-

View metadata, citation and similar papers at core.ac.uk brought to you byt CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

When does quasi-random work ?
Olivier Teytaud

» To cite this version:

Olivier Teytaud. When does quasi-random work ?. Parallel Problem Solving from Nature, Sep 2008,
Dortmund, Germany. inria-00287863

HAL Id: inria-00287863
https://hal.inria.fr /inria-00287863
Submitted on 13 Jun 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50256543?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00287863
https://hal.archives-ouvertes.fr

When does quasi-random work ?

Olivier Teytaud

TAO (Inria), LRI, UMR 8623(CNRS - Univ. Paris-Sud), Bat 490
Univ. Paris-Sud 91405 Orsay, France.
teytaud@lri.fr

Abstract. [10,22] presented various ways for introducing quasi-random numbers or de-
randomization in evolution strategies, with in some cases some spectacular claims on the
fact that the proposed technique was always and for all criteria better than standard mu-
tations. We here focus on the quasi-random trick and see to which extent this technique is
efficient, by an in-depth analysis including convergence rates, local minima, plateaus, non-
asymptotic behavior and noise. We conclude to the very stable, efficient and straightforward
applicability of quasi-random numbers in continuous evolutionary algorithms.

Keywords: Evolution Strategies; Derandomization.

1 Introduction

Whereas pseudo-random numbers are supposed to be as close as possible to pure random num-
bers, quasi-random numbers are designed in order to be more ”uniformly” distributed than pure
random numbers. Various criteria of uniformity have been developed [14,9]. In some cases, a
good value for a criterion ensures a good behavior: for example, a good discrepancy implies a
small integration error for numerical integration of functions with finite total variation [8] through
Koksma-Hlawka’s inequality. Sequences with good properties for these criteria are mainly alge-
braic (quickly generated) methods [25, 14,23, 16, 19, 3]. As a consequence of this important part of
science, we can use fast and reliable generators of points, with good uniformity properties. Thanks
to scrambling and other tricks (including randomization [11]) [2,28, 5,27, 13,6, 15, 20,29, 24,1, 12,
17, 26], quasi-random points can be used also in high dimensionality with positive results [18].

Quasi-random numbers have been a revolution basically in numerical integration [14], but it
was also used in other areas: quasi-random search [14], path planning [23], active learning [4],
approximate dynamic programming [21].

[22], inspired by [14,10], has proposed the use of quasi-random numbers for mutations in the
continuous domain. The main results in [22] are about the convergence rate of CMA [7], modified
by such an algorithm. However, many questions arised, about the generality of the results: as many
people use random numbers as a secure tool for exploration, it is not intuitive that random numbers
can be removed from evolutionary algorithms without strong drawbacks induced somewhere as a
counterpart. We here provide an in-depth analysis of quasi-random mutations, through robustness,
local minima, needle functions, noise, quality of the quasi-random number generator, and non-
asymptotic properties. We conclude to the very wide applicability of quasi-random numbers in
continuous evolution strategies.

In all the paper, we use the fitness functions presented in the Matlab/Octave implementation
of CMA. When averages and standard deviations are presented, number between ”(.)” are median
values. Bold font indicate significant improvements, for rank-based tests (Wilcoxon statistics). The
result of each algorithm is the best individual of the last generation.

The use of quasi-random mutations is quite straightforward. If your mutation operator is in
Algorithm 1, then you just replace it by Algorithm 2.

The only difference is the replacement of A/, a standard multivariate Gaussian variable, by
Nirv, its quasi-random counterpart. If A/ is generated as in Algo. 3, then you just have to replace
it by Algo. 4 in your favorite program.

In the rest of this paper, DCMA is the standard CMA (covariance matrix adaptation) algo-
rithm, with the transformation above (from Algo. 3 to Algo. 4).

Algorithm 1 Standard mutation in the continuous domain, with ¢ a step size and A a linear
transformation.

Function =’ = Mutation(z, o, A)

return ' = x + c AN

Algorithm 2 Quasi-random mutation in the continuous domain, with ¢ a step size and A a linear
transformation.

Function «’ = Mutation(z, o, A)

return @’ =z + c ANy

2 Quasi-random mutations need good quasi-random sequences

We compare a simple Halton sequence (without scrambling) and Sobol’s sequence. It is known that
Sobol sequence is much better, in particular for large dimensional problems, but the comparison
is particularly impressive in the case of mutations of evolution strategies. Table 1 presents the
comparison between the normalized (see caption) log of the smallest fitness value found by the
algorithm in the case of Halton sequence compared to the random classical points and Sobol
sequence for 10 function evaluations in dimension 4 and 40 function evaluations in dimension 16.

