
HAL Id: inria-00288339
https://hal.inria.fr/inria-00288339

Submitted on 16 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CoRDAGe: towards transparent management of
interactions between applications and ressources

Loïc Cudennec, Gabriel Antoniu, Luc Bougé

To cite this version:
Loïc Cudennec, Gabriel Antoniu, Luc Bougé. CoRDAGe: towards transparent management of inter-
actions between applications and ressources. International Workshop on Scalable Tools for High-End
Computing (STHEC 2008), Michael Gerndt and Jesus Labarta and Barton Miller, Jun 2008, Kos,
Greece. pp.13-24. �inria-00288339�

https://hal.inria.fr/inria-00288339
https://hal.archives-ouvertes.fr


CORDAGE: Towards Transparent Management of
Interactions Between Applications and Resources∗

Loı̈c Cudennec
INRIA/University of Rennes 1, IRISA, France

Gabriel Antoniu
INRIA, IRISA, France

Luc Bougé
ENS Cachan/Brittany extension, IRISA, France

Abstract

Nowadays large-scale, grid-aware applications are intended to run for days or even weeks
over hundreds or thousands of nodes. This requires new, and often painful operations for
the user in charge of deployment and monitoring. We claim that the applications should
themselves manage their run in an autonomic way, by requesting new resources on-demand.

In this paper, we introduce CORDAGE, a third-party tool, standing between applications
and lower-level grid management tools. It provides genericand application-specific facilities
to dynamically expand and retract the deployment of a grid-aware application according to its
actual needs. A prototype has been implemented and a preliminary testing has been conducted
on the GRID’5000 testbed.

1 Introduction

This work has been initiated within the context of large-scale, grid-aware applications, mostly
scientific code-coupling applications, distributed execution frameworks and data-sharing services.
These applications are designed to run on hundreds of nodes,for duration of the order of days or
even weeks. In most cases, the needs in physical resources isnot predictable before deploying.
As most, if not all of the available grid testbeds are platforms shared among different users, it
is obviously not possible to exclusively reserve all the physical resources for such a long time.
Therefore, these applications have to be designed togetherwith ad-hoc facilities toexpandor
retract their topology at run-time, that is, requiring or releasingcomputing nodes according to
their actual needs, and/or to the requests of the other users.

This picture is reminiscent of so-calledDesktop computingor Internet Computingfor very large-
scale, distributed applications, mostly based on a Master-Worker scheme. However, we address a
more complex problem in this paper. The grid-aware applications should be able to continuously

∗Contact author: Loı̈c Cudennec, IRISA, Campus de Beaulieu,F-35042 Rennes Cedex, France.Loic.Cudennec@
irisa.fr.
This work has been supported by a grant of Sun Microsystems and a grant from the Regional Council of Brittany,
France.



andautonomicallyinteract with the grid management agents to handlere-deploymentrequests.
Also, complex deployment requests have to be handled. For instance, in the case of coupled codes,
multiple applications have to be deployed in a consistent way, and some additional connection
actions (connecting pipes, installing consistent configuration files, etc.) have to be performed at
co-deploymenttime.

DREAM

REAL LIFE

OUR CONTRIBUTION

AUTONOMIC
DEPLOYMENT

REAL PROGRAMS,
REAL PEOPLE

JDF, KADEPLOY
ADAGE...

DYNACO, ENTROPY,
TUNE...

Figure 1:Standing between
real-life deployment and au-
tonomic deployment.

Autonomic computinghas become one of the most promising ap-
proach to ease the management of large-scale distributed systems.
The idea of autonomic computing, first introduced in the IBM man-
ifesto [1], consists in building systems which are self-managing
to meet the administrator’s goals. Such a feature is calledself-
configurability: installing, configuring and integrating large applica-
tions should be transparently achieved without the help of ahuman
user. Some projects [2, 3, 4] offer dynamic deployment to execute
tasks on a distributed execution overlay. In these projects, the re-
sources are discovered and selected according to the needs of the
application. However, this execution overlay has to be persistently
deployed among the resources, which is not always possible on time-
shared platforms. Dynamic reconfiguration of applicationsover com-
puting grids has also been studied in Jade [5]. This system proposes
an autonomous framework for the administration of clustered J2EE applications thanks to the use
of a component model. Entities have to be encapsulated into Fractal components in order to be
managed in a dynamic way. The Tune system [6] helps adapting applications to use the Jade
framework, introducing a higher-level UML-like interface. Finally, systems like Dynaco [7] and
Entropy [8] propose an adaptation framework based on a supervisor which monitors resources and
applications, and takes decisions following a given policythat can trigger additional deployment
or process migration.

