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The numerical solution of the three-dimensional time-harmonic Maxwell equations using high order methods such as discontinuous
Galerkin formulations require efficient solvers. A domain decomposition strategy is introduced for this purpose. This strategy is based
on optimized Schwarz methods applied to the first order form of the Maxwell system and leads to the best possible convergence of these
algorithms. The principles are explained for a 2D model problem and numerical simulations confirm the predicted theoretical behavior.
The efficiency is further demonstrated on more realistic 3D geometries including a bioelectromagnetism application.

Index Terms—Discontinuous Galerkin methods, domain decomposition methods, optimized interface conditions.

I. INTRODUCTION

DISCONTINUOUS Galerkin (DG) methods are emerging
for the solution of time-harmonic Maxwell’s equations [1]

because of the enhanced flexibility compared to the conforming
edge element method [2]. For instance, by using a DG method,
dealing with non-conforming meshes is straightforward. The
formulation of such methods in the case of the first order elliptic
Maxwell system has been fully analyzed in [3] and an exten-
sion to the time-harmonic first order system is introduced in [4]
where a numerical comparison of different schemes is proposed.

Nonetheless, before taking advantage of the flexibility of the
DG methods, the design of efficient algorithms for the resulting
sparse linear system has to be addressed. Here we propose a do-
main decomposition (DD) strategy based on optimized Schwarz
methods [5]–[7]. First, the DD strategy is introduced in the two-
domain case for a 2D transverse electric model problem. Then
the discretization of the problem by a DG method is presented.
Finally, numerical results for a 2D problem confirm the expected
theoretical behavior of the DD method and 3D numerical exper-
iments on simplified problems pave the way for more realistic
applications.

II. THE DOMAIN DECOMPOSITION STRATEGY

For the sake of simplicity we consider the following non-di-
mensioned transverse electric model problem in a domain

(1)

The parameters and denote respectively the relative di-
electric permittivity and the relative magnetic permeability,
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the angular frequency, the unitary outgoing normal and
the components of an incident electromagnetic

wave.
For solving (1), the domain is decomposed in two non-

overlapping subdomains and . The common interface to
and is denoted by . The DD strategy is then a variant of

the classical Schwarz method.
• We start with an initial electromagnetic field on

each subdomain .
• The th iterate is the solution of (1)

restricted to the subdomain with an interface transmis-
sion condition on of the form

(2)

where denotes the second-order derivative along the in-
terface. The operator ensures the transmission of the
field computed at the previous iteration in the
neighboring subdomain with parameters properly
chosen to control the convergence of the algorithm.

• The limit of the sequence is the restriction
to of the solution of (1). Thus, we can use a
stopping criterion

(3)

where tol is the prescribed accuracy and a norm.
Després in [8] was the first to use this strategy for time-har-

monic equations with the choice , for which
coincides with a first order absorbing boundary condition.
However, the convergence rate of the iterative process with this
boundary condition is strongly dependent on the mesh size used
for the discretization and the convergence to the solution can
be slow. We refer to this condition as the classical condition in
the following.

Nonetheless, it is possible to greatly improve the convergence
rate by optimizing it with respect to . This theoretical study
is done in [7] directly on (1) and in [9] for the second order

formulation.
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TABLE I
CONVERGENCE RATE AND TRANSMISSION CONDITION PARAMETERS

The closed-form expressions obtained for the coefficients ,
are in particular dependent of the mesh size. These expres-

sions are then used in a DD strategy generalized to more than
two subdomains.

Let us briefly recall the analysis proposed in [7] in order to
deduce a theoretical convergence rate for the iterative algo-
rithm depending on the mesh size . This analysis is done on
the continuous, i.e., without discretization, DD method but nu-
merical arguments are given in the following for showing that
the results remain valid with a discretization.

