number of
developers, intended audience, usage of licenses, targeted operating systems,
language of implementation, declared development status, registration history
and declared topics. Among its conclusions, the analysis showed that the main
target audience for f/oss projects are developers. While fostering developer in-
volvement, this sidesteps the question of growing user communities. Further, the
analysis showed that GPL licensing is the most common in the f/oss world. A
last interesting conclusion of this analysis is that a vast majority of open source
projects declares their development status at the “unstable” level or even in the
planning phase. As only a minority of f/oss projects ever make it to the level
of being popular, and thus successful, this raises questions about the reasons
that make a f/oss project successful or not.

In [51], the authors use publicly available storage (source code snapshots,
CVS repositories, etc), as a source for analyzing and characterizing the evo-
lution of f/oss projects. Since the base information is public, and the tools
used are readily available, other groups can easily reproduce and review the re-
sults. Obtained characterization is then used as the basis for qualitative analysis
including correlations and comparative studies of projects.

Ohloh.net [83] is a resource for open source intelligence on thousands of
open source projects. Ohloh collects software metrics from a variety of sources
including the project’s source code and the software development infrastructure
used by the project’s development team. It provides information about the
developers involved in the project, showing details about their activity (i.e. the
frequency on contributions), the languages used by the project, and the licenses
under which the source code is released. A codebase history shows the evolution
of the source code of a project. It specifically shows the total size of a project’s
source code over time. This graph reveals at a glance how long the project has
been around, and the relative pace of development over time. It’s generally a
good sign to see sustained, constant activity over a long period of time. This
means that people are continually updating it (fixing bugs and/or improving
features), and that the project has staying power. The graph of Figure 6 for
instance was generated by the Ohloh.net site.

Towards Tool Support Such use of publicly available data is also made
by different tools for analyzing the f/oss development process. For instance,
CVSAnalY [50] is a tool that extracts and manages statistical information out of
the activity that happens in a control version repository such as CVS and most
recently Subversion. It parses repository logs and transforms them in either
information exchange XML and database SQL formats. It has a web interface
- called CVSAnalYweb - where the results can be retrieved and analyzed in
an easy way. Another example of such an analysis tool is DrJones [49]. This
software supports a software archeology analysis on software that is stored in a

RR n° 6519

26 Pawlak & Bryce & Laurière

Figure 6: Ohloh comparison of Gentoo and Debian Linux activity (February
22nd, 2008)

CVS or Subversion versioning repository. DrJones analyzes how old the software
system is on a per-line basis and extracts figures and indexes that make it
possible to identify how ‘old’ the software is, how much it has been maintained
and how much effort it may take to maintain it in the future. Dr. Jones
counts the SLOC, the number of files, the number of authors and gathers file
timestamps to evaluate occurred changes. A list of other tools used to extract
information about the f/oss development process are listed and made available
on the Libresoft website [63].

4.3 F/OSS Process Management

While many project managers and developers are already familiar, thanks to
their experience or to the literature [119], with the importance of f/oss pro-
cesses, there is no consensus on what a f/oss process is composed of, nor how
it should be implemented in some project environment.

4.3.1 General Process Management

Numerous process-related standards are available for defining and executing
processes. A process in the field of business information systems is a set of
activities that aim to achieve some (business) objective. Activities can involve
people interaction, and several activities may have to be coordinated – or or-
chestrated – for the business objective to be met. Existing work on this topic
can be divided into work on what needs to be expressed, how activities are
expressed, and an examination of accrued benefits.

On the what of process modeling, an overview of how f/oss projects are
organized is presented in [28]. The paper explains related terminology and

INRIA

Free and Open Source Software 27

overviews key processes. The processes include decision-making within the
project management, accountability of bugs to packages, communication among
developers, generation of awareness about the project in the software commu-
nity, managing source code, testing and release management.

On the how of process modeling, the Business Process Modeling Language
(BPML) [11] is a meta-language for the modeling of business processes, like XML
is a meta-language for the modeling of business data. BPML provides an ab-
stracted execution model for collaborative and transactional business processes.
It has been published by Business Process Management Initiative (BPMI) [10]
as a standard providing a general approach to express business processes in
organizations. BPML is a rival language with other standards such as IBM’s
WSFL (Web Services Flow Language) [62] and Microsoft’s XLANG [116] (Web
Services for Business Process Design).

JBoss jBPM [57] is a platform for multiple process languages supporting
workflow, BPM, and process orchestration. JBPM enables the creation of busi-
ness processes that coordinate people, applications and services. The JBoss
jBPM process designer graphically represents the business process steps to fa-
cilitate a strong link between the business analyst and the technical developer,
e.g., Figure 7. Other related systems include ObjectWeb Bonita [9], Apache
Agila [4] and the Apache Open For Business Project [7].