The explanation is clear on a typical plot of a random walk. Figure 1 (left) shows the sum of
quasi-random Gaussian numbers generated with the 3rd and 4th variables of a Halton sequence. As
well known for Halton’s sequence (unscrambled version), we have long short term bias, leading to a
quasi-random walk going away from 0. Figure 1 (right) shows also a quasi-random walk, generated
with the partial sum of quasi-random Gaussian numbers generated with Sobol’s sequence. The
figure is very similar, visually, to what happens with a random walk.

It has already been pointed out in [22] that randomly rotating quasi-random Gaussian points
at each offspring, in order to avoid some presumed bias, in useless and in fact reduces the efficiency
of quasi-random points. We therefore here only use the standard version proposed above, without
adding such rotation.

3 Quasi-random mutations improve the probability of finding a needle

It has been suggested that quasi-random points might be suitable only in regular cases, as they
might be just more able of benefiting from artificial symetries in the problem. In order to test this
assumption, we now consider the needle problem, defined as follows:

— the fitness value of any point at distance < 1 of (1,...,1) is 0.
— the fitness value of any other point is 1 + R, where R is a random independent uniform noise
on [0,1].

The needle is found if at least one point of null fitness is found. We also defined the difficult needle
problem, in which:

— the fitness value of any point at distance < 1 of (K, K,...,K) is 0.

Algorithm 3 Usual algorithm for generating a standard multivariate Gaussian.

Function N' = MultivariateStandardGaussian(dimension d)
forie {1,2,...,d} do
z; = random (uniform in [0, 1])
end for
forie {1,2,...,d} do
N; = inverseGaussianPDF(z;)
end for

Algorithm 4 Algorithm for generating quasi-random Gaussian numbers. Finally, only one simple

loop is replaced by one call to a standard function.

Function N' = MultivariateStandardGaussian(dimension d)

Apply = = Sobol(d).

for i € {1,2,...,d} do
N; = inverseGaussianPDF(x;)

end for

Problem l CMA IDCMA (Halton)l DCMA (Sobol)
10 function-evaluations in dimension 4
fsphere -0.169 0.00688 -0.209
fcigar 5.12 5.06 4.97
fstepsphere -2.2 -1.58 -2.84
fconcentric 0.126 0.15 0.0793
fgriewank -0.69 -0.565 -0.952
frastrigin 1.25 1.29 1.25
fschwefelmult 2.96 2.96 2.96
fsectorsphere 2.25 4.05 1.95
40 function-evaluations in dimension 16
fsphere 0.64840.0499 0.6774+0.169 |0.547+0.0580
fcigar 6.1840.020 6.24+0.182 6.14+0.0197
fstepsphere | 0.8654+0.0330 0.79+0.146 0.733+0.0585
fconcentric 0.32+0.0108 0.825+0.0405 | 0.297+0.0105
fgriewank | -0.253+0.0365 | -0.238+0.161 |-0.3514+0.0353
frastrigin 1.96+0.00719 1.984+0.0538 |1.944+0.00641
fschwefelmult|3.52+8.38e-05| 3.52+0.000283 | 3.524+6.72¢-05
fsectorsphere| 4.940.0912 4.96+1.17 4.93£0.0895

Table 1. d x log(fitness)/n (i.e. the lower the better) for n function evaluations in dimension d, Com-
parison between standard CMA with random Gaussian numbers, and CMA with Sobol Gaussian numbers
for very small numbers of iterations in dimension 4 and 16. Sobol points are equivalent to random points,
whereas Halton points (without scrambling) lead to very poor results. Results in bold face are results in
which a statistical difference with the random case appeared in the good direction (better than the random
case); italic font is used for results in which a statistical difference occured in favor of usual random points:
the difference is most often in favor of random points for Halton; and always in favor of Sobol except for
the ”fschwefelmult” function.

— the fitness value of any other point is 1 + R, where R is a random independent uniform noise
on [0, 1].

As previously, the needle is found if at least one point of null fitness is found. The results are
presented in table 2.

