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Abstract: This paper concerns recognition of human actions under view changes. We ex-
plore self-similarities of action sequences over time and observe the striking stability of such
measures across views. Building upon this key observation we develop an action descrip-
tor that captures the structure of temporal similarities and dissimilarities within an action
sequence. Despite this descriptor not being strictly view-invariant, we provide intuition
and experimental validation demonstrating the high stability of self-similarities under view
changes. Self-similarity descriptors are also shown stable under action variations within a
class as well as discriminative for action recognition. Interestingly, self-similarities computed
from different image features possess similar properties and can be used in a complementary
fashion. Our method is simple and requires neither structure recovery nor multi-view corre-
spondence estimation. Instead, it relies on weak geometric cues captured by self-similarities
and combines them with machine learning for efficient cross-view action recognition. The
method is validated on three public datasets, it has similar or superior performance com-
pared to related methods and it performs well even in extreme conditions such as when
recognizing actions from top views while using side views for training only.
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Résumé : Ce document traite de la reconnaissance dactions humaines sous des vues
différentes. Nous nous intéressons aux auto-similarités temporelles des actions et observons
la stabilité de telles mesures quelle que soit la vue considérée. Nous développons autour
de cette constatation un descripteur qui reflète la structure des similarités et dissimilarités
temporelles au sein dune action. Bien que ce descripteur ne soit pas strictement invariant
aux changements de points de vue, nous proposons une validation intuitive et expérimentale
démontrant la grande stabilité des auto-similarités pour des points de vue différents. De
plus, ces descripteurs sont stables la variabilité des actions au sein dune même classe
et discriminants pour la reconnaissance dactions. Il est intéressant de noter que les auto-
similarités calculées à partir de caractéristiques différentes possèdent les mêmes propriétés et
peuvent être utilisées de manière complémentaire. Notre méthode est simple et ne requiert
ni estimation de structures ni mise en correspondances entre vues. Au lieu de cela, elle
s’appuie sur les faibles informations géométriques de l’auto-similarité et les combine avec de
lapprentissage pour une reconnaissance daction efficace dans un contexte de vues multiples.
La méthode a été validée sur trois bases de données, et obtient des performances similaires
ou supérieures aux méthodes afférentes. De plus, celle-ci a montré de bonnes performances
y compris dans des conditions extrêmes, par exemple lorsque la reconnaissance daction est
effectuée pour des vues de dessus alors que la phase dentrainement ne considère que des
vues de côtés.
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1 Introduction

There has been a long tradition of research on human action understanding and behavior
recognition in the vision community. Even still, determining similarity between human
actions stands out to be one of the core problems of computer vision. Recent surveys
highlight the immense attention that this problem has attracted [1, 2]. A good solution to
this problem, however, holds a tremendous potential for applications to various computer
vision problems such as video indexing and archiving, human computer interaction, gesture
recognition and video surveillance to name a few. Some of the key issues that have been
a bottle-neck for this problem are (i) that a good kinematic tracking has proved to be
hard, specially, requiring feature point correspondences between different actions has forced
researchers to resort to manual point tracking, and (ii) the models often adopted are overly
complex, making the methods computationally expensive and impractical.

We aim to address the problem of action recognition in realistic monocular videos. We
strive to make the method simple and flexible, by not imposing overly restrictive assump-
tions, and yet still be able to perform action recognition from arbitrary views. This is a
very difficult problem, as appearance of an action may drastically vary from one viewpoint
to another. In addition to this viewpoint change, other factors that make the problem even
more challenging are the perspective or affine distortions (depending on the model used),
anthropometric variations, or the speed at which the action is performed. Therefore, to
make the problem more tractable, various simplifications or restricted special cases have
been considered over the years [3, 4, 5, 6, 7, 8, 9]. We aim at alleviating such constraints.
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4 Junejo et al.

One common restrictive assumption is to rely on multiple cameras. [10, 5] employ the use
of epipolar geometry. Point correspondences between actions are used to estimate the fun-
damental matrices to perform view-invariant action recognition. However, obtaining correct
point correspondences between actions from low resolution real videos is still a challeng-
ing problem. [9, 11] create a database of poses seen from multiple viewpoints. Extracted
silhouettes from a test action are matched to this database to recognize the action being
performed. [7, 12] perform full 3D reconstruction from extracting silhouettes seen from mul-
tiple deployed cameras. These methods require a setup of multiple cameras or training on
poses obtained from multiple views, which restricts the applicability of these methods and
can also be quite expensive.