In [103] the authors highlight issues in the modeling of techno-social pro-
cesses found in f/oss development. They focus on the modeling of Apache
Web server and Mozilla browser project processes. As previously existing de-
scriptions of these processes are informal and narrative, they allow no analy-
sis, visualization, computational enactment, reuse or comparison. The authors
use the rich pictures [77] method for discovering f/oss processes to organize,
associate observed development roles, tools and tasks. To provide a way to
understand and perform these processes, the use of PML (Process Modeling
Language) [82] is proposed.

Among the benefits of modeling Open Source processes, the authors in [103]
cite the help to new contributors for the enactment of processes. Other benefits
include the enabling of continuous process improvement techniques, the provi-
sion of a coordination resource that can be used by distributed developers to
synchronize their activities, roles and artifacts. Recent progress in the develop-
ment of automated mechanisms to support and streamline the process discovery
effort has been then described by the authors in [59].

The impact of software process maturity on Free Software project success
has been studied in [73] through statistical analysis of 40 successful and 40
unsuccessful, randomly chosen, projects. The results show that the maturity of
some processes are linked to the success of a project. This study identified the
importance of the use of version control tools, effective communication through
the deployment of mailing lists, and found several effective strategies related
to testing. The identification of processes employed by successful free software
projects is of substantial value to practitioners since they give an indication of
the areas deserving attention.

The EU EDOS Project (Environment for the development and Distribution
of Open Source software) [1, 93] developed a Process Reference Model (PRM)
to describe all artifacts of the f/oss process. The goal of the PRM is to define
the key content and community artifacts of f/oss and to formalize the relations
between these. The model allows integrity rules to be defined on all artifacts,

RR n° 6519

28 Pawlak & Bryce & Laurière

Figure 7: Process Description from JBoss

INRIA

Free and Open Source Software 29

e.g., that packages must have licenses or that developers cannot be testers for
the same package. The PRM can be used in several ways. For instance, it can
serve as a basis for comparing the processes used by various F/OSS distributor.
It can also serve as the design of an information system for a new project.
This information system would act as a real-time dashboard for the project and
ensure that the integrity rules are respected for all F/OSS operations.

Perhaps one of the most important process efforts of recent times is OpenUP
– the Eclipse Process Framework. This is built over OMG’s SPEM (Software
Process Engineering Meta-model, version 2). The meta-model expresses core
engineering artifacts such as tools, white-papers, guidelines, estimates, etc. The
importance of OpenUP is that the model is supported by the Eclipse community,
and is thus a major step in the standardization of process modeling in the
open source domain. OpenUP does not model all aspects required for f/oss
processes, notably community profiling and project interoperability. However,
the OpenUP tools are designed to be customizable, so it may be possible to
build community management elements over OpenUP.

4.3.2 Support for Distribution and Production Processes

The goal of these tools is to aid f/oss production processes. They range from
basic tools like desktop development environments, like Eclipse, and build tools
like Apache Ant [5], to wholesale collaborative environments like Maven.

Maven [6] is a software project management and comprehension tool. Based
on the concept of a project object model (POM), Maven can manage a project’s
build, reporting and documentation from a central project description. Maven
was originally started as an attempt to simplify the build processes in the
Jakarta Turbine project [8]. There were several projects each with their own
Ant build files, that were all slightly different, and whose JARs were checked
into CVS. The motivation for Maven was a standard way to build the projects, a
clear definition of published project information and a mechanism for JAR shar-
ing across projects. There are several areas of concern that Maven addresses:
making the build process easy, providing a uniform build system, providing
quality project information, providing guidelines for best practices development
and allowing transparent migration to new features.

Amos [16], is EU funded project that aimed at making it easier to build
software based on the composition of Open Source Code. One of the difficulties
in this case is finding the right pieces of code, a task that usually requires deep
knowledge of many software products. The idea behind Amos is to use high
level descriptions of code assets, and perform a search using these descriptions
to find the set of packages which best (according to some measure) fulfills user
requirements. The idea has been materialized in a tool, composed of a user
interface, a database of descriptions, and a matching engine that interacts both
with the user (through the interface) and with the database where descriptions
are stored.

QSOS is a method for qualifying, comparing and selecting f/oss in an ob-
jective, traceable and argued way [95]. It relies on interdependent and iterative
steps aimed at generating software ID cards and evaluation sheets that sup-
port the selection of the best solution in a given context. This method defines
frames of reference based on licenses, communities, functional grids that help
evaluating software in terms of functional coverage and risk for both users and

RR n° 6519

30 Pawlak & Bryce & Laurière

service providers. The selection and comparison of software is then done in the
scope of an evaluation context. QSOS aims at improving software description
and facilitating selection.