Some tools have been proposed to specifically assist the deployment of applications. The JXTA

Distributed Framework(JDF) [9] helps in automating the deployment of large JXTA -based P2P
networks using a symbolic description of the overlay. TakTuk [10] is designed to execute a given
command on a bunch of nodes, retrieve the output data and easethe communications between pro-
cesses using a logical interconnection network. Kadeploy [11] makes a step further in deployment
support by replacing the node runtime environment with a cloned image that includes the entire
operating system. Finally, ADAGE [12] goes generic, by proposing a deployment framework
that converts specific descriptions of applications into aninternal representation which serves as a
basis to plan deployment. Explicit placement constraints regarding the mapping of processes can
also be expressed. As far as we know, ADAGE is the only adaptable deployment framework to
address a large variety of complex applications.

However, all these deployment systems are designed for one-shot deployments: once the appli-
cation has been started, there is no support for additional deployment nor smart process removal.
The goal of this paper is to introduce a preliminary attempt at addressing the problem ofjoint co-
deploymentanddynamic re-deploymentof complex distributed applications on a grid. Section 2
describes a motivating scenario. Section 3 explains the various aspects of our CORDAGE tool,
starting from the high-level description down to the low-level operations on the grid. Section 4
provides some details about our prototype and its performance.



2 A motivating example: co-deploying JUXM EM and GFARM

As a motivating case-study, we describe the deployment of JUXMEM [13]. We provide here a very
brief description of this software, emphasizing its deployment requirements.

JUXMEM is a data-sharing service for the grid that enables transparent data sharing through the
use of a unique global identifier. JUXMEM is inspired by both distributed shared-memory systems
(DSM) regarding the transparent access to memory, and by peer-to-peer systems (P2P) regarding
the support of dynamic reconfiguration. The data stored in the JUXMEM service are replicated
on so-calledprovider peers, distributed within several JUXMEM groups. Within each group, a
managerpeer is in charge of locally connecting the peers and processing allocating requests by
finding enough providers to replicate the data. Finally, some client peers are in charge of the
interactions between the main user application and the data-sharing service.

The storage capacity provided by JUXMEM mainly depends on the number of providers involved
in the deployment. As of today, this information has to be determined before the deployment of the
service. To do so, the maximum peak of storage load has to be estimated from predictions about
the client application behavior. Once a JUXMEM topology has been determined to satisfy the
expected needs of the client (number of managers, providers, clients, etc.), the user has to reserve
physical resources on the grid and to deploy all the JUXMEM entities. This is done using external
tools provided elsewhere by the grid environment: reservation and scheduling tools, deployment
tools, monitoring tools, etc. Observe that no later tuning of resource usage is possible: even if it
happens that only a few providers are needed at run-time, thereserved resources are frozen until
the end of the reservation period.

A much more attractive scenario would of course consist in initially deploying a minimal topology
of JUXMEM only. This topology would be composed by only one group, in which only one
manager peer is deployed and no provider. This initial topology would then self-expand and self-
retract, in a transparent and autonomic way, depending on the actual needs of the client.

A first approach would be to patch ad-hoc pieces of code into JUXMEM to interact with the
scheduling and deployment external tools, so as to reserve physical nodes and to deploy addi-
tional JUXMEM entities as needed. However this would not be a generic approach, whereas many
other applications [2, 14, 4] might be interested by this kind of dynamic feature.