In contrast, we want to perform action analysis in monocular sequences associated to
arbitrary viewpoints. To this end, one has to come up with (approximate) view-invariants.
Rao et al. [3] show, for instance, that the maxima in space-time curvature of a 3D trajectory
gets preserved in 2D image trajectories. However, these maxima (or dynamic instances)
might not exist for an action, and also another limitation of this representation is that
these instances might not always be preserved under the projection model. [4] propose a
quasi-view invariant approach, requiring at least 5 body points lying on a 3D plane or that
the limbs trace a planar area during the course of an action. [13, 14] introduce space-time
shapes, which are built by stacking together silhouettes of a tracked object, and various
space-time features are then extracted from them to perform action recognition.

In contrast to these approaches, we propose to exploit a simple and yet a powerful
tool based on “self-similarities”. Self-similarity of an action sequence, although not strictly
view-invariant, is indeed surprisingly stable across views, irrespective of the precise features
chosen to compute it. Its use allows us to devise a view-invariant action recognition system
that requires neither structure recovery nor multi-view matching.

1.1 Related Work

The methods most closely related to our approach are that of [15, 16, 17]. Recently for
image and video matching, based on the notion of self-similarity, [15] compute a local patch
descriptor for every pixel. This is done by correlating the image patch centered at a pixel
to its surrounding area by the simple Sum of Squared Differences (SSD). The descriptor (or
the correlation surface) is transformed into a binned log-polar representation. Matching a
template image to another image corresponds to finding a similar ensemble of descriptors in
both images.

However, our approach is more related to the notion of video self-similarity as presented
by [16, 17]. In the domain of periodic motion detection, Cutler and Davis [17] track moving
objects and extract silhouettes (or their bounding boxes). This is followed by building a 2D
matrix for the given video sequence, where each entry of this matrix contains the absolute
correlation score between the two frames i and j. Their observation is that for a periodic
motion, this similarity matrix will also be periodic. To detect and characterize the periodic
motion, they use the Time-Frequency analysis. Following this, [16] use the same construct
of the self-similarity matrix for gait recognition in videos of walking people. The periodicity

Irisa
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Figure 1: (a) and (c) demonstrate a golf swing action seen from two different views, and (b)
and (d) represent their computed self-similarity matrices (SSM), respectively. Even though
the two views are different, the structure or the patterns of the computed SSM are very
similar.

of the gait creates diagonals in the matrix and the temporal symmetry of the gait cycles are
represented by the cross-diagonals. In order to compare sequences of different length, the
self-similarity matrix is subdivided into small units. However, while working only on image
intensities, both of these works focus primarily on videos of walking people for periodic
motion detection and gait analysis.

1.2 Our Approach: Overview

We propose a novel approach to action recognition by computing self-similarities of an action
sequence. The proposed method is intuitive and flexible, in the sense that it can accommo-
date various features. We assume an Affine camera model, which is a fair assumption for real
videos [3, 4]. We impose no restrictions on the pose or the camera viewpoint. The proposed
self-similarity matrix (SSM) for an action sequence captures both the static and dynamic
properties of the action. Using SSM, we contend that the similarities and dissimilarities
of an action sequence are preserved under view variations. For example, Fig. 1 shows an
action of a golf swing seen from two different views, Fig. 1(a) and Fig. 1(c), and their
corresponding computed SSMs in Fig. 1(b) and Fig. 1(d), respectively. In both views, the
points A and B are close to each other, i.e. the distance between A and B is low, while
the distance between A and C is higher in both the views. Such qualitative similarities
might explain the noticeable similarity in the “patterns” of the two SSMs. Our contention
is that for different actions (from considerably different viewpoints), these SSM patterns
are distinctive enough to be learned on a per-action basis or simply to synchronize multiple
views of the same action.

The rest of the paper is organized as follows: Section 2 introduces the SSM and the
various features that we use to compute it. Section 3 describes the learning based on these

PI n˚1895
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(a) (b) (c) (d) (e)

Figure 2: (a)-(d) are four images from a sequence of a walking person. (e) represents the
SSM obtained for this sequence by [17].

SSMs to perform action recognition. In Section 4, we test the method on three public
datasets to demonstrate the practicality and the potential of the proposed method.