The OpenSuse build service [91] provides a complete distribution develop-
ment platform to create Linux distributions based on SUSE Linux. Its open
interfaces allow external services to interact with the build service and use its
resources. A server infrastructure hosts all sources, provides a build system to
create packages, provides a download and mirror infrastructure for distribut-
ing packages and serves as the communication framework. Interaction with
the build service can be done through an open API, a web interface or via a
command line. The OpenSuse service aims at connecting open source commu-
nities, providing a means to develop distributions while controlling issues like
dependencies.

Red Hat Network (RHN) [124] is an architecture that essentially focuses on
code distribution. Indeed, RHN is used to download distribution ISOs, patches
and software packages as well as to update systems based on user customization.
The network is accessible through an Access API. The key abstraction RHN
provides is the notion of channels, which corresponds to a set of packages. Every
client machine that is connected to a specific channel can be updated when the
content of the channel changes. A base channel corresponds to the core system
and other types of channels are built on top of it. For instance, developers
to distribute their work use a development channel. A Testing & QA channel
is used for bug reporting. The architecture defines actions for each channel.
An example action could be to remove packages whenever a new version is
available, or to rollback to a previous version of the system when a compilation
error occurs.

Figure 8: Red Hat Network API

4.3.3 F/oss Interoperability

Interoperability is the ability for a system or a product to work with other
systems or products without special effort on the part of the user. Increasingly,
enterprises are cooperating with other enterprises and competitiveness is largely
determined by the ability to seamlessly interoperate with others. As such, f/oss
process improvement is directly bound to the ability of projects to interoperate.

INRIA

Free and Open Source Software 31

Thus this issue also needs to be considered in the f/oss context, especially
given the multitude of f/oss projects in existence.

Some projects like SourceForge [107] or GForge [48] offer a whole devel-
opment infrastructure for f/oss development that provides a meeting point
for producers and users where they can exchange information. They classify
projects and propose tools to browse projects by properties such as develop-
ment status, intended audience, license, translations, etc. However, existing
services only provide information about the projects using them. The fresh-
meat [45] website tries to tackle some of these issues by providing a central index
for f/oss projects enabling them to disseminate information about themselves,
and the freshports [46] website lets people browse the entire FreeBSD [43] ports
collection, it provides cross references, charts, graphs and links. However, these
solutions only allow sparse interaction between projects and potential users.

The Flink group [31] has defined a Linux ontology and aims at demonstrating
the benefits that result from formalizing knowledge about the Linux operating
system. In [52], the authors discuss the application of ontology-based knowledge
engineering to Linux. Various possible applications such as package management
or information search are discussed which would all benefit from a comprehensive
ontology of the domain. The use of ontology to describe Linux provides a
common ground of understanding.

The Friend of a Friend (FOAF) [34] project is creating a Web of machine-
readable pages describing people, the links between them and the things they
create and do. It is a community driven effort to define an RDF vocabulary
for expressing metadata about people, and their interests, relationships and
activities. FOAF is tackling head-on the wider Semantic Web goal of creating
a machine processable web of data. It facilitates the creation of the Semantic
Web equivalent of the archetypal personal homepage: My name is Leigh, this is
a picture of me, I’m interested in XML, and here are some links to my friends.
Just like the HTML version, FOAF documents can be linked together to form
a web of data, with well-defined semantics.

DOAP [24] is a project to create an XML/RDF vocabulary to describe open
source projects. This project aims at providing an internationalizable descrip-
tion of a software project and its associated resources, including participants and
Web resources as RDF schemas. The project provides basic tools to enable the
easy creation and consumption of such descriptions in all the popular program-
ming languages and ensures interoperability with other popular Web metadata
projects (RSS, FOAF, Dublin Core). Finally, DOAP vocabulary is extensible
for specialist purposes. Note that DOAP does not aim at handling software
releases, or at planning data internal to the project such as task assignments or
milestones.

QualiPSo [96] is a European IP project working on open source process im-
provement. It’s goal is to investigate and implement development processes
through an open forge, including business models, methods and tools to fos-
ter the wide adoption of Open Source Software by European organizations
from ITC players to end users. It focuses on aspects such as license man-
agement, documentation and information management, and interoperability.
Unlike other projects focusing on the technical or semantic aspect of interoper-
ability, QualiPSo aims at handling all the aspects of interoperability mentioned
above. It will provide a model for information contained in f/oss including
elements such as project, participants, tasks and planning, requirements, bugs,

RR n° 6519

32 Pawlak & Bryce & Laurière

documents, new functionality proposals, source code, project versions, mail,
forums, meetings, source code management.