4 Quasi-random mutations improve the convergence rate

[22] has already strongly pointed out this fact, therefore we only briefly confirm these results in
Figure 2. Except for ”fschwefelmult”, significant (95% confidence) results in favor of DCMA occur
for all fitness functions for 2560 function-evaluations. We also present in table 3 the average log of
fitness values for 10240 fitness evaluations in dimension 4 to see the asymptotic behavior for some
fitness functions. Quasi-random points are better in all significant comparisons.

)

/
A
/)

I/

\‘;p,\\'
e
\\? 7

i
&

a\

Fig. 1. 100 points of typical quasi-random walks with Gaussian quasi-random numbers generated with
Halton (left) and Sobol (right). In the case of Halton, a strong short-term bias appears: the quasi-random
walk goes away to the south-west.

Dimension| Number of| - Probability | Probability | g5z s e 5 ooty T Probability
fitness- of finding of finding . .
. and K fitness- of finding of finding
evaluations| (CMA) (DCMA) .
evaluations (CMA) (DCMA)
3 64 36%+ 3% 49 % +£3%
3, K=3 64 0.8 % £04 %|24% +0.6 %
4 64 9 %o 2% 14 % £2% 4, K =2 64 9.6 % + 1.3 %[12.0 % + 1.5%
5 64 2.6 %+ 1.3 %|7.3 % £+ 2.1% :

Standard needle

Difficult needle

Table 2. Results of quasi-random points on the needle functions: probability of finding the needle (the
higher the better). Quasi-random points work better.

5 Quasi-random mutations improve the non-asymptotic behavior: no
log

Many papers consider the logarithm of the distance to the optimum, normalized by the dimension
and/or the number of iterations, as the main criterion of quality of an optimization algorithm. The
advantage of this approach is that the asymptotic behavior of continuous optimization algorithms,
which is usually linear for evolution strategies, is clearly visible on such plots. However, the draw-
back of this approach is that the focus is on the convergence rate, and not on the probability of
finding a good optimum.

In order to clearly point out the weakness of this criterion for multimodal optimization, let’s
consider the use of this criterion for evaluating a standard algorithm with known poor results for
fitness functions with local minima.

Consider simply Newton’s method with random initial point. The log of the distance ¢,, (after
n function evaluations) to the optimum is, for this algorithm, exponential as a function of n,
if the initial point is sufficiently good. Consider p the probability of an initial point ensuring
that the log-precision is at most k=2, for some fixed k > 1. Then, the criterion — log(e,)/n has
expectation at least plog(e,)/n = —p2™log(k)/n. This criterion therefore tends to infinity for this
Newton algorithm as n — oo, whenever the function is strongly non-convex and p is close to 0!
We have therefore shown that this criterion will prefer an algorithm which converges with possibly
very small probability, provided that n is sufficiently large, in front of any algorithm with linear
convergence ”only”.

On the other hand, criteria like the expected fitness value certainly not have this behavior
and show much more efficiently the probability of finding the optimum, in particular in the non-

fsphere fcigar fstepsphere

NN

L

o [TTTTTTT

35 T R R R L ey T
05 1 15 2 25 3 05 1 15 2 25 3 5 1 15 2 25 3
fconcentric fgriewank frastrigin
0.85 T T T T 0 T T T T ST T
0.8 CMA —— - 5 CMA i 45 LN CMA i
0.75 k_ DCMA -—------ 4 0 L TNDCMA -------] N CMA -------
0.7 B\, q [] r 1
065 [, 1 B 35 1 1
06 . B 20 N]
055 T R - A -25 | A 3F - A
05 Loy 30 Loy 25 R Y
0051152 253 0 05 1 15 2 25 3 0 051 15 2 25 3
fschwefelmult fsectorsphere fbaluja
11.5129
oA 1] HE8 K e —— 1
DCMA -------]] 112133 [DCMA~<=---]
] [4 11.5129 . e
4 11.5128 - —
)] L B 115128 i
[] [] 115128 | N
L AN E il | RS
0051152253 0 05 1 15 2 25 3 0051152253

Fig. 2. Convergence rate of CMA and DCMA with Sobol in dimension 16. Log(fitness) vs thousands of
function evaluations. These objective functions are to be minimized. Standard deviations are not shown
for the sake of readability; see text for significance.