2 Self-Similarity Matrix (SSM)

The main contribution of the paper is the introduction of the self-similarity matrix (SSM),
with the rationale that different action sequences produce SSMs of different patterns or
structures, thus allowing us to perform action recognition.

For a sequence of images I = {I1, I2, . . . IT }, lying in discreet (x, y, t)-space, the square
symmetric distance matrix D(I) lying in RT×T is defined as an exhaustive table of distances
between image features taken by pair from the set I:

D(I) = [dij ]i,j=1,2,...,T =


0 d12 d13 . . . d1T

d21 0 d23 . . . d2T

...
...

...
...

dT1 dT2 dT3 . . . 0

 (1)

where dij represents a distance between the frames Ii and Ij . The diagonal corresponds
to comparing an image to itself, hence, always zero. The exact structure or the patterns
of D(I) depends on the features and the distance measure used for computing the entries
dij . For example, after tracking walking people in a video sequence, [16, 17] compute dij as
the absolute correlation between two frames, an example of which is shown in Fig. 2. The
computed matrix patterns (cf. Fig. 2(e)) have a significant meaning for their application -
the diagonals in the matrix indicate periodicity of the motion.

In this work, to compute dij , we use the Euclidean distance to measure the distance
between the different features that we extract from an action sequence. This form of D(I)
is then known in the literature as the Euclidean Distance Matrix (EDM)[18].

Before describing the features that we use, some word about the importance of matrix D
is in order. From morphometrics and isometric reconstruction to non-linear dimensionality
reduction, this matrix has proven to be a very useful tool for a variety of applications,

Irisa
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(a) (b) (c) (d) (e)

Figure 3: Comparison of the proposed SSM with [3]: Two actors perform the action of
opening a cabinet door from different viewpoints, where the hand trajectory is shown in (b)
and (d). The computed SSM for these two actions are shown in (c) and (e), respectively.
The dynamic instances (as proposed by [3]), marked in red ‘*’ in (b) and (d), represent
valleys in the corresponding SSM, depicted by magenta circle in (c) and (e), respectively.
The spread of each valley depends on the peak-width of the corresponding dynamic instance.

although never before for action recognition. For example, Isomap [19], a popular non-
linear dimensionality reduction method, starts by computing distances between all pairs
of images. These computed distances represent an adjacency matrix where each image
represents a node in the graph. Note also that this notion of self-similarity, unlike [5] or
[3], does not require point correspondences or time-alignment between different actions to
perform action recognition.

To get an intuitive understanding of the proposed method, a comparison of SSM with
the notion of “dynamic instances”, as proposed by Rao et al.[3], is shown in Fig. 3. [3]
argue that continuities and discontinuities in position, velocity and acceleration of a 3D
trajectory of an object are preserved under 2D projections. For an action of opening a
cabinet door, performed by two different actors from considerably different viewpoints, these
points are depicted in Fig. 3. Fig. 3(c)(e) shows the SSMs computed for these two actions,
where red color indicates higher values and dark blue color indicates lower values. The
dynamic instances, red ‘*’ in Fig. 3(b)(d), correspond to valleys of different area/spread
in our plot of SSM (cf. Fig. 3(c)(e)), marked by magenta circles along the diagonal of
the matrix. The exact spread of these valleys depend on the width of the peaks in the
spatio-temporal curvature of the actions, as shown in Fig. 3(b)(d). However, whereas
[3] captures local discontinuities in the spatio-temporal curvature, the SSM captures more
information about other dynamics of the actions, present in the off-diagonal parts of the
matrix. Our observation is that for different action (from considerably different viewpoints),
these patterns of SSM are discriminative.