5 Conclusion: A fragmented World

As seen, organization, process management, interoperability and production
methods are hot topics and they all contribute to process improvement. Nonethe-
less, no existing approach or tool provides consistent support for complete f/oss
process support, e.g., to conduct streamlining. The second major weakness of
current approaches is that community management is generally weak; no system
achieves the type of functionality requirements that we outline for community
management in Section 3.

The same weaknesses exist at the level of tool support. Tools generally
address specific activities of the f/oss process, without being integrated in
a large picture. Examples include defect management tools (Bugzilla [13]),
testing tools (Bugzilla test runner [14], Fitnesse [30], Salome [101]) and other
tools (SourceForge) [107], GForge [48], Alioth [3], Libresource [64]) providing an
integrated solutions for managing f/oss projects. The dashboards provided by
some projects [26, 44] exemplify this issue as they focus on specific information
that cannot be reused across projects.

We have seen that f/oss tools for process and workflow management exist,
however these tools are often designed for the enterprise environment, and do
not consider the specific requirements of the f/oss environment. Further these
tools imply a machinery which while being mandatory in the enterprise context
and very useful in both enterprise and f/oss contexts, might be difficult to
implement in an open environment.

In such a context we can argue that the issue of f/oss process improvement
is left open. A transversal approach to the process management issue is required.
It has to offer means to handle project as a whole considering involved activities,
their content, community, and allowing reasoning about f/oss processes, tasks,
metrics, etc. in a distributed context in order to enable f/oss process stream-
lining. On the bright side, the technological bricks of the solution exist in the
public domain and through the efforts of numerous research and development
projects.

References

[1] S. Abiteboul, R. D. Cosmo, S. Fermigier, S. Lauriere, and al. Edos: En-
vironment for the development and distribution of open source software.
In Proceedings of the First International Conference on Open Source Sys-
tems, Genova, Italy, July 2005.

[2] S. Abiteboul, I. Dar, R. Pop, G. Vasile, D. Vodislav, and N. Preda. Large
scale P2P distribution of open-source software. In C. Koch, J. Gehrke,
M. N. Garofalakis, D. Srivastava, K. Aberer, A. Deshpande, D. Florescu,
C. Y. Chan, V. Ganti, C.-C. Kanne, W. Klas, and E. J. Neuhold, editors,
VLDB, pages 1390–1393. ACM, 2007.

[3] Alioth. http://alioth.debian.org/, June 2006.

INRIA

http://alioth.debian.org/

Free and Open Source Software 33

[4] Apache agila. http://wiki.apache.org/agila/, Jan. 2007.

[5] Apache ant: build tool. http://ant.apache.org/, October 2006.

[6] Apache Project. Apache maven: software project management and com-
prehension tool. http://maven.apache.org/, October 2006.

[7] Apache Project. Apache open for business (OFBiz).
http://ofbiz.apache.org/, October 2006.

[8] Apache Project. Jakarta turbine project.
http://jakarta.apache.org/turbine/, Jan. 2007.

[9] Objectweb bonita. http://wiki.bonita.objectweb.org/xwiki/bin/view/Main/WebHome,
Jan. 2007.

[10] Business process management initiative (BPMI).
http://www.bpmi.org/, Dec. 2006.

[11] Business process management language 1.0 (BPML).
http://www.ebpml.org/bpml_1_0_june_02.htm, Jan. 2007.

[12] Business readiness rating - a framework for evaluating open source soft-
ware. http://www.openbrr.org/wiki/index.php/Home, Jan. 2007.

[13] Bugzilla. http://www.bugzilla.org/, June 2006.

[14] Bugzilla test runner. http://www.willowriver.net/products/testrunner.php,
June 2006.

[15] Co-ordination action for libre software engineering for open de-
velopment platforms for software and services (CALIBRE) project.
http://www.calibre.ie/, September 2006.

[16] M. Carro. The amos project: An approach to reusing open source code. In
Proceedings of the CBD 2002 / ITCLS 2002 CoLogNet Joint Workshop,
pages 59–70. Facultad de Informatica, September 2002.

[17] B. Cohen. Incentives Build Robustness in BitTorrent. In Proceedings of
the Workshop on Economics of Peer-to-Peer Systems, Berkeley, CA, USA,
2003.

[18] Compiere. http://www.compiere.org/product/index.html, October
2006.

[19] Common public license (CPL) - v1.0.
http://www.eclipse.org/legal/cplv10.html, September 2006.