Furthermore, deploying several applications of differenttypes at the same time is not a rare thing.
Most of the scientific applications and prototypes are in fact made by coupling multiple sub-
applications coming from different teams. As an example, wepresented in a previous paper [15]
how to build a distributed hierarchical memory for the grid,relying on the JUXMEM service for
fast memory accesses, and the GFARM [14] global file system for long-term storage. The idea is to
leverage the storage space by adding a secondary persistentstorage. This joint architecture raises
challenging deployment issues. Each JUXMEM provider also acts as a GFARM client, so that the
deployment plans of JUXMEM and GFARM have to be set up together. Moreover, the deployment
phase of GFARM has to create specific configuration files at the nodes where GFARM clients, that
is, JUXMEM providers, are expected. In a previous work, it has been shown how to handle such
elaborate constraints within the ADAGE deployment tool [12] in a static deployment context. The
challenge here is to extend this capacity to a dynamic and unpredictable context as well.



USER

RESERVATION
TOOL

DEPLOYMENT
TOOL

APPLICATION
DESCRIPTION

PLACEMENT
CONSTRAINTS

RESOURCE
LIST

RESOURCE
LIST

RESOURCE
SELECTION

APPLICATION

1 2 3

4

DEPLOYMENT
TOOL

USER

CoRDAGe

APPLICATION

5

RESERVATION
TOOL

APPLICATION
DESCRIPTION

APPLICATION
DESCRIPTION

RESOURCE
LIST

PLACEMENT
CONSTRAINTS

RESOURCE
SELECTION

RESOURCE
LIST

2

3

1

4

6

Figure 2:Deploying an application (a) by hand, and (b) using the CORDAGE tool.

These sophisticated applications are designed to be executed on a grid architecture, that is, a
set of distributed resources interconnected by a network and belonging to different administration
domains. This is particularly true for the GRID’5000 [16] platform, a French experimental testbed
that gathers up to 5,000 processors distributed over 9 sitesnation-wide. The resource nodes from
this highly reconfigurable testbed can be reserved thanks toa distributed batch scheduler named
OAR [17]. This scheduler allows grid users to share resources by requesting reservations starting
as soon as possible or in the near future. Information about the wall-time of the reservation and
the requested properties of the reserved resources are specified through to a basic command-line
interface. Each grid site hosts a database in charge of managing the local reservation requests.
There is no advanced support for multi-site reservations: they have to be handled using shell
scripts. Additional supervision tools generate live Ganttdiagrams for reservations in order to help
the user select a list of sites with enough free resources.

As of today, experimentations on GRID’5000 involving complex applications are deployedby
hand. Figure 2(a) shows the complex pattern of interactions between the user and the grid man-
agement tools to achieve a very simple deployment.

We claim that a third-party tool is needed toautonomicallymanage all these intricate reservation
and deployment operations. We introduce our CORDAGE proposal: aco-deploymentand re-
deploymenttool based on ADAGE. (Cordagealso meansrigging in French.) CORDAGE should
be generic enough to handle at the same time the management ofseveral applications of different
types. Figure 2(b) displays the interactions standing between the CORDAGE tool, the user, and
original grid management tools. The main difference with Figure 2(a) is that the user is not in
charge of requesting resources, neither deploying them. All these steps are now performed by
this tool in a transparent way on behalf of the user. The only information needed from the user is
the initial application description. This information could even be left empty in order to deploy a
minimal default configuration. Once deployed, the application can freely interact with CORDAGE

in order to request expansion or retraction, without any user intervention.



Action Meaning

BASE REGISTER Register a new application with a given type and a given id
BASE SET APPDESCPATH Set the application description file path
BASE DEPLOY Reserve resources and deploy the application using the current

application description
BASE DISCARD Discard a given entity, request entity termination, delete associated

reservation
BASE TERMINATE Terminate deployment tool and unregister application
JUXMEM ADD GROUP Add a JUXMEM group (1 manager and a given number of

providers)
JUXMEM ADD PROVIDER Add a given number of providers in a given JUXMEM group

Table 1: Some CORDAGE generic and specific actions.