SSMs are fairly robust, handles missing (or noisy) data robustly, and is fairly easy to
compute [18]. In a way, SSM can be visualized as measuring how unlikely is it that two im-
ages or two poses of an action are the same. Although, the patterns depicted by D(I) have
no direct physical meaning, intuitively, they capture both the static and dynamic properties
of the 3D (space-time) action shape [16]. The computation of SSM is also fairly flexible, in
the sense that we can choose from a variety of different features, depending on the available

PI n˚1895
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data. Below we describe some of the features we use to compute the SSM:

2.1 Trajectory-based Self-Similarities

If the joints of a subject are tracked over some time, the Euclidean distance between the
position of these tracked joints for any two frames of the sequence can be computed as:

dij =
∑

k

‖xk
i − xk

j ‖2 (2)

where the superscript k indicates the joint being tracked, and the subscript indicates the
frame number of the sequence I for which D(I) is being computed. We denote this computed
matrix by SSM-pos. In our experiments with motion capture dataset, we track 13 joints
on a person performing different actions [8], as shown in the Fig. 4(a). In order to remove
the effect of translation, without loss of generality, the points are centered to their centroid
so that their first moments are zero. The remaining scale normalization is achieved by
xi = x′

i

‖x′
i‖

, where x′i represent the joints being tracked in frame i and xi represent their
normalized coordinates.

In addition to the SSM-pos, we also compute similarities based on the first and the second
derivative of the 2D positions, i.e. the velocity and the acceleration features. Similarities
computed by these features are denoted by SSM-vel and SSM-acc, respectively.

It is beyond the scope of the current work to describe a joint or a point tracking al-
gorithm, and like [10, 8, 4], we assume the points are correctly tracked when using these
position based features. As mentioned above, we do not estimate any entity (like the fun-
damental matrix or the space-time shape [14]) that requires point correspondences between
actions, rather, we only compute the SSM by using the features that capture the dynamics
of an action sequence.

2.2 Image-based Self-Similarities

For video sequences where positional feature tracking fails, other features could be used to
compute D(I). A simple choice is the Euclidean distance between Histograms of Oriented
Gradients (HoG) features [20]. This descriptor, originally used to perform human detection,
characterizes the local shape because it captures edge and gradient structure. In our im-
plementation, we use 4 bin histograms for each 5 block defined on a bounding box around
a foreground object in each frame. dij is then the Euclidean distance between two HoG
vectors corresponding to the frames Ii and Ij . The SSM computed by using HoG features
is denoted by SSM-hog.

In addition to the HoG features, we also test the proposed method by considering the
estimated optical flow vector as an input feature. The optical flow is calculated using the
method described by Lucas and Kanade [21] on bounding boxes centered on the foreground

Irisa
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object between two consecutive frames. Considering both components of the optical flow,
three different SSMs are computed based on: x-direction flow vector (SSM-ofx), y-direction
flow vector (SSM-ofy) and global vector concatenating both directions (SSM-of). Here also
dij is measured as the Euclidean distance between the flow vectors corresponding to the
two frames Ii and Ij . In practice, we enlarge and resize bounding boxes in order to avoid
border effects on the flow computation and ensure same size of the flow vectors along an
action sequence. We resize the height to a value equal to 150 pixels and the width is set to
the greatest value for the considered sequence.

An example of the SSM, computed by using different features is shown in Fig. 4. Fig.
4(a) is an example from the CMU motion capture (mocap) database, projected in different
views. Column 1 and 5 of Fig. 4(a) represent two different actors, and column 2 and 4
represent their computed SSMs, respectively. The first two rows represent an action of
bending, where row 1 is almost a front view of an actor and row 2 is a viewpoint from
behind an actor at a considerable height. Similarly, rows 3 and 4 represent an action of a
football kick. Notice that even though there is a large variation in the actions performed
and the different views in which the action is projected, the SSMs have a very similar form.
Fig. 4(b) shows the SSMs obtained from a real dataset [13] for the action of bending. Row
2 depicts SSM-pos computed by tracking object movements (cf. [8]). Rows 3 and 4 show
the computed matrix based on HoG and Optic Flow vectors, respectively. Rows 2, 3 and 4
may not look similar, but notice the similarity column-wise. This is primarily due to the
fact that each similarity feature captures different characteristics of the action.

3 SSM-based action description and recognition

As argued in the previous section, SSMs have view-stable and action-specific structure. Here
we aim to capture this structure and to construct SSM-based descriptors for subsequent
action recognition. We pay attention to the following properties of SSM: (i) absolute values
of SSM may depend on the variant properties of the data such as the projected size of a
person in the case of SSM-pos; (ii) changes in temporal offsets and time warping may effect
the global structure of SSM; (iii) the uncertainty of values in SSM increases with the distance
from the diagonal due to the increasing difficulty of measuring self-similarity over long time
intervals; (iv) SSM is a symmetric positive semidefinite matrix with zero-valued diagonal.