[20] Concurrent versions system (CVS). http://www.nongnu.org/cvs/, Oc-
tober 2006.

[21] Debian Project. Debian developer locations.
http://www.debian.org/devel/developers.loc, October 2006.

[22] Debian Project. Debian new maintainer’s guide.
http://www.debian.org/doc/maint-guide/, October 2006.

RR n° 6519

http://wiki.apache.org/agila/
http://ant.apache.org/
http://maven.apache.org/
http://ofbiz.apache.org/
http://jakarta.apache.org/turbine/
http://wiki.bonita.objectweb.org/xwiki/bin/view/Main/WebHome
http://www.bpmi.org/
http://www.ebpml.org/bpml_1_0_june_02.htm
http://www.openbrr.org/wiki/index.php/Home
http://www.bugzilla.org/
http://www.willowriver.net/products/testrunner.php
http://www.calibre.ie/
http://www.compiere.org/product/index.html
http://www.eclipse.org/legal/cplv10.html
http://www.nongnu.org/cvs/
http://www.debian.org/devel/developers.loc
http://www.debian.org/doc/maint-guide/

34 Pawlak & Bryce & Laurière

[23] Debian Project. Debian social contract.
http://www.debian.org/social contract, October 2006.

[24] Description of a project (DOAP). http://usefulinc.com/doap/, Jan.
2007.

[25] Eclipse project. http://www.eclipse.org/, September 2006.

[26] Eclipse Project. Eclipse project dashboards.
http://www.eclipse.org/projects/dashboard/, June 2006.

[27] EDOS WP2 Team. Deliverable d2.1.: Report on Software Management
Dependencies. Technical report, EDOS Project, 2005.

[28] J. Erenkrantz and R. Taylor. Supporting distributed and decentralized
projects: Drawing lessonsfrom the open source community. In Proceed-
ings of 1st Workshop on Open Source in an Industrial Context, Anaheim,
California., October 2003.

[29] Exim internet mailer. http://www.exim.org/, Dec. 2006.

[30] Fitnesse. http://www.fitnesse.org, June 2006.

[31] Formalized linux knowledge (Flink). http://flink.dcc.ufba.br/en/,
June 2006.

[32] FLOSSMetrics. Free/Libre Open Source Software Metrics (FLOSSMet-
rics) Project. http://www.flossmetrics.org/, Jan. 2007.

[33] FLOSSMole. Free/Libre Open Source Software Mole (FLOSSMole).
http://ossmole.sourceforge.net/, Feb. 2007.

[34] Friend of a friend (FOAF). http://www.foaf-project.org/, Jan. 2007.

[35] C. W. Frans-Willem Duijnhouwer. Open source maturity model
(OMMM). Technical report, Capgemini, 2003.

[36] Free Software Foundation. Gnu is not unix (GNU) operating system.
http://www.gnu.org/.

[37] Free Software Foundation. Overview of the gnu project.
http://www.gnu.ai.mit.edu/gnu/gnu-history.html, December
1998.

[38] Free Software Foundation. The free software definition.
http://www.gnu.org/philosophy/free-sw.html, October 2006.

[39] Free software foundation (FSF). http://www.fsf.org/, October 2006.

[40] Free Software Foundation. Free software philosophy.
http://www.gnu.org/philosophy/, October 2006.

[41] Free Software Foundation. Free software: Various licenses and comments
about them. http://www.gnu.org/licenses/license-list.html, Oc-
tober 2006.

INRIA

http://usefulinc.com/doap/
http://www.eclipse.org/
http://www.eclipse.org/projects/dashboard/
http://www.exim.org/
http://www.fitnesse.org
http://flink.dcc.ufba.br/en/
http://www.flossmetrics.org/
http://ossmole.sourceforge.net/
http://www.foaf-project.org/
http://www.gnu.org/
http://www.gnu.ai.mit.edu/gnu/gnu-history.html
http://www.gnu.org/philosophy/free-sw.html
http://www.fsf.org/
http://www.gnu.org/philosophy/
http://www.gnu.org/licenses/license-list.html

Free and Open Source Software 35

[42] Free Software Foundation. Gnu general public license.
http://www.gnu.org/copyleft/gpl.html, October 2006.

[43] Freebsd project. http://www.freebsd.org/, September 2006.

[44] FreeBSD Project. Freebsd dashboards.
http://people.freebsd.org/~bsd/prstats/, June 2006.

[45] freshmeat.net. http://www.freshmeat.net/, October 2006.

[46] Freshports - the place for ports. http://www.freshports.org/, October
2006.

[47] Gaim linux/unix instant messenger client.
http://gaim.sourceforge.net/, October 2006.