Problem CMA DCMA
fsphere -0.014040.000123 (-0.013) -0.01474+0.00014 (-0.0147)
fcigar -0.013940.000150 (-0.0139) | -0.0150+0.000125 (-0.0149)

fstepsphere [-0.00491+0.00128 (-0.00494) |-0.00927+0.00061 (-0.00989)
fconcentric | -0.00088+3.99e-05 (-0.0009) |-0.00109+3.65e-05 (-0.00113)
fgriewank | -0.01394+0.000175 (-0.0139) | -0.0167+0.000174 (-0.0174)
frastrigin |8.41e-05+0.00018 (0.000427) |-0.000144-+0.000222 (0.000427)
fschwefelmult| 0.00289+1.20e-07 (0.00289) | 0.00289+2.37¢-08 (0.00289)
fsectorsphere| -0.012740.00012 (-0.0128) | -0.0136+0.000147 (-0.0136)
fbaluja |-0.00187+3.88e-05 (-0.00186)| -0.0019+3.15e-05 (-0.00194)
Table 3. Comparison of standard random numbers and quasi-random numbers from the point of view
of the convergence rate. The numbers are the average log of fitness values (median between (.)); the
quasi-random version is almost always significantly better (the lower the better).

asymptotic behavior. We therefore present below the average fitness value for fixed dimensions
and numbers of fitness-evaluations. We point out that the same tables with the logarithm also
lead to significant results in favor of DCMA - however, the results are more impressive with the
expected fitness values as presented below.

The results in table 4 are the non-asymptotic counterpart of results in section 4 (which was
convergence rate analysis). We here use 40 fitness-evaluations, for various dimensionality. [14]
has already pointed out the non-asymptotic effect of quasi-random points in the simpler case of
quasi-random search.

6 Quasi-random mutations deal efficiently with non-convex functions

Non-convex functions (multimodal functions, but also monomodal functions with plateaus and
other non-convex functions like ”fbaluja”) are typically important fitness functions for which the
convergence rate is moderately interesting: diversity loss in a plateau (or in an almost plateau) or
premature convergence in a local minimum are a strong trouble. We here investigate the question
of a possible loss of efficiency of quasi-random mutations for non-convex functions as a counterpart
of positive effects pointed out in other sections of this paper. Table 5 show the average fitness value

Problem [CMA [DCMA

Dimension 2
fsphere 0.0898+0.0356 (0.0172) 0.0229+0.00762 (0.00436)
fcigar 21962.2+9678.1 (829.142) 2415.2+726.955 (192.588)
fstepsphere |0.066040.0170 (3.36e-12) [0.0294-40.0142 (2.44e-12)
fconcentric |0.284+0.0501 (0.242) 0.174+0.0432 (0.0972)
fgriewank 0.0282+0.0116 (0.00839) 0.00620+0.00221 (0.0009)
frastrigin ~ |2.9440.237 (1.90) 2.30-+0.18 (1.51)
fschwefelmult|129.769+7.87 (100.287) 108.386+7.04 (81.0)
fsectorsphere [2564.66+1540.54 (0.180) 0.49140.0555 (0.175)
fbaluja 19661.44+2082.63 (18688.9) [13146.7+1993.09 (8702.22)

Dimension 4
fsphere 0.399+0.0412 (0.191) 0.285+0.0425 (0.115)
fcigar 191315+34006.3 (83925.1) 120477+18146.6 (49928.2)
fstepsphere |0.5434+0.129 (0.311) 0.188+0.0770 (0.0252)
fconcentric |0.2434+0.0159 (0.177) 0.237+0.0143 (0.187)
fgriewank 0.069+0.0103 (0.0359) 0.0408-+0.00580 (0.0202)
frastrigin ~ |5.2540.413 (3.94) 4.650.292 (3.28)
fschwefelmult|240.185+28.52 (196.578) 149.024+19.9 (134.868)
fsectorsphere [44113.8424239.1 (2.25) 28279.3+12841.1 (1.23)
fbaluja 11035.84+652.625 (8418) 11828.54+741.584 (9322.88)

Dimension 16
fsphere 1.93£0.138 (1.44) 1.740.120 (1.186)
fcigar 1.99e+06+143401 (1.39e+06)|1.72e+06+131583 (1.14e+06)
fstepsphere |1.9340.133 (1.28) 1.75+0.112 (1.2)
fconcentric |0.3104+0.0483 (0.199) 0.199+0.0400 (0.134)
fgriewank 0.0689+0.00469 (0.0486) 0.0769+0.00493 (0.0570)
frastrigin 14.6+£0.831 (11.5) 15.240.915 (11.6)
fschwefelmult|501.41434.8 (351.154) 489.47433.4 (324.699)
fsectorsphere |673136+57820.7 (414916) 595032+£52901.3 (341269)
fbaluja 7774.31+£507.891 (5136.37) |7646.291+483.262 (5719.69)

Table 4. Average fitness value after 40 function evaluations (the lower, the better).