Due to (ii)-(iii) we choose a local representation and compute patch-based descriptors
centered at each diagonal element of SSM. Our patch descriptor has a log-polar block struc-
ture as illustrated in Fig. 5. For each of the 11 descriptor blocks we compute 8-bin histogram
of SSM gradient directions within a block and concatenate the normalized histograms into
a descriptor vector hi. A joint local descriptor for m SSMs is constructed by concatenating
corresponding local descriptors of each SSM into a single vector hi = (h1

i , ..., h
m
i ). The

representation for a video sequence is finally defined by the sequence of local descriptors
H = (h1, ..., hn) computed for all diagonal elements of the corresponding SSM.
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Figure 4: (a) contains an example from CMU mocap dataset. Column 1 and 5 represent
two actors, and column 2 and 4 represent their computed SSM, respectively. The first
two rows are for the action of bending, (each row represents a different 2D projection of
the 3D action), while last two rows are for a football kick action. Middle column shows
the approximate viewing angle of the synthetic camera. (b) contains some results of the
computed SSMs for a real dataset [13]. Row 2 is the computed matrices based on point
tracking (i.e. trajectory based) by using the SSM-pos. Rows 3 and 4 are computed based
on the HoG and Optic Flow (OF) features, respectively. Note the similarity column-wise.
See text for more details.
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3.1 Temporal multi-view sequence alignment

Before addressing action recognition, we validate our representation on the problem of multi-
view sequence alignment. We consider two videos recorded simultaneously for the side
and the top views of a person in action as shown in Fig. 6(a). To further challenge the
alignment estimation, we apply a nonlinear time transformation to one of the sequences.
To solve alignment, we (i) compute SSM-of for both image sequences, (ii) represent videos
by the sequences of local SSM descriptors H1, H2 as described above, (iii) and finally align
sequences H1 and H2 by Dynamic Programming. The estimated time transformation is
illustrated by the red curve in Fig. 6(b) and does almost perfectly recover the ground truth
transformation (blue curve) despite the drastic view variation between image sequences.

3.2 Action recognition

To recognize action sequences we follow recently successful bag-of-features approaches [22,
23] and represent each video as a bag of local SSM descriptors H. We then apply either
Nearest Neighbour Classifier (NNC) or Support Vector Mahcines (SVM) to train and classify

i

n

1
time

tim
e

hi

hi,1

hi,m

Figure 5: Local descriptors for SSM are centered at every diagonal point i = 1...n and have
log-polar block structure. Histograms of gradient directions are computed separately for
each block and concatenated into descriptor vector hi.

50 100 150 200 250

50

100

150

200

250

(a) (b)
Figure 6: Temporal sequence alignment. (a): Two sequences with the side and the top views
of the same action are represented by corresponding key-frames. The lower sequence has been
time warped according to t′ = a cos(bt) transformation. (b): Alignment of two sequences
in (a) using SSM-based action descriptions and Dynamic Programming (red curve) recovers
the original warping (blue curve) almost perfectly despite substantial view variations.
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instances of action classes. In the case of NNC, we assign a test sequence Htst with the label
of a training sequence Hi

tr with i = argminj DNN (Htst, H
j
tr) minimizing the distance over all

training sequences. The distance DNN is defined by the greedy matching of local descriptors
as described in [22]. We apply NNC to datasets with a limited number of samples.

For SVMs we construct histograms of visual words and use them as input for SVM
training and classification according to [24]. Visual vocabulary is obtained by k-means
clustering of 10000 local SSM descriptors h from the training set into k = 1000 clusters.
Each feature is then assigned to the closest (we use Euclidean distance) vocabulary word
and the histogram of visual words is computed for each image sequence. We train non-linear
SVMs using χ2 kernel and adopt one-against-all approach for multi-class classification.

For all recognition experiments in the next section we report results for n-fold cross-
validation and make sure the actions of the same person do not appear in the training and
in the test sets simultaneously.

4 Experimental results

In this section we evaluate SSM-based action descriptors for the task of multi-view action
recognition. The first experiment in Section 4.1 aims to validate the approach in controlled
multi-view settings using motion capture data. In Section 4.2 we demonstrate and compare
the discriminative power of our method on the standard single-view action dataset [13].
We finally evaluate the performance of the method on the comprehensive multi-view action
dataset [12] in Section 4.3.