3 Contribution

In this paper we propose a grid tool, called CORDAGE, that transparently manages all the in-
teractions between user applications and other, lower-level grid tools. CORDAGE is adapted to
any kind of distributed applications that can interact withCORDAGE through a remote proce-
dure call (RPC) interface. RPC to CORDAGE trigger the execution of generic actions offered
by the CORDAGE kernel base class (CorKBase). These actions are available for all registered
applications. Registering a new application creates an instance of the CorKBase class that features
a logical representation of the application, a representation of the physical resources and other
state variables that can be accessed by all actions. In orderto adapt CORDAGE to a new type of
applications, a set of specific actions have to be defined. These actions are part of a new class,
specific to the application, that extends the CorKBase class. Therefore, specific actions can also
access the logical representation and other state variables. Some of the actions are mandatory, like
building the CORDAGE logical representation from the application description file. This action
is called each time a new description file is sent. Other actions can be very specific, like deploying
a provider in a given JUXMEM group. Some examples are listed in Table 1.

3.1 Step 1: Describing and configuring applications

In the CORDAGE model, an application is defined by a set oftypes of entities(ToE). The type of
an entity is defined as the program to be executed on a physicalresource, without taking the initial
parameters into account. As an example, the JUXMEM data-sharing service is represented by a set
of three ToE that correspond to themanager, theproviderand theclient.

Configuring applications consists in instantiating types of entities that compose an application into
entities. An entity is a unit-element managed by CORDAGE that needs to be deployed on a single
physical resource. During this step, two main information are specified prior to deployment. 1)
Dimensioning the application is performed by attaching a cardinality to each type of entities. This
cardinality can be equal to zero for some entities. If we consider the JUXMEM scenario mentioned
above, we can configure the application following Listing 1:one single managerm, two providers
p1 andp2, and one single clientc. 2) Semantic information is then attached to each entity. This
information can be initial parameters to use at startup or a description on how entities have to



Listing 1: Application description sample (JDL): overlay definition of a JUXMEM service.
1 <overlay>
2 <superpeers>
3 <superpeer id="my_manager" cardinality="1"/>
4 </superpeers>
5 <peers>
6 <peer id="my_provider" cardinality="2" superpeer="my_manager"/>
7 <peer id="my_writer" cardinality="1" superpeer="my_manager"/>
8 </peers>
9 </overlay>

interact. Regarding the JUXMEM scenario, we can specify thatpi andc have to be connected to
managerm. The set of entities generated at this step composes theconfigured application. This
step is still at the charge of the final user who wants to describe the initial configuration of his
application. However, we can imagine that a minimal description is provided for each kind of
application, to be later modified by CORDAGE.

3.2 Step 2: Building the logical representations, groups and trees

This step helps CORDAGE manage the entities, by building a logical representation of the con-
figured application. This representation is generic against the type of application. We propose a
first representation based onlogical groupsthat we generalize into alogical treerepresentation.

This representation decomposes the set of entities defininga configured application into a set of
logical groups (see Figure 3(a)). Logical groups will be later mapped to a set of physical resources.
Each logical group gathers entities that belong to the sameclass. These classes are defined thanks
to anaffinity relationα which is specific to the application. Its evaluation dependson the type
of entities and their attached semantic information. As an example, if we consider an application
based on the JUXMEM service, a smartα relation should express that all entities belonging to
the same JUXMEM group have to be placed in the same logical group. This strategy will reveal
helpful to take advantage of resource proximity, mainly in terms of network latency.

A specific action,generatelogical representation, is called each time the application description
has been modified in order to build the logical groups. This action has to be written for each
supported application: it is in fact the implementation of the α relation. Listing 2 displays the
algorithm used to build logical groups from a JUXMEM application description (as shown in List-
ing 1).