(no log) of the best individual of the last offspring for various non-convex fitness functions. Very
strong improvements sometimes appear with quasi-randomisation, and results were almost always
significantly improved. All results below hold in dimension 4.

Problem [CMA [DCMA
10 function evaluations
fstepsphere 1.5+0.146 (1) 1.06+0.10 (1)
fconcentric 1.32:£0.0261 (1.33) 1.2540.0259 (1.2)
feriewank 0.20940.0287 (0.143) 0.138+0.0225 (0.100)
frastrigin 24.64+0.642 (24.5) 24.3+0.541 (24.1)
fschwefelmult| 1670.594+0.684 (1670.75) 1671.6940.445 (1671.45)
fbaluja 99999.44+0.0267 (99999.4) 99999.3+0.0348 (99999.4)
40 function evaluations
Problem CMA DCMA
fstepsphere 1.54+0.32 (1) 0.5+0.18 (le-11)
fconcentric 1.414+0.110 (1.37) 1.05 64+0.0981 (0.972)
fgriewank 0.188£0.0588 (0.0911) 0.054-£0.0138 (0.0308)
frastrigin 26.941.00 (27.0) 23.940.876 (23.7)
fschwefelmult| 1664.874+0.703 (1664.81) 1662.15+0.378 (1661.48)
fbaluja 99999.2+0.108 (99999.3) 99998.8+0.2 (99999.2)
160 function evaluations
fstepsphere 0.4+0.128 (1le-11) 0.125+0.0853 (le-11)
fconcentric 0.7+0.096 (0.587) 0.51+0.0623 (0.400)
fgriewank 0.0042+0.0015 (0.00237) |0.000659-+0.000481 (0.000153)
frastrigin 20.60442.49 (21.5) 6.83+1.74 (4.16)
fschwefelmult| 1660.21+0.014 (1660.22) 1660.16+0.00206 (1660.16)
fbaluja 99995.6-£0.938 (99996.8) 99986.3+:2.86 (99991.8)
640 function evaluations
fstepsphere 0.388+0.143 (1le-11) 0.0555+0.0555 (le-11)
fconcentric 0.232+0.0394 (0.128) 0.120+0.0384 (0.0549)
fgriewank {0.00083340.000411 (5.42e-11)| 0.000245+0.000112 (1.51e-14)
frastrigin 5.57+0.427 (3.70) 3.64:£0.204 (2.98)
fschwefelmult| 1660.15+5.98e-09 (1660.15) | 1660.15+6.90e-13 (1660.15)
fbaluja 94926.9+1036.12 (95873.5) 13597.74+2714.8 (10272.5)

Table 5. Efficiency of quasi-random points for non-convex functions from a non-asymptotic point of view.
The numbers are the average fitness values (the lower the better). For fschwefelmult, the significance holds
but is hidden in late digits.

7 Quasi-random mutations deal efficiently with noise

Finally we tested fitness functions corrupted by noise. We just replaced the fitness function by its
product with a random independent uniform number in [0, 1], and we get the table 6 of results in
dimension 2 with 160 function-evaluations.

In fact, the results are more impressive than the results of the non-noisy case: there’s no decay
of performance in the noisy case. We tested both the log and the no-log cases.

8 Conclusion

We have in this paper shown how general is the improvement induced by quasi-random numbers.
In particular, quasi-random mutations lead to better results, not only from the point of view of
the convergence rate , but also for several notions of robustness:

Problem CMA DCMA Problem CMA DCMA
fsphere -0.124+0.00788 | -0.169+0.00469 fsphere 0.0007684+0.000372| 5.78e-06+2.55e-06
fcigar 0.013£0.0022 |-0.02054+0.00196 fcigar 2819.9342594.19 0.823+0.120
fstepsphere | -0.341+0.00328 | -0.344+0.00246 fstepsphere | 0.0018+0.00138 0.0043240.00422
fconcentric | -0.0252+0.00096 | -0.030+0.00109 fconcentric 0.20740.0136 0.163+0.0146
fgriewank -0.11740.00490 | -0.1674+0.0048 fgriewank 0.004184+0.001]0.000492+0.000297
frastrigin |-0.00444+0.00283| -0.015+0.00413 frastrigin 2.00+0.300 1.20+0.224
fschwefelmult| 0.053+0.00152 | 0.0580+0.0014 fschwefelmult| 111.731+10.198 152.172+13.092
fsectorsphere| -0.03914+0.0062 |-0.0829+0.00481| | fsectorsphere| 0.16540.0641 0.00304+0.000894
fbaluja 0.111+£0.00142 0.1140.00141 fbaluja 12775.2+1035.92 17218+1348.25
log(fitness) fitness value