4.1 Experiments with CMU MoCap dataset

To simulate multiple and controlled view settings we have used 3D motion capture data
from CMU dataset (mocap.cs.cmu.edu). Trajectories of 13 points on the human body were
projected to six cameras with pre-defined orientation with respect to the human body (see
Fig. 7(a)). We have used 164 sequences in total corresponding to 12 action classes. To
simulate potential failures of the visual tracker we also randomly subdivided trajectories
into parts with the average length of 2 seconds. Fig. 7(b) demonstrates results of NNC
action recognition when training and testing on different views using SSM-pos, SSM-vel
and SSM-acc. As observed from the diagonal, the recognition accuracy is the highest when
training and testing on the same views while the best accuracy (95.7%) is achieved for cam5
(frontal view). Interestingly, the recognition accuracy changes slowly with substantial view
changes and remains high across top and side views. When training and testing on all views,
the average accuracy is 90.5%. The per-class accuracy is illustrated in Fig. 7(c).

4.2 Experiments with Weizman actions dataset

To asses the discriminative power of our method on real sequences we apply it to the stan-
dard single-view video dataset with nine classes of human actions performed by nine sub-
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Figure 7: CMU dataset. (a): A person figure animated from the motion capture data
and six virtual cameras used to simulate projections in our experiments. (b): Accuracy of
the cross-view action recognition using SSM-pos-vel-acc. (c): Recognition accuracy for all
classes.

jects [13](see Fig. 8(top)). On this dataset we compute NNC recognition accuracy when
using either image-based self-similarities in terms of SSM-of-ofx-ofy-hog or trajectory-based
SSM. Given the low resolution of image sequences in this dataset, the trajectories were
acquired by [8] via semi-automatic tracking of body joints. Recognition accuracy achieved
by our method for image-based and trajectory-based self-similarities is 94.6% and 95.3%
respectively and the corresponding confusion matrices are illustrated in Fig. 8(a)-(b). The
recognition results are similarly high for both types of self-similarity descriptors and out-
perform 92.6% achieved in [8].

4.3 Experiments with IXMAS dataset

We finally present results for IXMAS video dataset [12] with 11 classes of actions performed
three times by each of 10 actors and recorded simultaneously from 5 different views. Sample
frames for all cameras and four action classes are illustrated in Fig. 9. Given the relatively
large number of training samples, we apply SVM classification to image-based self-similarity
descriptors in terms of SSM-oh-ofx-ofy-hog. Fig. 10(a) illustrates recognition accuracy for
cross-view training and testing. Similar to results on CMU dataset in Section 4.1, here
we observe high stability of action recognition over view changes, now using visual data
only. The method achieves reasonable accuracy even for top views when using side-views for
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Figure 8: (Top): Example frames for Weizman action dataset [13] with image sequences for
nine classes of actions. (a)-(b) confusion matrices corresponding to NNC action recognition
using image-based self-similarities (a) and trajectory-based self-similarities (b).

training only. Fig. 10(c) illustrates recognition scores for different types of self-similarities
and their combinations. We can observe the advantage of SSM-of over SSM-hog, however,
the best results are achieved when combining self-similarities for several complementary
features. In comparison to other methods, our method outperforms both 2D and 3D based
recognition methods in [12] for all test scenarios as shown in Fig. 10(d). We may add that
our method relies on the rough localization and tracking of people in the scene and, hence,
relies on weaker assumptions compared to [12] that uses human silhouettes.

5 Conclusion

We propose a self-similarity based descriptor for view-independent action recognition. Ex-
perimental validation on several datasets using different types of self-similarities clearly
confirms the stability of our approach to view variations. The proposed method does not
rely on the structure recovery nor on the correspondence estimation, but makes only mild
assumptions about the rough localization of a person in the frame. This lack of strong as-
sumptions is likely to make our method applicable to action recognition beyond controlled
datasets when combined with the modern techniques for person detection and tracking. We
plan to investigate this direction in the future work.
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Figure 9: Example frames for four action classes and five views of the IXMAS dataset.
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Figure 10: Results for action recognition on IXMAS dataset. (a): Recognition accuracy for
cross-view training and testing. (b): confusion matrix for action recognition in “all-training
all-testing” setting. (c): relative performance of combined self-similarity descriptors. (d):
Comparison with [12] for “camN-training camN-testing” setup.
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