Listing 2: Building logical groups.
1 foreach (superpeer manager) {
2 gid = new logical_group(); // we create a new logical group
3 add_entity(gid, manager); // we add the manager to this group
4 foreach (peer p connected to manager) {
5 add_entity(gid, p); // we add p to the manager group
6 }
7 }

Logical groups may fit the needs of applications built arounda simple organization model. How-



ENTITIES LOGICAL GROUPS

VIRTUAL (ROOT) NODE

LOGICAL GROUPS

G0 G1

RROOT

GRIDS

SITES

CLUSTERS

RESOURCES

S0 S1

C4 C5

Figure 3: (a) Representing the application using logical groups. (b)Representing the application using a
logical tree. (c) Representing physical resources using a physical tree.

ever, for more complex applications, who need to express hierarchical relations between entities, a
flat representation may not suffice. This hierarchy may for instance express some proximity rela-
tion (e.g. in terms of physical or semantic distance among the entities). To generalize our solution
to a logical tree structure, we introduce the notion ofvirtual nodewhich will stand at the root level
of the tree. All logical groups are then attached as childrenof this virtual node (see Figure 3(b)).
Starting from this idea, we define the logical tree representation as a tree whose nodes and leaves
are either a logical group, or a virtual node.

3.3 Representing physical resources

The next step of the CORDAGE model uses this logical representation of the configured ap-
plication in order to make a pre-selection of the physical resources that will be involved in the
deployment. As for the application, CORDAGE proposes a generic representation of the physical
resources. Aphysical resourceis defined in the CORDAGE model as a physical device that refers
to a computing node, with the ability to support the execution of at least one logical entity. The
goal of this representation is to help CORDAGE perform a sub-selection of resources likely to
host a logical group. Physical resources are organized using physical groupsin a hierarchical way,
which define aphysical tree. Each physical resource belongs to at least one physical group.

A physical tree is built thanks to a leaf-set of physical resources and to a node-set of physical
groups. Figure 3(c) shows some resources, represented by squares, that are organized within a
physical tree. Because most of the client applications are designed to be deployed in a multi-grid
context, and also for the need of simplicity, we organize these resources with the criteria to make
the physical tree mirror the hierarchical grid infrastructure. This representation is mainly based on
network properties in terms of latency.

3.4 Step 3: Mapping the logical tree onto the physical tree

Once both logical and physical representations have been built, the next step of the CORDAGE

model consists in mapping the logical tree to a sub-tree of the physical tree. Each logical group
has to be mapped to a physical group, with the respect of the tree hierarchy. We assume the



physical tree to be deeper and larger than the logical tree sothat it is possible to find different
physical groups for each logical groups. This step generates preliminary placement constraints
that associate a set of logical entities to a set of physical resources. At the end of this step all
resource reservations have been made. Then, the final mapping of entities to resources will be
done by the deployment tool in a further step.

G0 G1

R

S0 S1

C4 C5

Figure 4: Two ways of mapping the same logical tree on the
physical resource tree. Left is top-most, right is bottom-most.

Figure 4 displays two different map-
pings of the same logical tree over
one single physical tree. The first
mapping, on the left, is atop-most
mapping in which we try to select
a physical sub-tree as close to the
root as we can. This approach is
motivated by the need to map enti-
ties from different logical groups on
distant physical resources. On the
other side, we represent abottom-
mostmapping that selects a sub-tree
that is close to the leaves. This ap-
proach is motivated by the need to map entities of the same logical group to resources that are as
close as possible. In this example, the top-most mapping distributes the two logical groups within
two different grids (G0 andG1) whereas the bottom-most mapping only selects resources from
grid G0.

At this step, CORDAGE iteratively searches for valid mappings of the logical treeto a sub-tree of
the physical tree: for each possible solution, it requests the reservation of the corresponding phys-
ical resources. This iterative process stops if all reservations succeed. However, since the testbed
is time-shared among multiple users, multiple iterations may be necessary before succeeding in
finding available resources that satisfy the hierarchical mapping. If no single solution is found at a
given level of the physical resource tree, the algorithm cango up a level and look for higher-level
sub-trees (which provides access to a larger number of physical resources).

The result of this step is a mapping of each logical group ontoa physical group, which is consistent
with the hierarchy. Each such mapping generates a placementconstraint. This set of constraints
and the corresponding set of reservations are given as an input to the deployment tool provided by
the grid, which can then trigger the deployment of the configured application. The result of this
deployment phase is adeployed application.