Table 6. Mean log(fitness) and mean fitness in the case of noise (see text for details). The lower, the
better. Quasi-random numbers are almost always better.

— the improvement for the convergence rate scales from a few percents in the case of the sphere
function or the cigar function to 80 % of speed-up in the case of the step-sphere function in
dimension 4 - this suggests that is is much more the behavior in front of plateaus or needles
which is improved, and not the behavior in a regular, smooth framework;

the improvement remains when the fitness function is corrupted by noise; in fact, all compar-
isons are seemingly much more impressive when the fitness is corrupted by noise! Therefore,
we claim that the effect ot quasi-random numbers are not limited to artificial smooth cases.
the improvement is much more impressive on expected fitness values than on the convergence
rate, because the quasi-random points improve the robustness and the probability of finding
a solution as well as (and more than) the asymptotic convergence rate;

in the case of small numbers of fitness values, one can also trust quasi-random points; the non-
asymptotic behavior for non-logarithmic views on the fitness function (section 5) and small
dimension provides impressive results: average fitness values are divided by factors between
3.9 (sphere function) and 9.1 (cigar function) in dimension 2. The results are less impressive
in higher dimension (factor 1.16 in dimension 16 for the cigar function).

quasi-random points are not afraid of non-convex fitness functions; we see 51% of improvement
for the Griewank function with 10 function-evaluations in table 5, 3.2 for the step-sphere
function and 53% for the Rastrigin function with 160 function-evaluations. In some other
cases, the improvement is negligible, but we point out that it is never a loss of efficiency.

the probability of finding a needle is improved also; the more difficult the needle problem,
the higher the improvement; we conjecture that the improvement would be much higher with
higher values of A.

These results suggest that the improvement is due to (i) a better distribution of mutations inside
one offspring but also in a cumulative manner over multiple steps as shown by earlier results in
[22] (i.e., increasing independence between offsprings by random rotations of each offspring reduces
the efficiency) (ii) less importantly, a better convergence rate by a better estimate of the position
of the optimum - but this effect is probably much bigger for higher values of A. We also tested
the rate at which the covariance matrix is evaluated, but this effect is seemingly very small -
perhaps this could be improved by better update rules. (i) includes/explains (a) the ”init” effect
is we consider as initialization the initial offsprings (b) the good ”needle” effect (the step-sphere
function, on which results are quite good, is typically a "multiple” needle problem, whereas (ii)
explains the better convergence rate on the sphere function.

We also point out that replacing Monte-Carlo mutations by Quasi-Monte-Carlo points is
straightforward: if your Gaussian points are generated thanks to the use of the reverse proba-
bility distribution function of the Gaussian on random uniform points, then just replace random
independent vectors uniform on [0, 1] by some quasi-random good generator. In particular, Sobol’s
sequence is very efficient and as fast as random points.

A further work is the design of step-size adaptation rules adapted to Quasi-Monte-Carlo muta-
tions: the usual derivation of the cumulative step-size adaptation is not adapted with quasi-random
mutations. However, results in this paper are quite stable and convincing without such adaptation;
in all this paper we have used a standard cumulative step-size adaptation.

Acknowledgements The authors thank the many people who provided feedback on previous
results around quasi-random for providing several of the questions which are answered in this
article. We also thank A. Auger and N. Hansen for interesting feedback, in particular with respect
to the future derivation of step-size adaptation rules for quasi-randomized mutations.

References

1. E.I. Atanassov. On the discrepancy of the halton sequences. Math. Balkanica, 18(12):1532, 2004.

2. E. Braaten and G. Weller. An improved low-discrepancy sequence for multidimensional quasi-monte
carlo integration. J. Comput. Phys., 33:249-258, 1979.

3. Paul Bratley and Bennett Fox. Algorithm 659: Implementing sobol’s quasirandom sequence generator.
ACM Transactions on Mathematical Software Volume 14, Number 1, pages 88-100, 1988.