The study of is done for a decomposition of into two
infinite domains. A Fourier transform is applied with respect to
the tangential variables to the interface (artificial boundary sep-
arating the two domains). The resulting local equations can be
solved leading to the formulation of an iterative process applied
to the interface variables. Then, we obtain the reduction factor
of the error as a function of the Fourier variable and the pa-
rameters involved in the interface conditions. In order to obtain
the best possible convergence rate, one needs to optimize this
quantity with respect to the parameters, for the range of possible
spatial frequencies that can be represented on a given mesh. In
the sequel, we treat the cases of zero order boundary conditions
where we take in (2) equal to zero that is the case of gener-
alized impedance conditions. Two possibilities are considered:

and . It has been proved that are equal
to where and are reported in Table I.
When the mesh parameter is small, the maximum numerical
frequency that can be represented on the mesh is estimated by

where is a constant. We also define such
that in order to exclude the frequency from
the optimization process and this frequency being treated by the
Krylov method (see also [6] for details).

III. DISCRETIZATION OF THE PROBLEM

For the discretization of the local problem on , a DG
method is used. The domain is decomposed into a set of ele-
ments such that . The approximate solution

of (1) is an element of where is the finite
element space of square-integrable discontinuous scalar fields
whose restriction to an element is polynomial of degree :

(4)

Thus no particular continuity constraint is enforced at the in-
terface of each element. The weak formulation of the discrete
problem is then the following

where

and finally

The matrix denotes , for a vector of
and denotes respectively the mean of and the jump of
the tangential component of over a face of the set of inte-
rior faces . Note that in order to keep the consistency with the
continuous problem, a numerical flux is defined on the interface
of each element enforcing weakly the tangential continuity con-
straint for the electric and magnetic field. The proper choice of
different kind of fluxes has been discussed from the numerical
point of view in [4]. For instance, the choice corresponds
to the case of the centered flux, and to the choice of a
simplified upwind flux. The former has the advantage to be easy
to implement and requires a lower memory storage. The latter
has better convergence properties.

IV. TWO-DIMENSIONAL NUMERICAL RESULTS

The agreement between the theoretical and numerical
convergence rates is demonstrated on a problem with

and
discretized by discontinuous Galerkin methods. Firstly, we
study the influence of the choice of the numerical flux and
of the polynomial order on the theoretical convergence rate.
Secondly, we study the multidomain case.

A. Influence of the Element Order and of the Numerical Flux

The first DG discretization is based on a triangular uniform
mesh with as the local space in each element . On
Fig. 1, the number of iterations for achieving a prescribed ac-
curacy against the mesh size is shown for both boundary condi-
tions (Case 1 and Case 2). The curves fit nicely the dependence
in predicted by the theory i.e., they behave like for Case
1 and like for Case 2.

In order to demonstrate that the theoretical results are inde-
pendent of the choice of the DG discretization, we also approx-
imate numerically this asymptotic convergence rate using three
polynomial orders for the element interpolation (here quadri-
lateral elements are considered to simplify the management of
the multi-domain case for this academic problem) and two dif-
ferent fluxes; these experiments are reported in Table II. A be-
havior close to and for the number of iterations
is obtained by the numerical experiments, independently of the
choice of the numerical flux and of the numerical order.
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Fig. 1. Number of iterations against the mesh size h. Logarithmic scale.

TABLE II
ESTIMATED VALUE OF � WHERE � = 1� Ch

Fig. 2. Number of iterations against the number of subdomains. The number
of degrees of freedom is constant. Results for the centered flux.

B. Influence of the Number of Subdomains

As in practice more than two domains are used, the perfor-
mances of the optimized conditions are evaluated for more sub-
domains. The same problem as in Section IV-A is solved.

The numerical experiments are still performed on a structured
grid and then the partition into several subdomains is made in a
regular way: a decomposition in rectangular subdomains
of the unit square. The results for the centered case are shown on
Fig. 2 and the results for the upwind case on Fig. 3; a poly-
nomial approximation is used for these figures. Note that for
obtaining these results, a Krylov subspace method is coupled to
the Schwarz algorithm. Indeed, as it is explained in [5], the DD
method can be formulated as a linear system whose unknowns
are auxiliary interface variables. This interface system is usually
solved by a Krylov method which gives more robustness to the

Fig. 3. Number of iterations against the number of subdomains. The number
of degrees of freedom is constant. Results for the upwind flux.