3.5 Expansion and retraction

In this paper we consider the dynamic nature of the application expressed as the need to make
its topology expand or retract. We do not address, for example, the problem of migrating de-
ployed entities to other physical resources. The idea is here to let the application request: 1) the
deployment of new entities; and 2) the removal of some entities currently deployed. We define
two corresponding basic operations,expandand retract, designed to be applied on the logical
representation of the application, as shown in Figure 5.



A B A B A B

EXPANDING RETRACTING

MAIN LOGICAL TREE

EXPANSION TREE

Figure 5:Expanding, then retracting an application.

Expanding a previously deployed application consists in adding new entities to the set of cur-
rently deployed entities. This operation is performed following the CORDAGE model in-
troduced in the previous sections. New entities have to be organized into a logical tree,
along the same lines as the main logical tree. This new tree iscalled theexpansion treeand
has to be attached as a sub-tree of a particular node or leaf ofthe main logical tree. This
particular node or leaf is called theexpansion node(nodeB tagged on Figure 5) and re-
places the virtual node standing at the root level of the expansion tree. The application may
provide additional information to determine the expansionnode. The mapping step is then
processed on the expansion tree, keeping in mind that its expansion node is already mapped
to a physical group. Once the mapping done, CORDAGE can request the deployment tool
to deploy the additional entities.

Retracting a previously deployed application consists in removing entities from the set of cur-
rently deployed entities. The corresponding CORDAGE operation is performed on the log-
ical tree by removing a particular sub-tree. This sub-tree,called theretraction tree, is a
complete sub-tree that includes the leaves. This choice hasbeen made to avoid the recon-
figuration of the logical tree that would imply some migrations of entities. The root of the
retraction tree is called theretraction node(nodeA tagged on Figure 5) and is given by
the application while requesting the retraction. Removingthe retraction tree from the main
logical tree implies the removal of entities from their physical resources and the deletion of
associated node reservations. CORDAGE invokes the regular grid management tools with
the appropriate parameters.

3.6 Co-deployment

The model proposed in this paper let CORDAGE describe the deployment and the evolution of
an application during its runtime. The need to deploy and manage applications made of several
sub-applications with all their cross-application constraints, can also be taken into account. This
particular kind of deployment is calledco-deployment. CORDAGE handles two types of addi-
tional deployment constraints. The first type of constraintis temporal constraints, indicating that
an entity from sub-applicationX has to be deployed and started before launching another entity
from sub-applicationY . The second type of constraint is placement constraints, indicating that an
entity, or a group of entities belonging to sub-applicationX has to be placed on the same physical
resource than an other entity from sub-applicationY , as illustrated in Figure 6.



LOGICAL TREE
APPLICATION 1

LOGICAL TREE
APPLICATION 2

CO-LOCATION
PLACEMENT
CONSTRAINT

G0 G1

R

S0 S1

C4 C5

C D

A B

Figure 6:Mapping a co-deployment.

In the CORDAGE model, co-deployment
boils down to a set ofcross-application
placement constraints. These constraints
are used while processing the mapping of
logical trees on the physical tree. This en-
sures for example that logical groupsC and
D will be mapped to the same physical
group (S1 in this example). Choosing the
same physical group forC andD also im-
plies that all their parents, taken two by two
in each upper level, will also share the same
physical group. In this example,A andB

are mapped to the same gridG0.

4 Implementation and preliminary evaluation

SUB-APPLICATION 1
ID = SA1

SUB-APPLICATION n
ID = SAn

CoRDAGe CLIENT CoRDAGe CLIENT

CoRDAGe RPC

rpc(SA1, 
action, params)

rpc(SAn, 
action, params)

CoRK
CoRDAGe KERNEL GENERIC

ACTIONS

SA1-SPECIFIC
ACTIONS

RESERVATION TOOL
INTERFACE

DEPLOYMENT TOOL
INTERFACE

SA1 LOGICAL
REPRESENTATION

SA1 PHYSICAL
REPRESENTATION

SAn LOGICAL
REPRESENTATION

SAn-SPECIFIC
ACTIONS

SA1 PHYSICAL
REPRESENTATION

APPLICATION

Figure 7:A modular design.