4. Cristiano Cervellera and Marco Muselli. A deterministic learning approach based on discrepancy. In
Proceedings of WIRN’03, pp53-60, 2003.

5. R. Cranley and T.N.L. Patterson. Randomization of number theoretic methods for multiple integra-
tion. SIAM J. Numer. Anal., 13(6):904914, 1976.

6. H. Faure. Good permutations for extreme discrepancy. J. Number Theory, 42:47-56, 1992.

7. N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution strategies.
Evolutionary Computation, 11(1), 2003.

8. G.H. Hardy. On double fourier series, and especially those which represent the double zeta-function
with real and incommensurable parameters. Quart. J. Mathematics, 37:53-79, 1905.

9. F.J. Hickernell. A generalized discrepancy and quadrature error bound. Math. Comp. 67, 299-322,
1998.

10. Shuhei Kimura and Koki Matsumura. Genetic algorithms using low-discrepancy sequences. In
GECCO, pages 1341-1346, 2005.

11. P. I’Ecuyer and C. Lemieux. Recent Advances in Randomized Quasi-Monte Carlo Methods, pages 419
— 474. Kluwer Academic, 2002.

12. M. Mascagni and H. Chi. On the scrambled halton sequence. Monte Carlo Methods Appl., 10(3):435—
442, 2004.

13. W.J. Morokoff and R.E. Caflish. Quasi-random sequences and their discrepancies. SIAM J. Sci.
Comput., 15(6):12511279, 1994.

14. H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods. 1992.

15. G. Okten and A. Srinivasan. Parallel quasi-monte carlo methods on a heterogeneous cluster. In in:
H. Niederreiter, K.-T. Fang, F.J. Hickernell (Eds.), Monte Carlo and Quasi-Monte Carlo Methods
2000, Springer, Berlin, Heidelberg, page 406421, 2002.

16. A.B. Owen. Quasi-Monte Carlo Sampling, A Chapter on QMC for a SIGGRAPH 2003 course. 2003.

17. P.K. Sarkar and M.A. Prasad. A comparative study of pseudo and quasi random sequences for the
solution of integral equations. J. Computational Physics, 68, pages 66—88, 1978.

18. I.H. Sloan and H. WozZniakowski. When are quasi-Monte Carlo algorithms efficient for high dimensional
integrals? Journal of Complexity, 14(1):1-33, 1998.

19. I. M. Sobol. On the systematic search in a hypercube. Siam journal on Numerical Analysis, 16(5):790—
793, October 1979.

20. A. Srinivasan. Parallel and distributed computing issues in pricing financial derivatives through quasi-
monte carlo. In Proceedings of the 16th International Parallel and Distributed Processing Symposium,
2002.

21. O. Teytaud, S. Gelly, and J. Mary. Active learning in regression, with application to stochastic
dynamic programming. In Proceedings of ICINCO’07, pages 47-54, 2007.

22. Olivier Teytaud and Sylvain Gelly. Dcma: yet another derandomization in covariance-matrix-
adaptation. In GECCO ’07: Proceedings of the 9th annual conference on Genetic and evolutionary
computation, pages 955-963, New York, NY, USA, 2007. ACM.

23. B. Tuffin. On the use of low discrepancy sequences in monte carlo methods, 1996.

24

25.
26.

27.

28.

29.

B. Tuffin. A new permutation choice in halton sequences. Monte Carlo and Quasi-Monte Carlo,
127:427435, 1997.

J. G. van der Corput. Verteilungsfunktionen. Proc. Ned. Akad. v. Wet., 38:8132821, 1935.

B. Vandewoestyne and R. Cools. Good permutations for deterministic scrambled halton sequences in
terms of 12-discrepancy. Computational and Applied Mathematics, 189(1,2):341:361, 2006.

X. Wang and F. Hickernell. Randomized halton sequences. Math. Comput. Modelling, 32:887—-899,
2000.

T.T. Warnock. Computational investigations of low-discrepancy point sets. In In: S.K. Zaremba, Edi-
tor, Applications of Number Theory to Numerical Analysis (Proceedings of the Symposium), University
of Montreal, page 319343, 1972.

T.T. Warnock. Computational investigations of low-discrepancy point sets ii. In In: H. Niederreiter
and P.J.-S. Shiue, Editors, Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing,
Springer, Berlin, 1995.