[48] Gforge. http://gforge.org/, June 2006.

[49] J. M. G.-B. Gregorio Robles and I. Herraiz. An empirical approach to
software archeology. In 21st IEEE International Conference On Software
Maintenance, Sept. 2005.

[50] S. K. Gregorio Robles and J. M. Gonzlez-Barahona. Remote analysis and
measurement of libre software systems by means of the cvsanaly tool. In
Proceedings of the 2nd ICSE Workshop on Remote Analysis and Measure-
ment of Software Systems (RAMSS ’04). 26th International Conference
on Software Engineering (Edinburgh, Scotland), May 2004.

[51] J. C.-G. V. M.-O. Gregorio Robles-Martnez, Jess M. Gonzlez-Barahona
and L. Rodero-Merino. Studying the evolution of libre software projects
using publicly available data. In Proceedings of the 3rd Workshop on
Open Source Software Engineering at the 25th International Conference
on Software Engineering, May 2003.

[52] D. A. Guillaume Barreau. Semantic linux: a fertile ground for the semantic
web, Apr. 2005.

[53] Idabc open source observatory. http://europa.eu.int/idabc/en/chapter/452/,
September 2006.

[54] ISO. 8402:1994- Quality management and quality assurance – Vocabulary.
http://www.iso.org/iso/en/, Dec. 2000.

[55] ISO/IEC. 9646-7:1995 - Information technology – Open Systems
Interconnection – Conformance testing methodology and framework.
http://www.iso.org/iso/en/, June 2001.

[56] K. C. James Howison, Megan Conklin. Ossmole: A collaborative reposi-
tory for floss research data and analyses. In Proceedings of the First In-
ternational Conference on Open SourceSystems, Genova, Italy, July 2005.

[57] Jboss jbpm. http://www.jboss.com/products/jbpm/, Jan. 2007.

[58] N. J. Jean-Michel Dalle. Open-source vs. proprietary software. Jan. 2002.

RR n° 6519

http://www.gnu.org/copyleft/gpl.html
http://www.freebsd.org/
http://people.freebsd.org/~bsd/prstats/
http://www.freshmeat.net/
http://www.freshports.org/
http://gaim.sourceforge.net/
http://gforge.org/
http://europa.eu.int/idabc/en/chapter/452/
http://www.iso.org/iso/en/
http://www.iso.org/iso/en/
http://www.jboss.com/products/jbpm/

36 Pawlak & Bryce & Laurière

[59] C. Jensen and W. Scacchi. Automating the discovery and modeling of
open source software development process. In 3rd. Workshop on Open
Source Software Engineering, 25th. Intern. Conf. Software Engineering,
Portland, OR, may 2003.

[60] Project jxta. http://www.jxta.org/, September 2006.

[61] A. M. S. Laurent. Understanding Open Source and Free Software Licens-
ing. O’Reily & Associates, Inc., 1 edition, August 2004.

[62] F. Leymann. Web services flow language (WSFL 1.0). Technical report,
IBM Software Group, 2001.

[63] Libresoft/GSyC. Libre software engineering tools.
http://libresoft.urjc.es/Tools/index_html, Mar 2007.

[64] Libresource. http://dev.libresource.org/, June 2006.

[65] Linux desktop testing project. http://ldtp.freedesktop.org/wiki/,
Jan. 2007.

[66] Linux test project. http://ltp.sourceforge.net/, Jan. 2007.

[67] Malaysian public sector open source software initiative.
http://opensource.mampu.gov.my, September 2006.

[68] Mandriva. Mandriva club. http://club.mandriva.com/, Dec. 2006.

[69] Mandriva. Mandriva Linux package statistics. http://mandriva.edos-
project.org/xwiki/bin/view/Packages/PackageStatistics, Oct 2006.

[70] Mandriva. Mandriva quality assurance lab’s contributor’s corner.
http://qa.mandriva.com/twiki/bin/view/Main/QaContributorsCorner,
Jan. 2007.

[71] S. M. Maurer, A. Rai, and A. Sali. Finding cures for tropical diseases: Is
open source an answer? PLoS Med, 1(3), December 2004.

[72] M. Michlmayr. Managing volunteer activity in free software projects.
In Proceedings of the 2004 USENIX Annual Technical Conference,
FREENIX Track, pages 93–102, Boston, USA, 2004.

[73] M. Michlmayr. Software process maturity and the success of free software
projects. In K. Zieliski and T. Szmuc, editors, Software Engineering:
Evolution and Emerging Technologies, pages 3–14, Krakw, Poland, 2005.
IOS Press.