We have designed and implemented a prototype to val-
idate the model described in Section 3. This prototype
features the management of applications using both log-
ical groups and tree representations. It is also possible to
perform co-deployment of several sub-applications us-
ing a logical tree merging procedure, which is not ex-
plained in this paper.

The CORDAGE prototype consists in a server in charge
of processing all the deployment requests coming from
an application. Figure 7 displays an overview of the pro-
totype. The main generic action offered by CORDAGE

is thedeployaction. It performs the deployment of a set
of sub-applications according to their internal descrip-
tions. A important practical aspect not discussed above
is theobjective end-timeto be provided to the reserva-
tion and scheduling tool. In CORDAGE, it is set by the
user on the initial deployment, and all the subsequent de-
ployments inherits of this end-time.

The prototype has been written in C, C++ and Perl lan-
guages and uses the XML-RPC protocol specification.
CORDAGE currently relies on the ADAGE deployment
tool and the OAR grid reservation tool available on the
GRID’5000 testbed. In order to validate the prototype we consider the following basic scenario.
A synthetic application is used to simulate the behavior of aJUXMEM manager in charge of al-
locating data in the data-sharing service. This application first requests CORDAGE to locally
deploy a minimal topology of JUXMEM made of 1 manager, 1 provider and 2 clients that perform
repeated read and write operations on a data. This deployment is ordered with a end-time of 10



minutes later. Once deployed, it requests the expansion of the JUXMEM service by adding two
new groups on two distant sites, each featuring a manager anda provider. Finally, the synthetic
application repeatedly requests the deployment of new providers within each of these JUXMEM

groups in turn. This is done until the initial end-time has been reached.

Our preliminary evaluations have been performed over GRID’5000 using 3 remote distant sites:
Rennes, Lille and Sophia, the CORDAGE server being located in Rennes. Adding a new provider
took an average time of 10 seconds, depending on the remote site. The time needed to achieve an
expansion is actually mainly due to the reservation and deployment tools, especially when dealing
with remote sites because of the higher latency.

5 Conclusion

Deploying grid-aware applications on modern large-scale testbeds tends to become more and more
difficult. Configuring the application, selecting physicalresources, interacting with grid manage-
ment tools are tedious tasks. We claim that the applicationsshould themselves manage their run
in an autonomic way, by requesting new resources on-demand.

In this paper we have described a grid management tool calledCORDAGE that helps managing
dynamic deployment and co-deployment tasks in a transparent way. It is made possible thanks to
the high-level model used to represent both the applicationand the physical resources. This model
is generic enough to be used by various distributed applications. CORDAGE supports generic
actions in charge of mapping the application on physical resources, as well as specific actions to
adapt its behavior to the type of application.

A first prototype has been implemented to validate this approach. This paper reports on prelim-
inary experiments with initial deployment and topology expansions. We are currently working
on topology retraction, co-deployment of sub-applications and integration of CORDAGE in other
grid-aware environments like GFARM and DIET. An interesting direction for future work would
be to make different instances of CORDAGE communicate and collaborate together.

6 Acknowledgments

This work has been supported by Sun Microsystems, the Regional Council of Brittany and the
French National Agency for Research project LEGO (ANR-05-CIGC-11). Experiments presented
in this paper were carried out using the Grid’5000 experimental testbed, an initiative from the
French Ministry of Research through the ACI GRID incentive action, INRIA, CNRS and RE-
NATER and other contributing partners (seehttp://www.grid5000.fr/). We would like to thank
Voichita Almasan for her early contribution on this research topic.

References

[1] Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer36(1) (2003) 41–50



[2] Caron, E., Desprez, F.: DIET: A scalable toolbox to buildnetwork enabled servers on the grid. Intl.
J. High-Performance Computing Applications20(3) (2006) 335–352

[3] Jeanvoine, E., Rilling, L., Morin, C., Leprince, D.: Using overlay networks to build operating system
services for large scale grids. Scalable Computing: Practice and Experience8(3) (2007) 229–239
Special issue on Practical Aspects of Large-Scale Distributed Computing.