DD strategy. Here we make use of GMRES for solving the inter-
face system. We observe that, independently of the flux chosen,
the number of iterations grows roughly as where is
the number of subdomains. Thus, the convergence deteriorates
with the number of subdomains and it advocates for the use of
a coarse grid in order to obtain an optimal solver. Nevertheless
the hierarchy of the transmission conditions is maintained and
the optimized versions enable us to accelerate the convergence
compared to the classical condition [8].

V. THREE-DIMENSIONAL PROBLEM

A. Scattering by a Sphere

The implementation of optimized interface conditions for
three-dimensional time-harmonic Maxwell’s equations is a
work in progress. Here, we give preliminary results for the DD
strategy based on first order absorbing boundary conditions as
transmission conditions.

The problem under consideration is the scattering of a
plane wave by a perfectly conducting unit sphere. The in-
cident wave is given by and

, with . The absorbing
boundary is set to one wavelength from the surface of the per-
fectly conducting sphere. The mesh is composed of 1,382,400
tetrahedra and a local space is used for the DG method.
The total number of unknowns is 8,294,400.

Numerical experiments are conducted on a cluster of 64
AMD Opteron/2 GHz processors with a Gigabit Ethernet inter-
connection. One subdomain is associated to each processor and
a sparse matrix direct method is used to solve the subdomain
problem. Note that we use a BiCGstab method [10] either
for solving the interface system or as a global solver without
preconditionner.

Performance results are given in Table III where ‘DDM’
refers to the DD solution strategy. The per processor time for
performing the factorization is 18.0 sec (min)/102.0 sec (max)
while the associated memory usage is 405 MB (min)/1001
MB (max). In addition to the gain in computing time, a clear
advantage of the DD strategy is its parallel efficiency that can
be evaluated here as the ratio of ‘CPU (max)’ over ‘Elapsed’
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TABLE III
PERFORMANCE RESULTS. ‘CPU (MIN/MAX)’ ARE PER PROCESSOR MEASURES

OF THE CPU TIME. ‘ELAPSED’ IS THE ELAPSED TIME

Fig. 4. View of the Mesh M1 and a Solution Computed on This Mesh.

TABLE IV
CHARACTERISTICS OF THE TETRAHEDRAL MESHES

which is equal to 92% while the corresponding feature for the
global solver is 74%.

B. A Bioelectromagnetism Example

We conclude this section of results with the application of
the proposed numerical methodology to the simulation of a
time-harmonic electromagnetic wave propagation problem in
an irregularly shaped and heterogeneous medium. The problem
under consideration is concerned with the propagation of a
plane wave in realistic geometrical models of head tissues. Two
tetrahedral meshes have been used whose characteristics are
summarized in Table IV. The frequency of the incident plane
wave is MHz and its polarization is such that

The electromagnetic parameters of the materials are set to artifi-
cial values for the purpose of exemplifying the characteristics of
the propagation of the plane wave in the head tissues (null con-
ductivity, for the brain, for the cerebrospinal
fluid, for the skull and for the skin). For
the computations reported here, the DG methods with and

elements and upwind and centered fluxes are used for the
meshes M1 and M2. The mesh M1 and a view of the solution is
proposed on Fig. 4.

TABLE V
COMPUTATION TIMES. U: UPWIND FLUX, C: CENTERED FLUX

Performance results are given in Table V. The parallel ef-
ficiency, evaluated using the maximum CPU to REAL ratio,
ranges from 65% to 75%.

VI. CONCLUSION

In this paper, classical and optimized Schwarz algorithms
have been applied to time-harmonic Maxwell’s equations dis-
cretized by DG methods. Concerning Schwarz algorithms based
on optimized interface conditions, two-dimensional numerical
results show a good agreement with the theory in the case of the
simplest optimized conditions and the behavior is independent
of the choice of the flux and the polynomial order for the finite
element space. Preliminary results in the three-dimensional case
are very promising for classical interface conditions, opening
the way to improvements by using optimized interface condi-
tions on realistic applications.
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