[74] M. Michlmayr, F. Hunt, and D. Probert. Quality practices and problems
in free software projects. In M. Scotto and G. Succi, editors, Proceedings of
the First International Conference on Open Source Systems, pages 24–28,
Genova, Italy, 2005.

[75] M. Michlmayr and A. Senyard. A statistical analysis of defects in debian
and strategies for improving quality in free software projects. In J. Bitzer
and P. J. H. Schrder, editors, The Economics of Open Source Software
Development, pages 131–148, Amsterdam, The Netherlands, 2006. Else-
vier.

INRIA

http://www.jxta.org/
http://libresoft.urjc.es/Tools/index_html
http://dev.libresource.org/
http://ldtp.freedesktop.org/wiki/
http://ltp.sourceforge.net/
http://opensource.mampu.gov.my
http://club.mandriva.com/
http://qa.mandriva.com/twiki/bin/view/Main/QaContributorsCorner

Free and Open Source Software 37

[76] Microsoft. Microsoft shared source initiative.
http://www.microsoft.com/resources/sharedsource/, Jan. 2007.

[77] A. Monk and S. Howard. The rich picture: A tool for reasoning about
work context. March-April 1998.

[78] Mozilla project. http://www.mozilla.org/, September 2006.

[79] B. Munos. Can open-source r&d reinvigorate drug research? Technical
report, Eli Lilly & Co., September 2006.

[80] Navica Inc. The open source maturity model (OSMM).
http://www.navicasoft.com/pages/osmmoverview.htm, Jan. 2007.

[81] Neogia. http://neogia.labs.libre-entreprise.org/index.html, Oc-
tober 2006.

[82] J. Noll and W. Scacchi. Specifying process-oriented hypertext for orga-
nizational computing. Network and Computer Application, 24(1):39–61,
2001.

[83] Ohloh.net. Ohloh.net Project. http://www.ohloh.net/, Jan. 2007.

[84] Open Source Initiative. Approved licenses.
http://www.opensource.org/licenses/, October 2006.

[85] Open Source Initiative. Open source definition.
http://www.opensource.org/docs/definition.php, October 2006.

[86] Open source initiative (OSI). http://www.opensource.org/, October
2006.

[87] OpenBRR. Business readiness rating for open source - brr 2005 rfc 1.
Technical report, www.openbrr.org, 2005.

[88] Openoffice.org. http://www.openoffice.org/, September 2006.

[89] OpenOffice.org. Open office automated gui testing project.
http://qa.openoffice.org/qatesttool/, Jan. 2007.

[90] Opensourcetesting.org. http://www.opensourcetesting.org/, Jan.
2007.

[91] OpenSuse. Opensuse build service. http://en.opensuse.org/Build_Service,
June 2006.

[92] Opentaps. http://www.sequoiaerp.org, October 2006.

[93] M. Pawlak and C. Bryce. A reference model for f/oss project management.
In FOSDEM, 2007.

[94] B. Perens. The open source definition. In Open Sources: Voices from the
Open Source Revolution. O’Reily & Associates, Inc., 1 edition, January
1999.

[95] Method for qualification and selection of open source software (QSOS)
project. http://www.qsos.org/, June 2006.

RR n° 6519

http://www.microsoft.com/resources/sharedsource/
http://www.mozilla.org/
http://www.navicasoft.com/pages/osmmoverview.htm
http://neogia.labs.libre-entreprise.org/index.html
http://www.ohloh.net/
http://www.opensource.org/licenses/
http://www.opensource.org/docs/definition.php
http://www.opensource.org/
http://www.openoffice.org/
http://qa.openoffice.org/qatesttool/
http://www.opensourcetesting.org/
http://en.opensuse.org/Build_Service
http://www.sequoiaerp.org
http://www.qsos.org/

38 Pawlak & Bryce & Laurière

[96] Quality platform for open source software (QualiPSo) project.
http://www.objectweb.org/phorum/download.php/16,271/QualiPSo_PM_Oct4.pdf,
Jan. 2007.

[97] E. S. Raymond. The cathedral and the bazaar.
http://www.openresources.com/documents/cathedral-bazaar/,
Aug. 1998.

[98] G. Robles, J. M. Gonzalez-Barahona, and M. Michlmayr. Evolution of
volunteer participation in libre software projects: Evidence from Debian.
In M. Scotto and G. Succi, editors, Proceedings of the First International
Conference on Open Source Systems, pages 100–107, Genova, Italy, 2005.

[99] G. Robles, J. M. Gonzalez-Barahona, M. Michlmayr, and J. J. Amor. Min-
ing large software compilations over time: Another perspective of software
evolution. In Proceedings of the International Workshop on Mining Soft-
ware Repositories (MSR 2006), Shanghai, China, 2006.