[4] Drost, N., van Nieuwpoort, R.V., Bal, H.E.: Simple locality-aware co-allocation in peer-to-peer
supercomputing. In: Proc. 6th Intl. Workshop on Global and Peer-to-Peer Computing (GP2P 2006),
Singapore (May 2006)

[5] De Palma, N., Sicard, S., Bouchenak, S., Hagimont, D., Boyer, F.: Autonomic administration of
clustered J2EE applications. In: Proc. Intl. Conf. on Parallel and Distributed Processing Techniques
and Applications (PDPTA 2005). (2005) 1248–1254

[6] Broto, L., Hagimont, D., Stolf, P., Depalma, N., Temate,S.: Autonomic management policy speci-
fication in Tune. In: Proc. Ann. ACM Symp. on Applied Computing (SAC 2008), Fortaleza, Ceará,
Brazil, ACM (March 2008) (electronic medium)

[7] Aldinucci, M., André, F., Buisson, J., Campa, S., Coppola, M., Danelutto, M., Zoccolo, C.: An
Abstract Schema Modelling Adaptivity Management. In: Integrated Research in GRID Computing.
Springer (2007) 89–102

[8] Hermenier, F., Lorca, X., Cambazard, H., Menaud, J., Jussien, N.: Reconfiguration automatique du
placement dans les grilles de calculs dirigée par des objectifs. In: Actes 6e Conférence Francophone
sur les Systèmes d’Exploitation (CFSE 6), Fribourg, CH (February 2008)

[9] Antoniu, G., Bougé, L., Jan, M., Monnet, S.: Large-scale deployment in P2P experiments using the
JXTA distributed framework. In: Euro-Par 2004: Parallel Processing. Number 3149 in Lect. Notes in
Comp. Science, Pisa, Italy, Springer (August 2004) 1038–1047

[10] Martin, C., Richard, O., Huard, G.: Déploiement adaptatif d’applications parallèles. Technique et
Science Informatiques (TSI)24(5) (2005) 547–565

[11] Kadeploy. Available athttp://www-id.imag.fr/Logiciels/kadeploy/

[12] Lacour, S., Pérez, C., Priol, T.: Generic applicationdescription model: Toward automatic deployment
of applications on computational grids. In: Proc. 6th IEEE/ACM Intl. Workshop on Grid Computing
(Grid 2005), Seattle, WA, USA, Springer (November 2005)

[13] Antoniu, G., Bougé, L., Jan, M.: JuxMem: An adaptive supportive platform for data sharing on the
grid. Scalable Computing: Practice and Experience6(3) (November 2005) 45–55

[14] Tatebe, O., Morita, Y., Matsuoka, S., Soda, N., Sekiguchi, S.: Grid datafarm architecture for petascale
data intensive computing. In: Proc. 2nd IEEE/ACM Intl. Symp. on Cluster Computing and the Grid
(Cluster 2002), Washington DC, USA, IEEE Computer Society (2002) 102

[15] Cudennec, L.: Un service hiérarchique distribué de partage de données pour grille. In: Actes Ren-
contres francophones du Parallélisme (RenPar 18), Fribourg, CH (February 2008)

[16] Cappello, F., Caron, E., Dayde, M., Desprez, F., Jeannot, E., Jegou, Y., Lanteri, S., Leduc, J., Melab,
N., Mornet, G., Namyst, R., Primet, P., Richard, O.: Grid’5000: A large scale, reconfigurable, con-
trolable and monitorable grid platform. In: Proc. 6th IEEE/ACM Intl. Workshop on Grid Computing
(Grid ’05), Seattle, Washington, USA (November 2005) 99–106

[17] Capit, N., Costa, G.D., Georgiou, Y., Huard, G., Martin, C., Mounié, G., Neyron, P., Richard, O.: A
batch scheduler with high-level components. In: Proc. 5th IEEE/ACM Intl. Symposium on Cluster
Computing and the Grid (CCGrid ’05), Cardiff, UK (May 2005) 776–783