[100] Rth. http://rth-is-quality.com/, Jan. 2007.

[101] Salome test management tool. https://wiki.objectweb.org/salome-tmf/,
June 2006.

[102] R. S. Sandhu. Role-based access control. Advances in Computers, 46:238–
287, 1998.

[103] W. Scacchi. Issues and experiences in modeling open source software
processes. In 3rd. Workshop on Open Source Software Engineering, 25th.
Intern. Conf. Software Engineering, Portland, OR, may 2003.

[104] Science commons: Accelerating the scientific research cycle.
http://sciencecommons.org/, November 2006.

[105] Science, education and learning in freedom (SELF) project.
http://www.selfproject.eu/, Jan. 2007.

[106] Sendmail smtp server. http://www.sendmail.org/, Dec. 2006.

[107] Sourceforge. http://sourceforge.net/, June 2006.

[108] Sourcetap. http://sourcetapcrm.sourceforge.net, October 2006.

[109] Software testing automation framework (STAF).
http://staf.sourceforge.net/, Jan. 2007.

[110] Sun Microsystems Inc. Openoffice.org testtool: Introduction to automated
gui testing. Technical report, OpenOffice.org, Sept. 2006.

[111] Sun Microsystems Inc. Sun community source licensing (SCSL).
http://www.sun.com/software/communitysource/, Jan. 2007.

[112] Test case web (TCW). http://sourceforge.net/projects/tcw, Jan.
2007.

INRIA

http://www.objectweb.org/phorum/download.php/16,271/QualiPSo_PM_Oct4.pdf
http://www.openresources.com/documents/cathedral-bazaar/
http://rth-is-quality.com/
https://wiki.objectweb.org/salome-tmf/
http://sciencecommons.org/
http://www.selfproject.eu/
http://www.sendmail.org/
http://sourceforge.net/
http://sourcetapcrm.sourceforge.net
http://staf.sourceforge.net/
http://www.sun.com/software/communitysource/
http://sourceforge.net/projects/tcw

Free and Open Source Software 39

[113] Tightening knowledge sharing in distributed software com-
munities by applying semantic technologies (TEAM) project.
http://www.team-project.eu/, Jan. 2007.

[114] Testlink. http://testlink.sourceforge.net/, Jan. 2007.

[115] Testopia test case management. www.mozilla.org/projects/testopia/,
Jan. 2007.

[116] S. Thatte. Web services for business process design. Technical report,
Microsoft Corporation, 2001.

[117] L. Torvalds. The story of the linux kernel. In S. O. Chris DiBona,
Mark Stone, editor, OpenSources: Voices from the Open Source Revo-
lution. O’Reilly an Associates, February 1999.

[118] Tropical disease initiative. http://www.tropicaldisease.org/, Novem-
ber 2006.

[119] D. Tuma. Open source software: Opportunities and challenges. STSC
Crosstalk The Journal of Defense Software Engineering, 18(1):6–10, Jan.
2005.

[120] D. Weiss. Quantitative analysis of open source projects on sourceforge. In
Proceedings of the First International Conference on Open SourceSystems,
Genova, Italy, July 2005.

[121] Wikipedia, the free encyclopedia. http://www.wikipedia.org/, Nov.
2006.

[122] Wikipedia. Shared source on wikipedia.
http://en.wikipedia.org/wiki/Shared_source, Jan. 2007.

[123] Wiktionary, the free dictionary. http://www.wikionary.org/, Nov. 2006.

[124] S. Witty. Best Practices for Deploying and Managing Linux with Red Hat
Network, Dec. 2004.

[125] Xplanet. http://xplanet.sourceforge.net/, October 2006.

RR n° 6519

http://www.team-project.eu/
http://testlink.sourceforge.net/
www.mozilla.org/projects/testopia/
http://www.tropicaldisease.org/
http://www.wikipedia.org/
http://en.wikipedia.org/wiki/Shared_source
http://www.wikionary.org/
http://xplanet.sourceforge.net/

Centre de recherche INRIA Rennes – Bretagne Atlantique
IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée :2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399

	Introduction
	Free and Open Source Software
	History and Philosophy
	The Garage, to Enterprises, to Public Administrations

	The Challenges for f/oss
	The Distinguishing Features of f/oss
	Requirements for f/oss Processes

	Existing Approaches and Solutions
	F/oss Community Organization
	F/OSS Quality Assessment
	QA of Content
	F/OSS Project Measurement

	F/OSS Process Management
	General Process Management
	Support for Distribution and Production Processes
	F/oss Interoperability

	Conclusion: A fragmented World

